Chapter 5. The Sensorimotor System

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 81 - 100 of 2228

By Katherine Harmon Courage Unless you’ve eaten sannakji, the Korean specialty of semi-live octopus, you might never have had a squirming octopus arm in your mouth. But you’ve most likely had a very similar experience. In fact, you’re probably having one right now. Octopus arms might seem strange and mysterious, but they are remarkably similar to the human tongue. Known as muscular hydrostats, both of these appendages can easily bend, extend and change shape (remember that time you had to stretch out your tongue to lick that last bit of chocolate pudding from the bottom of the cup?). Researchers are hoping a new interdisciplinary project to look at movement in the octopus arm and the human tongue will shed light on how both of these complex structures are activated. This, in turn, could help scientists understand neurological diseases that affect speech, such as Parkinson’s. “The human tongue is a very different muscular system than the rest of the human body,” Khalil Iskarous, an assistant professor of linguistics at the University of Southern California who is helping to lead the research, said in a prepared statement. “Our bodies are vertebrate mechanisms that operate by muscle working on bone to move. The tongue is in a different muscular family, much like an invertebrate. It’s entirely muscle—it’s muscle moving muscle.” Both move by compressing fluid in one section of a muscle, creating movement in another part. But we know little about exactly how that movement is initiated and so finely controlled. © 2014 Scientific American

Keyword: Movement Disorders
Link ID: 19117 - Posted: 01.11.2014

Just in time for all those New Year’s resolutions to exercise more, scientists have a better idea of how the body turns pain into gain. Exertion stimulates muscles to release a molecule that modifies fat cells, turning them into calorie-burning machines, a research team has found. Exercise works the muscles but affects cells throughout the body, even in the brain. An important player in this process is a protein called PGC-1α. In exercising muscles, it activates genes that ramp up energy use. But its impact extends beyond these tissues. The protein somehow indirectly prompts, for example, white fat—the energy-storing variety that pads our hips and stomachs—to switch on genes that are characteristic of brown fat, a form that burns calories. PGC-1α doesn’t travel outside muscle cells, so researchers aren’t sure how its influence spreads, however. By sifting through the secretions of PGC-1α-making muscle cells, Robert Gerszten of Harvard Medical School in Boston and colleagues have nabbed one molecule that might be doing the protein’s bidding: β-aminoisobutyric acid (BAIBA). They found that BAIBA induces white fat cells to become more like brown fat cells, altering their gene activity patterns. And it stimulates other cell types, stoking fat metabolism in the liver, the team also reveals today in Cell Metabolism. These effects may translate into a healthier metabolism. When mice lapped up water laced with the molecule, the rodents lost weight and were better at absorbing glucose. © 2014 American Association for the Advancement of Science

Keyword: Obesity; Aggression
Link ID: 19110 - Posted: 01.08.2014

By NICHOLAS BAKALAR Both acupuncture and sham acupuncture were effective in reducing menopausal symptoms in women being treated with aromatase inhibitors for breast cancer, a small randomized trial found. Joint and muscle pain, hot flashes and night sweats are common side effects of those estrogen-lowering drugs. The trial, published online in Cancer, randomized 47 breast cancer patients to eight weekly sessions of either real or sham acupuncture. Those assigned to real acupuncture received treatment with needles in recognized acupoints believed to be helpful in relieving menopausal symptoms. The controls got non-penetrating needles placed in sham acupuncture points. Patients and researchers did not know which patients had received which treatment. The patients kept daily diaries or filled out several questionnaires on the frequency and severity of hot flashes and other symptoms. Patient-reported symptoms, especially hot flashes, improved significantly after both sham and real treatment. There was no statistically significant difference between the two groups. The results may be attributable to a placebo effect, but the scientists suggest that the slight pricking of the skin could cause physiological changes. In any case, the lead author, Dr. Ting Bao, a medical oncologist at the University of Maryland, Baltimore, said there is no harm in trying acupuncture. “Acupuncture as a medical procedure has been practiced for thousands of years,” she said. “It has a minimal risk and potentially significant benefits.” Copyright 2013 The New York Times Company

Keyword: Pain & Touch
Link ID: 19074 - Posted: 12.28.2013

Don’t worry about watching all those cat videos on the Internet. You’re not wasting time when you are at your computer—you’re honing your fine-motor skills. A study of people’s ability to translate training that involves clicking and twiddling a computer mouse reveals that the brain can apply that expertise to other fine-motor tasks requiring the hands. We know that computers are altering the way that people think. For example, using the Internet changes the way that you remember information. But what about use of the computer itself? You probably got to this story by using a computer mouse, for example, and that is a bizarre task compared with the activities that we’ve encountered in our evolutionary history. You made tiny movements of your hand in a horizontal plane to cause tiny movements of a cursor in a completely disconnected vertical plane. But with daily practice—the average computer user makes more than 1000 mouse clicks per day—you have become such an expert that you don’t even think about this amazing feat of dexterity. Scientists would love to know if that practice affects other aspects of your brain’s control of your body. The problem is finding people with no computer experience. So Konrad Kording, a psychologist at Northwestern University’s Rehabilitation Institute of Chicago in Illinois, and his former postdoc Kunlin Wei, now at Peking University in Beijing, turned to migrant Chinese workers. The country’s vast population covers the whole socioeconomic spectrum, from elite computer hackers to agricultural laborers whose lifestyles have changed little over the past century. The country’s economic boom is bringing people in waves from the countryside to cities in search of employment. © 2013 American Association for the Advancement of Science

