Chapter 5. The Sensorimotor System

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.

Links 41 - 60 of 2396

Bill Chappell In what researchers say is a first, they've discovered the neuron in worms that detects Earth's magnetic field. Animals have been known to sense the magnetic field; a new study identifies the microscopic, antenna-shaped sensor that helps worms orient themselves underground. The sensory neuron that the worm C. elegans uses to migrate up or down through the soil could be similar to what many other animals use, according to the team of scientists and engineers at The University of Texas at Austin. The team's work was published Wednesday by eLife. In contrast to previous breakthroughs — such as a 2012 study on how pigeons' brains use information about magnetic fields, and another from the same year on olfactory cells in trout — the new work identifies the sensory neuron that detects magnetic fields. "We also found the first hint at a novel sensory mechanism for detecting the magnetic field," says Jon Pierce-Shimomura, an assistant professor of neuroscience who worked on the study. "Now researchers can check to see if this is used in other animals too." The list of animals that could be studied for their use of magnetic fields is long — and it seems to grow each year. In early 2014, for instance, a study found that dogs who need to relieve themselves of waste prefer to align themselves on a north-south axis when the magnetic conditions are right. Pierce-Shimomura says his team was surprised to make a new breakthrough in magnetism by looking at worms, which aren't known for their sophisticated migrations. © 2015 NPR

Keyword: Pain & Touch
Link ID: 21072 - Posted: 06.18.2015

By Andrea Alfano There are many types of touch. A cold splash of water, the tug of a strong breeze or the heat and heft of your coffee mug will each play on your skin in a different way. Within your skin is an array of touch sensors, each associated with nerve fibers that connect to the central nervous system. These sensors comprise specialized nerve endings and skin cells. Along with the fibers, they translate our physical interactions with the world into electrical signals that our brain can process. They help to bridge the gap between the physical act of touching and the cognitive awareness of tactile sensation. Even a simple stroke across the forearm engages several distinct nerve fibers. Three types—A-beta, A-delta and C fibers—have subtypes that are specialized for sensing particular types of touch; other subtypes carry information related to pain. The integration of information from these fibers is what allows us to gain such rich sensory experiences through our skin, but it has also made it more challenging for researchers to understand the fibers’ individual roles. Although these fibers do not act in isolation, the examples that follow highlight the primary nerve fibers engaged by different types of touch. © 2015 Scientific American

Keyword: Pain & Touch
Link ID: 21066 - Posted: 06.18.2015

by Laura Sanders The motor homunculus is a funny-looking fellow with a hulking thumb, delicate toes and a tongue that wags below his head. His body parts and proportions stem from decades-old experiments that mapped brain areas to the body parts they control. Now, a new study suggests that the motor homunculus’ neck was in the wrong place. Hyder Jinnah of Emory University in Atlanta and colleagues used fMRI to scan the brains of volunteers as they activated their head-turning neck muscles. (Pads held participants’ heads still, so the muscles fired but heads didn’t move.) This head turn was accompanied by activity in part of the brain that controls movement. The exact spot seems to be between the brain areas that control the shoulder and the trunk — not between the areas responsible for moving the thumb and the top of the head as earlier motor homunculi had suggested, the team reports in the June 17 Journal of Neuroscience. © Society for Science & the Public 2000 - 2015.

Keyword: Pain & Touch
Link ID: 21060 - Posted: 06.17.2015

Joe Palca Scientists found a molecule crucial to perceiving the sensation of itching. It affects how the brain responds to serotonin, and may explain why anti-depressants that boost serotonin make some itch. JOE PALCA, BYLINE: How do you go about discovering what makes us itch? Well, if you're Diana Bautista at the University of California, Berkeley, you ask what molecules are involved. DIANA BAUTISTA: We say OK, what are the possible molecular players out there that might be contributing to itch or touch? PALCA: Bautista says it turns out itch and touch, and even pain, all seem to be related - at least in the way our brains makes sense of these sensations. But how to tell which molecules are key players? Bautista says basically you try everything you can. BAUTISTA: We test a lot of candidates. And if we're really lucky, one of our candidates - we can prove that it plays a really important role. PALCA: And now she thinks she's found one. Working with colleagues at the Buck Institute for Research on Aging, she's found a molecule that's made by a gene called HTR7. When there's less of this molecule, animals with itchy skin conditions, like eczema, do less scratching. When there's more of it, itching gets worse. The way this molecule works is kind of interesting. It changes how sensitive brain cells are to a chemical called serotonin. Now, serotonin is a chemical that's related to depression. So Bautista's research might explain why certain antidepressant drugs that boost serotonin have a peculiar side effect. For some people, the drugs make them itch. Bautista says the new research is certainly not the end of the story when it comes to understanding itch. © 2015 NPR

