Chapter 16. None

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 81 - 100 of 1381

by Frank Swain WHEN it comes to personal electronics, it's difficult to imagine iPhones and hearing aids in the same sentence. I use both and know that hearing aids have a well-deserved reputation as deeply uncool lumps of beige plastic worn mainly by the elderly. Apple, on the other hand, is the epitome of cool consumer electronics. But the two are getting a lot closer. The first "Made for iPhone" hearing aids have arrived, allowing users to stream audio and data between smartphones and the device. It means hearing aids might soon be desirable, even to those who don't need them. A Bluetooth wireless protocol developed by Apple last year lets the prostheses connect directly to Apple devices, streaming audio and data while using a fraction of the power consumption of conventional Bluetooth. LiNX, made by ReSound (pictured), and Halo hearing aids made by Starkey – both international firms – use the iPhone as a platform to offer users new features and added control over their hearing aids. "The main advantage of Bluetooth is that the devices are talking to each other, it's not just one way," says David Nygren, UK general manager of ReSound. This is useful as hearing aids have long suffered from a restricted user interface – there's not much room for buttons on a device the size of a kidney bean. This is a major challenge for hearing-aid users, because different environments require different audio settings. Some devices come with preset programmes, while others adjust automatically to what their programming suggests is the best configuration. This is difficult to get right, and often devices calibrated in the audiologist's clinic fall short in the real world. © Copyright Reed Business Information Ltd.

Keyword: Hearing
Link ID: 19757 - Posted: 06.23.2014

Karen Ravn To the west, the skies belong to the carrion crow. To the east, the hooded crow rules the roost. In between, in a narrow strip running roughly north to south through central Europe, the twain have met, and mated, for perhaps as long as 10,000 years. But although the crows still look very different — carrion crows are solid black, whereas hooded crows are grey — researchers have found that they are almost identical genetically. The taxonomic status of carrion crows (Corvus corone) and hooded crows (Corvus cornix) has been debated ever since Carl Linnaeus, the founding father of taxonomy, declared them to be separate species in 1758. A century later, Darwin called any such classification impossible until the term 'species' had been defined in a generally accepted way. But the definition is still contentious, and many believe it always will be. The crows are known to cross-breed and produce viable offspring, so lack the reproductive barriers that some biologists consider essential to the distinction of a species, leading to proposals that they are two subspecies of carrion crow. In fact, evolutionary biologist Jochen Wolf from Uppsala University in Sweden and his collaborators have now found that the populations living in the cross-breeding zone are so similar genetically that the carrion crows there are more closely related to hooded crows than to the carrion crows farther west1. Only a small part of the genome — less than 0.28% — differs between the populations, the team reports in this week's Science1. This section is located on chromosome 18, in an area associated with pigmentation, visual perception and hormonal regulation. It is no coincidence, the researchers suggest, that the main differences between carrion and hooded crows are in colouring, mating preferences (both choose mates whose colouring matches theirs), and hormone-influenced social behaviours (carrion crows lord it over hooded ones). © 2014 Nature Publishing Group,

Keyword: Sexual Behavior; Aggression
Link ID: 19755 - Posted: 06.21.2014

—By Indre Viskontas He might be fictional. But the gigantic Hodor, a character in the blockbuster Game of Thrones series, nonetheless sheds light on something very much in the realm of fact: how our ability to speak emerges from a complex ball of neurons, and how certain brain-damaged patients can lose very specific aspects of that ability. According to George R.R. Martin, who wrote the epic books that inspired the HBO show, the 7-foot-tall Hodor could only say one word—"Hodor"—and everyone therefore tended to assume that was his name. Here's one passage about Hodor from the first novel in Martin's series: Theon Greyjoy had once commented that Hodor did not know much, but no one could doubt that he knew his name. Old Nan had cackled like a hen when Bran told her that, and confessed that Hodor's real name was Walder. No one knew where "Hodor" had come from, she said, but when he started saying it, they started calling him by it. It was the only word he had. Yet it's clear that Hodor can understand much more than he can say; he's able to follow instructions, anticipate who needed help, and behave in socially appropriate ways (mostly). Moreover, he says this one word in many different ways, implying very different meanings: So what might be going on in Hodor's brain? Hodor's combination of impoverished speech production with relatively normal comprehension is a classic, albeit particularly severe, presentation of expressive aphasia, a neurological condition usually caused by a localized stroke in the front of the brain, on the left side. Some patients, however, have damage to that part of the brain from other causes, such as a tumor, or a blow to the head. ©2014 Mother Jones