Keyword: Learning & Memory
Link ID: 19060 - Posted: 12.21.2013

by Ashley Yeager With a little help from implanted electrodes, Parkinson's patients make fewer driving errors, at least on a computer. When steering a simulator, patients with active brain stimulators averaged 3.8 driving errors, compared with 7.5 for healthy people and 11.4 for those with Parkinson's disease who did not have implants. The Parkinson’s patients’ driving skills were also more accurate when receiving deep brain stimulation than when taking levodopa, a common treatment for the disease, researchers report December 18 in Neurology. © Society for Science & the Public 2000 - 2013

Keyword: Parkinsons
Link ID: 19054 - Posted: 12.19.2013

By Dana Smith Daniel Tammet has memorized Pi to the 22,514th digit. He speaks ten different languages, including one of his own invention, and he can multiply enormous sums in his head within a matter of seconds. However, he is unable to hold down a standard 9-to-5 job, in part due to his obsessive adherence to ritual, down to the precise times he has his tea every day. Daniel is a savant. He is also autistic. And he is a synesthete. Daniel experiences numbers as having color, as well as shape and texture. This helps him perform amazing mathematical feats seemingly without effort, the answer simply materializing to him rather than having to calculate it out. In an interview he gave with The Guardian, Daniel explained, “When I multiply numbers together, I see two shapes. The image starts to change and evolve, and a third shape emerges. That’s the answer. It’s mental imagery. It’s like maths without having to think.” Clearly this man has an extraordinary brain. However, Daniel is perhaps not entirely unique, and it appears that the link between autism and synesthesia is more common than originally thought. This suggests that there is a potential common mechanism between these two conditions, which may even help to explain some of Daniel’s special savant abilities. A new study published in the journal Molecular Autism from a team of researchers at the University of Cambridge now empirically shows that there is an almost three-fold higher occurrence of synesthesia in individuals with autism (18.9%), compared with that of the general population (7.2%). This increased prevalence implies that there is indeed a significant link between autism and synesthesia. © 2013 Scientific American

Keyword: Autism
Link ID: 19008 - Posted: 12.06.2013

People with dementia who exercise improve their thinking abilities and everyday life, a body of medical research concludes. The Cochrane Collaboration carried out a systematic review of eight exercise trials involving more than 300 patients living at home or in care. Exercise did little for patients' moods, the research concluded. But it did help them carry out daily activities such as rising from a chair, and boosted their cognitive skills. Whether these benefits improve quality of life is still unclear, but the study authors say the findings are reason for optimism. Dementia affects some 800,000 people in the UK. And the number of people with the condition is steadily increasing because people are living longer. It is estimated that by 2021, the number of people with dementia in the UK will have increased to around one million. With no cure, ways to improve the lives of those living with the condition are vital. Researcher Dorothy Forbes, of the University of Alberta, and colleagues who carried out the Cochrane review, said: "Clearly, further research is needed to be able to develop best practice guidelines to enable healthcare providers to advise people with dementia living at home or in institutions. "We also need to understand what level and intensity of exercise is beneficial for someone with dementia." BBC © 2013

Keyword: Alzheimers
Link ID: 18999 - Posted: 12.05.2013

At the Society for Neuroscience meeting earlier this month in San Diego, California, Science sat down with Geoffrey Ling, deputy director of the Defense Sciences Office at the Defense Advanced Research Projects Agency (DARPA), to discuss the agency’s plans for the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative, a neuroscience research effort put forth by President Barack Obama earlier this year. So far, DARPA has released two calls for grant applications, with at least one more likely: The first, called SUBNETS (Systems-Based Neurotechnology for Emerging Therapies), asks researchers to develop novel, wireless devices, such as deep brain stimulators, that can cure neurological disorders such as posttraumatic stress (PTS), major depression, and chronic pain. The second, RAM (Restoring Active Memory), calls for a separate wireless device that repairs brain damage and restores memory loss. Below is an extended version of a Q&A that appears in the 29 November issue of Science. Q: Why did DARPA get involved in the BRAIN project? G.L.: It’s really focused on our injured warfighters, but it has a use for civilians who have stress disorders and civilians who also have memory disorders from dementia and the like. But at the end of the day, it is still meeting [President Obama’s] directive. Of all the things he could have chosen—global warming, alternative fuels—he chose this, so in my mind the neuroscience community should be as excited as all get-up. Q: Why does SUBNETS focus on deep brain stimulation (DBS)? G.L.: We’ve opened the possibility of using DBS but we haven’t exclusively said that. We’re challenging people to go after neuropsychiatric disorders like PTS [and] depression. We’re challenging the community to come up with something in 5 years that’s clinically feasible. DBS is an area that has really been traditionally underfunded, so we thought what the heck, let’s give it a go—in this new BRAIN Initiative the whole idea is to go after the things that there aren’t 400 R01 grants for—and let’s be bold, and boy, if it works, fabulous. © 2013 American Association for the Advancement of Science