Keyword: Pain & Touch
Link ID: 21042 - Posted: 06.13.2015

by Penny Sarchet Simon Sponberg of Georgia Institute of Technology in Atlanta and his team have figured out the secret to the moths' night vision by testing them with robotic artificial flowers (see above). By varying the speed of a fake flower's horizontal motion and changing brightness levels, the team tested moths' abilities under different conditions. It has been theorised that the moth brain slows down, allowing their visual system to collect light for longer, a bit like lengthening a camera's exposure. But the strategy might also introduce blur, making it hard to detect fast movement. If the moths were using this brain-slowing tactic, they would be expected to react to fast flower movements more slowly in darker conditions. The team found that there was indeed a lag. It helped them see motion in the dark while still allowing them to keep up with flowers swaying at normal speeds. The size of the lags matched the expected behaviour of a slowed nervous system, providing evidence that moths could be slowing down the action of neurons in their visual system. Previously, placing hawkmoths in a virtual obstacle courseMovie Camera revealed that they vary their navigation strategies depending on visibility conditions. Journal reference: Science, DOI: 10.1126/science.aaa3042 © Copyright Reed Business Information Ltd

Keyword: Vision
Link ID: 21041 - Posted: 06.13.2015

By Sandra G. Boodman The test had become something of an annual ritual. Every year beginning when he turned 45, Thomas Clark Semmes, an IT consultant for the federal government, would visit his internist for a physical. In a standard test of the sensory system that is often part of a physical, the Baltimore doctor would prick the soles of Semmes’s feet with a pin. “He’d look at me and say, ‘Tell me when you feel it,’ and I’d say ‘I will when I can,’ ” Semmes, now 56, recalled of the pinprick test. Because he never felt anything, he said nothing. “It never really concerned me very much,” he recalled. His doctor would then dutifully jot something in his chart, never exploring it further. But in 2013, nearly a decade after that first test, a quick evaluation by a podiatrist revealed the reason for his unfeeling feet and provided an explanation for an anatomical oddity in one of Semmes’s close relatives. In retrospect, Semmes wishes he had asked his internist about the lack of sensation, but he assumed it wasn’t important — otherwise, the doctor would have said something. And as Semmes would later learn, not knowing what was wrong had cost him valuable time. “I definitely wish I’d been diagnosed sooner,” he said. “There are things that could have been done to lessen the impact.” Before 2013, Semmes never had much reason to think about his feet. He knew he had hammertoes — toes that bend downward at the middle joint as a result of heredity or trauma — as well as extremely high arches, but neither condition was painful or limiting. At least, he thought, he did not have bird legs like his father, whose limbs were so storklike that they were a running family joke. “I had big, muscular legs,” Semmes said.

Keyword: Movement Disorders; Genes & Behavior
Link ID: 21029 - Posted: 06.09.2015

Fergus Walsh Medical correspondent Scientists in Austria have created an artificial leg which allows the amputee to feel lifelike sensations from their foot. The recipient, Wolfang Rangger, who lost his right leg in 2007, said: "It feels like I have a foot again. It's like a second lease of life." Prof Hubert Egger of the University of Linz, said sensors fitted to the sole of the artificial foot, stimulated nerves at the base of the stump. He added it was the first time that a leg amputee had been fitted with a sensory-enhanced prosthesis. How it works Surgeons first rewired nerve endings in the patient's stump to place them close to the skin surface. Six sensors were fitted to the base of the foot, to measure the pressure of heel, toe and foot movement. These signals were relayed to a micro-controller which relayed them to stimulators inside the shaft where it touched the base of the stump. These vibrated, stimulating the nerve endings under the skin, which relayed the signals to the brain. Prof Egger said: "The sensors tell the brain there is a foot and the wearer has the impression that it rolls off the ground when he walks." Wolfgang Ranger, a former teacher, who lost his leg after a blood clot caused by a stroke, has been testing the device for six months, both in the lab and at home. He says it has given him a new lease of life He said: "I no longer slip on ice and I can tell whether I walk on gravel, concrete, grass or sand. I can even feel small stones." © 2015 BBC.