Keyword: Language
Link ID: 19753 - Posted: 06.21.2014

Heidi Ledford If shown to be possible in humans, addiction to the Sun could help explain why some tanners continue to seek out sunlight despite being well aware of the risks. The lure of a sunny day at the beach may be more than merely the promise of fun and relaxation. A study published today reports that mice exposed to ultraviolet (UV) rays exhibit behaviours akin to addiction. The researchers found that mice exposed repeatedly to UV light produced an opioid called β-endorphin, which numbs pain and is associated with addiction to drugs. When they were given a drug that blocks the effect of opioids, the mice also showed signs of withdrawal — including shaky paws and chattering teeth. If the results hold true in humans, they would suggest an explanation for why many tanners continue to seek out sunlight, despite the risks — and, in some cases, even after being diagnosed with skin cancer. “This offers a clear potential mechanism for how UV radiation can be rewarding and, in turn, potentially addictive,” says Bryon Adinoff, an addiction psychiatrist at the University of Texas Southwestern Medical Center in Dallas, who was not involved with the study. “That’s a big deal.” Oncologist David Fisher of the Massachusetts General Hospital in Boston and his colleagues became interested in sunlight addiction after studying the molecular mechanisms of pigment production in the skin after UV light exposure. In the new study published today in Cell1, they show that in mice, some skin cells also synthesize β-endorphin in response to chronic, low doses of UV light. © 2014 Nature Publishing Group

Keyword: Drug Abuse
Link ID: 19752 - Posted: 06.21.2014

By Robert Dudley When we think about the origins of agriculture and crop domestication, alcohol isn’t necessarily the first thing that comes to mind. But our forebears may well have been intentionally fermenting fruits and grains in parallel with the first Neolithic experiments in plant cultivation. Ethyl alcohol, the product of fermentation, is an attractive and psychoactively powerful inebriant, but fermentation is also a useful means of preserving food and of enhancing its digestibility. The presence of alcohol prolongs the edibility window of fruits and gruels, and can thus serve as a means of short-term storage for various starchy products. And if the right kinds of bacteria are also present, fermentation will stabilize certain foodstuffs (think cheese, yogurt, sauerkraut, and kimchi, for example). Whoever first came up with the idea of controlling the natural yeast-based process of fermentation was clearly on to a good thing. Using spectroscopic analysis of chemical residues found in ceramic vessels unearthed by archaeologists, scientists know that the earliest evidence for intentional fermentation dates to about 7000 BCE. But if we look deeper into our evolutionary past, alcohol was a component of our ancestral primate diet for millions of years. In my new book, The Drunken Monkey, I suggest that alcohol vapors and the flavors produced by fermentation stimulate modern humans because of our ancient tendencies to seek out and consume ripe, sugar-rich, and alcohol-containing fruits. Alcohol is present because of particular strains of yeasts that ferment sugars, and this process is most common in the tropics where fruit-eating primates originated and today remain most diverse. © 1986-2014 The Scientist

Keyword: Drug Abuse; Aggression
Link ID: 19751 - Posted: 06.21.2014

by Colin Barras The Neanderthals knew how to make an entrance: teeth first. Our sister species' distinctive teeth were among the first unique aspects of their anatomy to evolve, according to a study of their ancestors. These early Neanderthals may have used their teeth as a third hand, gripping objects that they then cut with tools. The claim comes from a study of fossils from Sima de los Huesos in northern Spain. This "pit of bones" may be an early burial site, and 28 near-complete skeletons have been pulled from it, along with a large hand-axe that might be a funeral gift. The hominins in the pit look like Neanderthals, but are far too old. That suggests they are forerunners of the Neanderthals, and if that is the case they can tell us how the species evolved. To find out, Juan Luis Arsuaga Ferreras at the UCM-ISCIII Joint Centre for Research into Human Evolution and Behaviour in Madrid, Spain, and colleagues studied 17 of the skulls. They found that the brain case was still the same shape as in older species. But the skulls' protruding faces and small molar teeth were much more Neanderthal-like. This suggests the earliest Neanderthals used their jaws in a specialised way. It's not clear how, but it probably wasn't about food, says Ferreras. "There are no indications of any dietary specialisation in the Neanderthals and their ancestors. They were basically carnivores." © Copyright Reed Business Information Ltd.

Keyword: Evolution
Link ID: 19750 - Posted: 06.21.2014

By Brady Dennis Government warnings a decade ago about the risks associated with children and adolescents taking antidepressants appear to have backfired, causing an increase in suicide attempts and discouraging many depressed young people from seeking treatment, according to a study published Wednesday in the academic journal BMJ. Researchers said their findings underscore how even well-intentioned public health warnings can produce unintended conseque­n­c­­es, particularly when they involve widespread media attention and sensitive topics such as depression and suicide. In 2003 and 2004, the Food and Drug Administration issued a series of warnings based on data that pointed to an increase in suicidal thinking among some children and adolescents prescribed a class of antidepressants known as selective serotonin reuptake inhibitors, or SSRIs. They included such drugs as Paxil and Zoloft. In late 2004, the agency directed manufacturers to include a “black box” warning on their labels notifying consumers and doctors about the increased risk of suicidal thoughts and behaviors in youths being treated with these medications. The FDA warnings received a flood of media coverage that researchers said focused more on the tiny percentage of patients who had experienced suicidal thinking due to the drugs than on the far greater number who benefited from them. “There was a huge amount of publicity,” said Stephen Soumerai, professor of population medicine at Harvard Medical School and a co-author of Wednesday’s study. “The media concentrated more on the relatively small risk than on the significant upside.”

Keyword: Depression
Link ID: 19747 - Posted: 06.19.2014

by Lauren Hitchings Our brain's ability to rapidly interpret and analyse new information may lie in the musical hum of our brainwaves. We continuously take in information about the world but establishing new neural connections and pathways – the process thought to underlie memory formation – is too slow to account for our ability to learn rapidly. Evan Antzoulatos and Earl Miller at the Massachusetts Institute of Technology decided to see if brainwaves – the surges of electricity produced by individual neurons firing en masse – play a role. They used EEG to observe patterns of electrical activity in the brains of monkeys as they taught the animals to categorise patterns of dots into two distinct groups. At first, they memorised which dots went where, but as the task became harder, they shifted to learning the rules that defined the categories. Humming brainwaves The researchers found that, initially, brainwaves of different frequencies were being produced independently by the prefrontal cortex and the striatum – two brain regions involved in learning. But as the monkeys made sense of the game, the waves began to synchronise and "hum" at the same frequency – with each category of dots having its own frequency. Miller says the synchronised brainwaves indicate the formation of a communication circuit between the two brain regions. He believes this happens before anatomical changes in brain connections take place, giving our minds time to think through various options when presented with new information before the right one gets laid down as a memory. Otherwise, the process is too time-consuming to account for the flexibility and speed of the human mind, says Miller. © Copyright Reed Business Information Ltd.

Keyword: Learning & Memory
Link ID: 19746 - Posted: 06.19.2014

Migraines have been diagnosed in about eight per cent of Canadians, a quarter or more of whom say the severe headaches impact day-to-day life such as getting a good night’s sleep or driving, Statistics Canada says. The federal agency on Wednesday released its first report on the prevalence of migraine, saying an estimated 2.7 million Canadians, or 8.3 per cent, reported they had been diagnosed with the severe headaches in 2010-2011. Chronic migraines are frequent, severe, pulsating headaches accompanied by nausea, vomiting, and sensitivity to light and sound. "I think the key finding that was quite interesting was the impact of migraine," said report author Pamela Ramage-Morin, a senior analyst in Ottawa. "For three-quarters to say that it had an impact on their getting a good night sleep, over half said it prevented them from driving on some occasions, even people feeling left out of things because of their condition. There's some social isolation that could be occurring. It may be limiting on people's education and employment opportunities. That can have a long-term effect." The sleep findings are important given lack of sleep can impact other aspects of life, Ramage-Morin said, noting how the effects can extend beyond the individual to the larger community. For both men and women surveyed, migraines were most common at ages 30 to 49, a group represents 12 per cent of the population and the prime working years. © CBC 2014