Keyword: Pain & Touch; Robotics
Link ID: 21028 - Posted: 06.09.2015

by Helen Thomson Imagine a world where you think of something and it happens. For instance, what if the moment you realise you want a cup of tea, the kettle starts boiling? That reality is on the cards, now that a brain implant has been developed that can decode a person's intentions. It has already allowed a man paralysed from the neck down to control a robotic arm with unprecedented fluidity. But the implications go far beyond prosthetics. By placing an implant in the area of the brain responsible for intentions, scientists are investigating whether brain activity can give away future decisions – before a person is even aware of making them. Such a result may even alter our understanding of free will. Fluid movement "These are exciting times," says Pedro Lopes, who works at the human-computer interaction lab at Hasso Plattner Institute in Potsdam, Germany. "These developments give us a glimpse of an exciting future where devices will understand our intentions as a means of adapting to our plans." The implant was designed for Erik Sorto, who was left unable to move his limbs after a spinal cord injury 12 years ago. The idea was to give him the ability to move a stand-alone robotic arm by recording the activity in his posterior parietal cortex – a part of the brain used in planning movements. "We thought this would allow us to decode brain activity associated with the overall goal of a movement – for example, 'I want to pick up that cup'," Richard Andersen at the California Institute of Technology in Pasadena told delegates at the NeuroGaming Conference in San Francisco earlier this month. © Copyright Reed Business Information Ltd

Keyword: Consciousness; Robotics
Link ID: 20992 - Posted: 05.28.2015

by Andy Coghlan A man in his mid-50s with Parkinson's disease had fetal brain cells injected into his brain last week. He is the first person in nearly 20 years to be treated this way – and could recover full control of his movements in roughly five years. "It seemed to go fine," says Roger Barker of the University of Cambridge, who is leading the international team that is reviving the procedure. The treatment was pioneered 28 years ago in Sweden, but two trials in the US reported no significant benefit within the first two years following the injections, and the procedure was abandoned in favour of deep brain stimulation treatments. What these trials overlooked is that it takes several years for fetal cells to "bed in" and connect properly to the recipient's brain. Many Swedish and North American recipients improved dramatically, around three years or more after the implants – long after the trials had finished. "In the best cases, patients who had the treatment pretty much went back to normal," says Barker. After the fetal cells were wired up properly in their brains, they started producing the brain signalling chemical dopamine – low levels of this cause the classic Parkinson's symptom of uncontrolled movements. In fact, the cells produced so much dopamine that many patients could stop taking their Parkinson's drugs. "The prospect of not having to take medications for Parkinson's is fantastic," says James Beck of the Parkinson's Disease Foundation in the US. © Copyright Reed Business Information Ltd

Keyword: Parkinsons; Stem Cells
Link ID: 20989 - Posted: 05.27.2015

Mo Costandi Being unable to feel pain may sound appealing, but it would be extremely hazardous to your health. Pain is, for most of us, a very unpleasant feeling, but it serves the important evolutionary purpose of alerting us to potentially life-threatening injuries. Without it, people are more prone to hurting themselves and so, because they can be completely oblivious to serious injuries, a life without pain is often cut short. Take 16-year-old Ashlyn Blocker from Patterson, Georgia, who has been completely unable to sense any kind of physical pain since the day she was born. As a newborn, she barely made a sound, and when her milk teeth started coming out, she nearly chewed off part of her tongue. Growing up, she burnt the skin off the palm of her hands on a pressure washer that her father had left running, and once ran around on a broken ankle for two whole days before her parents noticed the injury. She was once swarmed and bitten by hundreds of fire ants, has dipped her hands into boiling water, and injured herself in countless other ways, without ever feeling a thing. Ashlyn is one of a tiny number of people with congenital insensitivity to pain. The condition is so rare, in fact, that the doctor who diagnosed her in 2006 told her parents that she may be the only one in the world who has it. But later that year, a research team led by Geoffrey Woods of the University of Cambridge, identified three distinct mutations in the SCN9A gene, all of which cause the same condition in members of three large families in northern Pakistan, and in 2013, Ashlyn’s doctor Roland Staud and his colleagues reported that her condition is the result of two other mutations in the same gene. Now, Woods and his colleagues have discovered yet more mutations that cause congenital insensitivity to pain. © 2015 Guardian News and Media Limited