Keyword: Pain & Touch
Link ID: 19745 - Posted: 06.19.2014

by Bethany Brookshire When a cartoon character gets an idea, you know it. A lightbulb goes on over Wile E. Coyote’s head, or a ding sounds as Goofy puts two and two together. While the lightbulb and sound effects are the stuff of cartoons, scientists can, in a way, watch learning in action. In a new study, a learning task in rats was linked to increases in activity patterns in groups of brain cells. The results might help scientists pin down what learning looks like at the nerve cell level, and give us a clue about how memories are made. Different areas of the brain communicate with each other, transferring information from one area to another for processing and interpretation. Brain cell meets brain cell at connections called synapses. But to transfer information between areas often takes more than one neuron firing a lonely signal. It takes cortical oscillations — networks of brain cells sending electrical signals in concert — over and over again for a message to transmit from one brain area to another. Changes in electrical fields increase the probability that neurons in a population will fire. These cortical oscillations are like a large crowd chanting. Not all voices may be yelling at once, some people may be ahead or behind, some may even be whispering, but you still hear an overwhelming “USA! USA!” Cortical oscillations can occur within a single brain area, or they can extend from one area to another. “The oscillation tells you what the other brain area is likely to ‘see’ when it gets that input,” explains Leslie Kay, a neuroscientist at the University of Chicago. Once the receiving area ‘sees’ the incoming oscillation, it may synchronize its own population firing, joining in the chant. “A synchronized pattern of oscillations in two separate brain regions serves to communicate between the two regions,” says Kei Igarashi, a neuroscientist at the Norwegian University of Science and Technology in Trondheim. © Society for Science & the Public 2000 - 2013

Keyword: Learning & Memory
Link ID: 19742 - Posted: 06.17.2014

A selfie video that a 49-year-old Toronto-area woman took to show numbness and slurred speech she was experiencing helped doctors to diagnose her as having a mini-stroke, after she had earlier been given a diagnosis of stress. When Stacey Yepes’s face originally froze and she had trouble speaking in April, she remembered the signs of stroke from public service announcements. After the symptoms subsided, she went to a local emergency room, but the tests were clear and she was given tips on how to manage stress. The numbing sensation happened again as she left the hospital. When the left side of her body went numb while driving two days later, she pulled over, grabbed her smartphone and hit record. "The sensation is happening again," the Thornhill, Ont., woman says at the beginning of the video posted on YouTube by Toronto’s University Health Network. "It’s all tingling on left side," as she points to her lower lip, trying to smile. Yepes remembers that doctors said to breathe in and out and to try to manage stress, and she says she's trying. "I don’t know why this is happening to me." About a minute later, she shows that it’s hard to lift up her hand. "I think it was just to show somebody, because I knew it was not stress-related," she said in an interview. "And I thought if I could show somebody what was happening, they would have a better understanding." After going to Mount Sinai Hospital in downtown Toronto, Yepes was referred to Toronto Western Hospital’s stroke centre. © CBC 2014

Keyword: Stroke
Link ID: 19740 - Posted: 06.17.2014

By Adam Brimelow Health Correspondent, BBC News Researchers from Oxford University say they've made a breakthrough in developing smart glasses for people with severe sight loss. The glasses enhance images of nearby people and objects on to the lenses, providing a much clearer sense of surroundings. They have allowed some people to see their guide dogs for the first time. The Royal National Institute of Blind People says they could be "incredibly important". Lyn Oliver has a progressive eye disease which means she has very limited vision. Now 70, she was diagnosed with retinitis pigmentosa in her early twenties. She can spot movement but describes her sight as "smudged and splattered". Her guide dog Jess helps her find her way around - avoiding most obstacles and hazards - but can't convey other information about her surroundings. Lyn is one of nearly two million people in the UK with a sight problem which seriously affects their daily lives. Most though have at least some residual sight. Researchers at Oxford University have developed a way to enhance this - using smart glasses. They are fitted with a specially adapted 3D camera. retinitis pigmentosa Dark spots across the retina (back of the eye) correspond with the extent of vision loss in retinitis pigmentosa The images are processed by computer and projected in real-time on to the lenses - so people and objects nearby become bright and clearly defined. 'More independent' Lyn Oliver has tried some of the early prototypes, but the latest model marks a key stage in the project, offering greater clarity and detail than ever before. Dr Stephen Hicks, from the University of Oxford, who has led the project, says they are now ready to be taken from the research setting to be used in the home. BBC © 2014

Keyword: Vision; Aggression
Link ID: 19738 - Posted: 06.17.2014

by Tania Lombrozo Science doesn't just further technology and help us predict and control our environment. It also changes the way we understand ourselves and our place in the natural world. This understanding can and a sense of . But it can also be , especially when it calls into question our basic assumptions about the kinds of creatures we are and the universe we inhabit. Current developments in neuroscience seem to be triggering precisely this jumble of reactions: wonder alongside disquiet, hope alongside alarm. A recent at Salon.com, for example, promises an explanation for "how neuroscience could save addicts from relapse," while an by Nathan Greenslit at The Atlantic, published less than a week later, raises worries that neuroscience is being used to reinforce racist drug policy. Obama's hails "," but with it comes the need to rapidly work out the of what we're learning about the brain and about ourselves. We're ; but we're not always sure what to make of it. In at the journal Psychological Science, psychologists Azim Shariff, Joshua Greene and six of their colleagues bring these heady issues down to earth by considering whether learning about neuroscience can influence judgments in a real-world situation: deciding how someone who commits a crime should be punished. The motivating intuition is this: to hold someone responsible for her actions, she must have acted with free will. ©2014 NPR

Keyword: Consciousness
Link ID: 19737 - Posted: 06.17.2014

By JAMES GORMAN Crazed commuters, fretful parents and overwrought executives are not the only ones to suffer from anxiety — or to benefit from medication for it. The simple crayfish has officially entered the age of anxiety, too. This presumably was already clear to crayfish, which have been around for more than 200 million years and, what with predatory fish — and more recently, étouffée — have long had reasons to worry. But now scientists from France have documented behavior in crayfish that fits the pattern of a certain type of anxiety in human beings and other animals. Although the internal life of crayfish is still unknown, the findings, reported on Thursday in the journal Science, suggest that the external hallmarks of anxiety have been around for a very long time — and far down the food chain. Beyond that, a precursor of Valium changed the behavior back to normal. That does not mean that the crayfish are ready for the therapist’s couch, but it does reinforce the sometimes surprising connections humans have with other living things. Humans share genes with yeast as well as apes, the brains of flies can yield insights into the brains of humans, and even a tiny roundworm has mating behaviors that depend on a molecule very similar to a human hormone. The response to a threat or danger that the scientists found in crayfish had been documented before in other animals, like mice, but not in invertebrates like insects and crustaceans. Researchers including Pascal Fossat and Daniel Cattaert at the University of Bordeaux reported that after crayfish were exposed to electric shocks, they would not venture out of comfortable dark areas in an elaborate aquarium into scarier (for a crayfish) brightly lit areas. © 2014 The New York Times Company