Keyword: Pain & Touch; Genes & Behavior
Link ID: 20981 - Posted: 05.26.2015

by Helen Thomson A brain implant that can decode what someone wants to do has allowed a man paralysed from the neck down to control a robotic arm with unprecedented fluidity – and enjoy a beer at his own pace. Erik Sorto was left unable to move any of his limbs after an accident severed his spinal cord 12 years ago. People with similar injuries have previously controlled prosthetic limbs using implants placed in their motor cortex – an area of the brain responsible for the mechanics of movement. This is far from ideal because it results in delayed, jerky motions as the person thinks about all the individual aspects of the movement. When reaching for a drink, for example, they would have to think about moving their arm forward, then left, then opening their hand, then closing their hand around the cup and so on. Richard Andersen at the California Institute of Technology in Pasadena and his colleagues hoped they could achieve a more fluid movement by placing an implant in the posterior parietal cortex – a part of the brain involved in planning motor movements. "We thought this would allow us to decode brain activity associated with the overall goal of a movement – for example, 'I want to pick up that cup', rather than the individual components," said Anderson at the NeuroGaming Conference in San Francisco, California, where he presented the work this month. © Copyright Reed Business Information Ltd.

Keyword: Robotics
Link ID: 20972 - Posted: 05.23.2015

Scientists at Mayo Clinic, Jacksonville, Florida created a novel mouse that exhibits the symptoms and neurodegeneration associated with the most common genetic forms of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS, Lou Gehrig’s disease), both of which are caused by a mutation in the a gene called C9ORF72. The study was partially funded by the National Institutes of Health and published in the journal Science. More than 30,000 Americans live with ALS, which destroys nerves that control essential movements, including speaking, walking, breathing and swallowing. After Alzheimer’s disease, FTD is the most common form of early onset dementia. It is characterized by changes in personality, behavior and language due to loss of neurons in the brain’s frontal and temporal lobes. Patients with mutations in the chromosome 9 open reading frame 72 (C9ORF72) gene have all or some symptoms associated with both disorders. “Our mouse model exhibits the pathologies and symptoms of ALS and FTD seen in patients with theC9ORF72 mutation,” said the study’s lead author, Leonard Petrucelli, Ph.D., chair and Ralph and Ruth Abrams Professor of the Department of Neuroscience at Mayo Clinic, and a senior author of the study. “These mice could greatly improve our understanding of ALS and FTD and hasten the development of effective treatments.” To create the model, Ms. Jeannie Chew, a Mayo Graduate School student and member of Dr. Petrucelli’s team, injected the brains of newborn mice with a disease-causing version of the C9ORF72 gene. As the mice aged, they became hyperactive, anxious, and antisocial, in addition to having problems with movement that mirrored patient symptoms.

Keyword: ALS-Lou Gehrig's Disease ; Alzheimers
Link ID: 20964 - Posted: 05.21.2015

by Jessica Hamzelou Painful needle heading your way? A sharp intake of breath might be all that is needed to make that injection a little more bearable. When you are stressed, your blood pressure rises to fuel your brain or limbs should you need to fight or flee. But your body has a natural response for calming back down. Pressure sensors on blood vessels in your lungs can tell your brain to bring the pressure back down, and the signals from these sensors also make the brain dampen the nervous system, leaving you less sensitive to pain. This dampening mechanism might be why people with higher blood pressures appear to have higher pain thresholds. Gustavo Reyes del Paso at the University of Jaén in Spain wondered whether holding your breath – a stress-free way of raising blood pressure and triggering the pressure sensors – might also raise a person's pain threshold. To find out, he squashed the fingernails of 38 people for 5 seconds while they held their breath. Then he repeated the test while the volunteers breathed slowly. Both techniques were distracting, but the volunteers reported less pain when breath-holding than when slow breathing. Reyes del Paso thinks holding your breath might be a natural response to the expectation of pain. "Several of our volunteers told us they already do this when they are in pain," he says. But he doesn't think the trick will work for a stubbed toe or unexpected injury. You have to start before the pain kicks in, he says, for example, in anticipation of an injection. © Copyright Reed Business Information Ltd