Keyword: Stress; Aggression
Link ID: 19733 - Posted: 06.14.2014

Jennifer Couzin-Frankel What if you could trick your body into thinking you were racing on a treadmill—and burning off calories at a rapid clip—while simply walking down the street? Changing our rate of energy expenditure is still far into the future, but work in mice explores how this might happen. Two teams of scientists suggest that activating immune cells in fat can convert the tissue from a type of fat that stores energy to one that burns it, opening up potential new therapies for obesity and diabetes. There are two types of fat in humans: white adipose tissue, which makes up nearly all the fat in adults, and brown adipose tissue, which is found in babies but disappears as they age. Brown fat protects against the cold (it’s also common in animals that hibernate), and researchers have found that mice exposed to cold show a temporary “browning” of some of their white fat. The same effect occurred in preliminary studies of people, where the browning—which creates a tissue known as beige fat—helps generate heat and burn calories. But cold is “the only stimulus we know that can increase beige fat mass or brown fat mass,” says Ajay Chawla, a physiologist at the University of California (UC), San Francisco. He wanted to better understand how cold caused this change in the tissue and whether there was a way to mimic cold and induce browning some other way. A few years ago, Chawla’s group had reported that cold exposure activated macrophages, a type of immune cell, in white adipose tissue. To further untangle what was going on, Chawla, his postdoc Yifu Qiu, and their colleagues used mice that lacked interleukin-4 (IL-4) and interleukin-13, proteins that help activate macrophages. When they exposed these mice to the cold, the animals developed far fewer beige fat cells than did normal animals, suggesting that macrophages were key to browning of white fat. © 2014 American Association for the Advancement of Science

Keyword: Obesity
Link ID: 19732 - Posted: 06.14.2014

by Clare Wilson People who begin antidepressant treatment must face a gruelling wait of several weeks before they find out whether or not the drug will work for them. A new take on the causes of depression could lead to a blood test predicting who will be helped by medication – taking the guess work out of prescribing. "A test would be a major advance as at the moment millions of people are treated with antidepressants that won't have any effect," says Gustavo Turecki of McGill University in Montreal, Canada, who led the study. The research centres on miRNAs, small molecules that have an important role in turning genes on and off in different parts of the body. MiRNAs have already been implicated in several brain disorders. In the latest study, Turecki and his colleagues measured the levels of about 1000 miRNAs in the brains of people who had committed suicide. These were compared to levels in brains of people who had died from other causes. A molecule called miRNA-1202 was the most altered, being present at significantly lower levels in the brains of people who died from suicide. Crucially, this molecule seems to damp down the activity of a gene involved in glutamate signalling in the brain. That's significant because recent research has highlighted the importance of glutamate signalling in depression. © Copyright Reed Business Information Ltd.

Keyword: Depression
Link ID: 19731 - Posted: 06.14.2014

By EDWARD ROTHSTEIN PHILADELPHIA — Clambering upward in dim violet light, stepping from one glass platform to another, you trigger flashes of light and polyps of sound. You climb through protective tubes of metallic mesh as you make your way through a maze of pathways. You are an electrical signal coursing through a neural network. You are immersed in the human brain. Well, almost. Here at the Franklin Institute, you’re at least supposed to get that impression. You pass through this realm (the climbing is optional) as part of “Your Brain” — the largest permanent exhibition at this venerable institution, and one of its best. That show, along with two other exhibitions, opens on Saturday in the new $41 million, 53,000-square-foot Nicholas and Athena Karabots Pavilion. This annex — designed by Saylor Gregg Architects, with an outer facade draped in a “shimmer wall” of hinged aluminum panels created by the artist Ned Kahn — expands the institution’s display space, educational facilities and convention possibilities. It also completes a transformation that began decades ago, turning one of the oldest hands-on science museums in the United States (as the Franklin puts it) into a contemporary science center, which typically combines aspects of a school, community center, amusement park, emporium, theater, international museum and interactive science lab — while also combining, as do many such institutions, those elements’ strengths and weaknesses. That brain immersion gallery gives a sense of this genre’s approach. It is designed more for amusement, effect and social interaction (cherished science center goals) than understanding. So I climb, but I’m not convinced. I hardly feel like part of a network of dendrites and axons as I weave through these pathways. I try, though, to imagine these tubes of psychedelically illuminated mesh filled with dozens of chattering children leaping around. That might offer a better inkling of the unpredictable, raucous complexity of the human brain. © 2014 The New York Times Company