Keyword: Pain & Touch
Link ID: 20930 - Posted: 05.14.2015

Patricia Neighmond Terri Bradford has suffered debilitating headache pain all her life. Some days the pain is so bad, she says, "By 11 o'clock in the morning, I'm on the couch in a darkened room with my head packed in ice." Over the years, Bradford, who is 50 years old and lives in Bedford, Mass., has searched desperately for pain relief. She's been to the doctor countless times for countless tests. "Everything I've had, I've had twice," she says. "I've had two spinal taps; I've had so many nerve blocks I've lost count." Bradford is not alone. It's estimated that every year 12 million Americans go to the doctor seeking help for headaches. Nearly one quarter of the population suffers from recurrent severe tension headaches or migraines. People who go to the doctor for headache pain are more likely to be sent for advanced testing and treatment, a study finds. That testing is expensive, it may not be necessary and could even be harmful, says lead researcher Dr. John Mafi of Beth Israel Deaconess Medical Center in Boston. Mafi looked at the rates of advanced imaging like CT scans and MRIs in people with headaches, as well as referrals to other doctors, presumably specialists. He found that from 1999 to 2010, the number of diagnostic tests rose from 6.7 percent of all doctor visits to 13.9 percent. At the same time, referrals to other doctors increased from 6.9 percent to 13.2 percent. So almost double what it was a decade ago. Mafi says this isn't because more people are suffering headaches. The headache rate has remained virtually the same over the past decade. But what has changed is supply and demand. Today there are a lot more advanced diagnostic machines than there were a decade ago, and more patients are asking to be tested. © 2015 NPR

Keyword: Parkinsons; Stress
Link ID: 20906 - Posted: 05.11.2015

By Lisa Sanders, M.D On Thursday we challenged Well readers to solve the difficult case of twin sisters who, in the prime of youth, developed a weakness that forced them to use their arms to rise from a chair. Nearly 300 of you wrote in with thoughts on this difficult case. Many of you recognized that this was likely to be a genetic disorder, though I greatly admired the “House”-ian thinking that led to a host of possible reasons why two sisters, living in different states, might develop the same symptoms independent of their shared DNA. It took this patient, Katie Buryk, four years to get her answer, which was: Late onset Tay-Sachs disease Although several of you made this difficult diagnosis, the first to do so was George Bonadurer, a second year medical student at Mayo Medical School in Rochester, Minn. He says he recently read about this disease in a book of unusual cases that had come to the Mayo clinic for help. This is actually Mr. Bonadurer’s second win of this contest. Strong work! Tay-Sachs disease was first identified by two physicians, independently, in the 1880s. Dr. Warren Tay was an ophthalmologist in London. Dr. Bernard Sachs was a neurologist in New York City. Each described a disease in infants that caused profound weakness, blindness and, usually by age 4, death. Careful consideration of cases over the following decades showed that the disease was inherited and often seen in children of Ashkenazi descent. Studying the patterns of inheritance, it became clear that both parents had to have the abnormal gene and that each of their children would have a one in four chance of being born with the disease. The terrible manifestations of the disease derive from an inherited inability to make an essential protein in the brain. This protein acts to break down discarded components of the cells. Without this protein, these discarded cell parts accumulate, interrupting normal nerve and brain cell functioning. This mechanism and the missing protein was identified in 1969, allowing for the development of a test for carriers. Since the development of this test, the incidence of Tay-Sachs in the United States has dropped by 90 percent. © 2015 The New York Times Company

Keyword: Movement Disorders; Genes & Behavior
Link ID: 20902 - Posted: 05.09.2015

Andrew Griffin Companies are taking out a huge amount of patents related to reading brainwaves, according to analysis, with a range of different applications. Fewer than 400 neuro-technology related patents were filed between 2000-2009. But in 2010 alone that reached 800, and last year 1,600 were filed, according to research company SharpBrains. The patents are for a range of uses, not just for the healthcare technology that might be expected. The company with the most patents is market research firm Nielsen, which has 100. Microsoft also has 89 related patents. Other uses of the technology that have been patented include devices that can change the thoughts of feelings of those that they are used on. But there are still medical uses — some of those patents awarded include technology to measure brain lesions and improve vision. The volume and diversity of the patents shows that we are at the beginning of “the pervasive neurotechnology age”, the company’s CEO Alvaro Fernandez said. "Neurotech has gone well beyond medicine, with non-medical corporations, often under the radar, developing neurotechnologies to enhance work and life," said Fernandez.