Keyword: Miscellaneous
Link ID: 19730 - Posted: 06.14.2014

By J. DAVID GOODMAN and ANEMONA HARTOCOLLIS Amid the weeknight bustle of a Walmart parking lot in Centereach, N.Y., a young woman in a pickup truck had lost consciousness and was turning blue. Her companion called 911. Possible drug overdose; come fast. A Suffolk County police officer, Matthew Siesto, who had been patrolling the lot, was the first to arrive. Needles were visible in the center console; the woman was breathing irregularly, and her pupils had narrowed to pinpoints. It seemed clear, Officer Siesto recalled of the October 2012 episode, that the woman had overdosed on heroin. He went back to his squad car and retrieved a small kit of naloxone, an anti-overdose medication he had only recently been trained to use in such circumstances. He prepared the dose, placed the atomizer in her nostril and sprayed. “Within a minute,” the officer said, “she came back.” Once the exclusive purview of paramedics and emergency room doctors, administering lifesaving medication to drug users in the throes of an overdose is quickly becoming an everyday part of police work amid a national epidemic of heroin and opioid pill abuse. On Wednesday, Gov. Andrew M. Cuomo committed state money to get naloxone into the hands of emergency medical workers across New York, saying the heroin epidemic in the state was worse than that seen in the 1970s, and the problem is growing. Last month, the New York police commissioner, William J. Bratton, announced that the city’s entire patrol force would soon be trained and equipped with naloxone. “Officers like it because it puts them in a lifesaving opportunity,” Mr. Bratton said, suggesting that beat officers would carry it on their belts. © 2014 The New York Times Company

Keyword: Drug Abuse
Link ID: 19728 - Posted: 06.14.2014

By ANEMONA HARTOCOLLIS Dozens of Whole Foods stores in the Northeast and a restaurant in New York received beef over an eight-month period that may not have been properly slaughtered to reduce the threat of mad cow disease, federal officials said on Thursday. The producer of the beef, Fruitland American Meat, in Jackson, Mo., recalled thousands of pounds of bone-in grass-fed rib eyes, and two quartered beef carcasses, after federal officials reviewing slaughtering logs found that certain precautions had not been followed. The beef in question was processed between Sept. 5 and April 25, and the meat has the number 2316 inside the Agriculture Department inspection mark. The federal government said the beef posed only a “remote” health hazard, and the cows themselves had shown no evidence of the disease. Fruitland American denied on Thursday that the meat had been improperly handled. The company said the government’s finding was based on a clerical error, in which the age of the cattle had been documented as 30 months or more, when rules on mad cow must be followed, because older cows are believed to be at greater risk. But birth records showed that the cows were in fact no more than 28 months old, a spokesman said. A spokeswoman for the Agriculture Department, Alexandra Tarrant, said the agency was looking into the chance that a clerical error had occurred. The meat was shipped to 34 Whole Foods stores in northern Connecticut, Maine, Massachusetts and Rhode Island. Michael Sinatra, a spokesman for the company, said none of the meat was currently in the stores. © 2014 The New York Times Company

Keyword: Prions
Link ID: 19726 - Posted: 06.14.2014

​Nathan Greenslit A recent neuroscience study from Harvard Medical School claims to have discovered brain differences between people who smoke marijuana and people who do not. Such well-intentioned and seemingly objective science is actually a new chapter in a politicized and bigoted history of drug science in the United States. The study in question compared magnetic resonance imaging (MRI) scans of 20 “young adult recreational marijuana users” (defined as individuals 18 to 25 who smoke at least once a week but who are not “dependent”), to 20 “non-using controls” (age-matched individuals who have smoked marijuana less than five times in their lives). The researchers reported differences in density, volume, and shape between the nucleus accumbens and amygdala regions of the two groups’ brains—areas hypothesized to affect a wide range of emotions from happiness to fear, which could influence basic decision-making. Researchers did not make any claims about how marijuana affected actual emotions, cognition, or behavior in these groups; instead; the study merely tried to establish that the aggregated brain scans of the two groups look different. So, who cares? Different-looking brains tell us literally nothing about who these people are, what their lives are like, why they do or do not use marijuana, or what effects marijuana has had on them. Neither can we use such brain scans to predict who these people will become, or what their lives will be like in the future. Nonetheless the study invented two new categories of person: the “young casual marijuana user” and the young non-marijuana user. This is the latest example of turning to brain imaging to make something seem objective. Establishing brain differences among certain groups highlights the uniquely ignoble political history surrounding the criminalization of a plant. © 2014 by The Atlantic Monthly Group

Keyword: Drug Abuse
Link ID: 19725 - Posted: 06.14.2014