Keyword: Brain imaging; Robotics
Link ID: 20897 - Posted: 05.08.2015

Roger Dobson Tapping your fingers on the table is usually a sign of boredom or irritation. But not all tappers are equal, it seems. Men drum their digits slightly faster than women and people in their twenties tap substantially faster than people twice their age. The results of the first study into finger-tapping speeds also found that smokers tap a little faster than non-smokers and fit people tap faster than those who avoid exercise. The research, carried out by scientists at two universities in Istanbul – Bogazici University and Fatih University – examined the tapping rates and “finger load capacities” of 148 people aged between 18 and 85. Each participant was asked to perform a one-minute tapping exercise on a keyboard at “maximum volitional tempo”. Researchers found that the index finger on the right hand of both men and women was the fastest digit, achieving a tapping rate of up to five beats a second among those in their twenties. The middle finger was almost as nifty as the index finger, but the little finger – the slowest digit in the bunch – was capable only of a sluggish 3.8 taps a second among people in the same age group. At first glance, the study might appear to be rather frivolous. But a deeper understanding of finger tapping could aid the design of computer keyboards and musical instruments. It may also aid researchers who use finger-tapping tests for medical assessment of neurological conditions such as Parkinson’s disease, schizophrenia and Alzheimer’s.

Keyword: Parkinsons; Alzheimers
Link ID: 20887 - Posted: 05.05.2015

by Helen Thomson Giving people the illusion of teleporting around a room has revealed how the brain constructs our sense of self. The findings may aid treatments for schizophrenia and asomatognosia – a rare condition characterised by a lack of awareness of a part of one's body. As we go about our daily lives, we experience our body as a physical entity with a specific location. For instance, when you sit at a desk you are aware of your body and its rough position with respect to objects around you. These experiences are thought to form a fundamental aspect of self-consciousness. Arvid Guterstam, a neuroscientist at the Karolinska Institute in Stockholm, Sweden, and his colleagues wondered how the brain produces these experiences. To find out, Guterstam's team had 15 people lie in an fMRI brain scanner while wearing a head-mounted display. This was connected to a camera on a dummy body lying elsewhere in the room, enabling the participants to see the room – and themselves inside the scanner - from the dummy's perspective. A member of the team then stroked the participant's body and the dummy's body at the same time. This induced the out-of-body experience of owning the dummy body and being at its location. The experiment was repeated with the dummy body positioned in different parts of the room, allowing the person to be perceptually teleported between the different locations, says Guterstam. All that was needed to break the illusion was to touch the participant's and the dummy's bodies at different times. © Copyright Reed Business Information Ltd.

Keyword: Pain & Touch; Attention
Link ID: 20874 - Posted: 05.02.2015

by Jacob Aron Now that's an in-flight meal. To snatch a mealworm in mid-air, the bat in this video performs impressive aerial acrobatics aided by a unique cluster of touch sensors on its wings. Bats are known to use echolocation to identify their dinner, steering towards prey by listening for reflected sounds. It turns out that their sense of touch plays a key role as well. Ellen Lumpkin of Columbia University, New York, and her colleagues have discovered that bats have a special arrangement of hairs and touch-sensitive receptors across their wings that detect changes in airflow to help stabilise flight. The team also found that sensory neurons arranged in a pattern on bat wings (pictured) send signals to the lower spinal cord, which is unusual for a mammal. This part of the spinal cord usually receives messages from an animal's torso. The bizarre circuitry reflects the embryonic origins of bat wings, which form when their front limbs, torso and hind limbs fuse together. Journal reference: Cell Reports, DOI: 10.1016/j.celrep.2015.04.001 © Copyright Reed Business Information Ltd

Keyword: Pain & Touch
Link ID: 20872 - Posted: 05.02.2015

Scientists have raised hopes that they may be able to create a vaccine to block the progress of Parkinson’s disease. They believe new research provides evidence that an abnormal protein may trigger the condition. If the theory is correct, researchers say it might be possible to prime a person’s immune system – using a special vaccine – so it is ready to attack the rogue protein as it passes through the body. In this way, the protein would be prevented from destroying a person’s dopamine-manufacturing cells, where the disease inflicts its greatest damage. This new vision of Parkinson’s has been arousing excitement among researchers. “It has transformed the way we see Parkinson’s,” said Roger Barker, professor of clinical neurosciences at Cambridge University. Parkinson’s does not usually affect people until they are over 50. However, researchers have uncovered recent evidence that suggests it may be caused by an event occurring 10 to 20 years before its main symptoms – tremors, rigidity and slowness of movement – manifest themselves. “If you ask Parkinson’s patients if, in the past, they have experienced loss of sense of smell or suffer from disturbed sleep or have problems with their bowels, very often they reply they have,” said Barker, whose work is backed by the charity Parkinson’s UK, whose Parkinson Awareness week ends on Sunday. “Frequently these patients manifest symptoms several years before it becomes apparent they have the disease. We now believe there is a link.” © 2015 Guardian News and Media Limited

Keyword: Parkinsons
Link ID: 20855 - Posted: 04.28.2015