Keyword: Brain imaging; Aggression
Link ID: 18982 - Posted: 11.30.2013

Scientists at the National Institutes of Health have used RNA interference (RNAi) technology to reveal dozens of genes which may represent new therapeutic targets for treating Parkinson’s disease. The findings also may be relevant to several diseases caused by damage to mitochondria, the biological power plants found in cells throughout the body. “We discovered a network of genes that may regulate the disposal of dysfunctional mitochondria, opening the door to new drug targets for Parkinson’s disease and other disorders,” said Richard Youle, Ph.D., an investigator at the National Institute of Neurological Disorders and Stroke (NINDS) and a leader of the study. The findings were published online in Nature. Dr. Youle collaborated with researchers from the National Center for Advancing Translational Sciences (NCATS). Mitochondria are tubular structures with rounded ends that use oxygen to convert many chemical fuels into adenosine triphosphate, the main energy source that powers cells. Multiple neurological disorders are linked to genes that help regulate the health of mitochondria, including Parkinson’s, and movement diseases such as Charcot-Marie Tooth Syndrome and the ataxias. Some cases of Parkinson’s disease have been linked to mutations in the gene that codes for parkin, a protein that normally roams inside cells, and tags damaged mitochondria as waste. The damaged mitochondria are then degraded by cells’ lysosomes, which serve as a biological trash disposal system. Known mutations in parkin prevent tagging, resulting in accumulation of unhealthy mitochondria in the body.

Keyword: Parkinsons; Aggression
Link ID: 18975 - Posted: 11.26.2013

By RONI CARYN RABIN Women are more likely than men to die after a heart attack, and some researchers have suggested a reason: Doctors may be misdiagnosing women more often because their symptoms differ from those experienced by men. But a study published Monday indicates that too much has been made of gender differences in chest pain, the hallmark symptom of heart disease. Although the researchers found some distinctions, no pattern was clearly more characteristic of women or could be used to improve heart attack diagnosis in women, the authors concluded. “We should stop treating women differently at the emergency room when they present with chest pain and discomfort,” said Dr. Maria Rubini Gimenez, a cardiologist at University Hospital Basel and lead author of the new study, published in JAMA Internal Medicine. Instead, she said, all patients with acute chest pain must be evaluated for heart attack with appropriate diagnostics, including an electrocardiogram and blood tests. Roughly 80 percent of people who have chest pain and discomfort are suffering from indigestion, acid reflux or another relatively benign condition, said Dr. John G. Canto, director of the chest pain center at Lakeland Regional Medical Center in Lakeland, Fla., who has researched heart attack diagnosis. “The trick is, how do you figure out the 15 to 20 percent actually having a heart attack?” he said. The new research confirms “that there is a lot of overlap in symptoms between patients who are having a heart attack and those who aren’t, and there is a lot of overlap in symptoms between men and women.” The new study examined 2,475 patients, including 796 women, who reported to emergency rooms at nine hospitals in Switzerland, Spain and Italy complaining of acute chest pain between April 21, 2006, and Aug. 12, 2012. Copyright 2013 The New York Times Company

Keyword: Pain & Touch; Aggression
Link ID: 18972 - Posted: 11.26.2013

by Erika Engelhaupt If you had to have a prosthetic hand, would you want it to look like a real hand? Or would you prefer a gleaming metallic number, something that doesn’t even try to look human? A new study looks at one of the issues that prosthetic designers and wearers face in making this decision: the creepy factor. People tend to get creeped out by robots or prosthetic devices that look almost, but not quite, human. So Ellen Poliakoff and colleagues at the University of Manchester in England had people rate the eeriness of various prosthetic hands. Forty-three volunteers looked at photographs of prosthetic and real hands. They rated both how humanlike (realistic) the hands were and how eerie they were, defined as “mysterious, strange, or unexpected as to send a chill up the spine.” Real human hands were rated both the most humanlike and the least eerie (a good thing for humans). Metal hands that were clearly mechanical were rated the least humanlike, but less eerie overall than prosthetic hands made to look like real hands, the team reports in the latest issue of Perception. The realistic prosthetics, like the rubber hand shown above, fell into what's known as the uncanny valley. That term, invented by roboticist Matsuhiro Mori in 1970, describes how robots become unnerving as they come to look more humanlike. The superrealistic Geminoid DK robot and the animated characters in the movie The Polar Express suffer from this problem. They look almost human, but not quite, and this mismatch between expectation and reality is one of the proposed explanations for the uncanny valley. In particular, if something looks like a human but doesn’t quite move like one, it’s often considered eerie. © Society for Science & the Public 2000 - 2013

Keyword: Robotics; Aggression
Link ID: 18966 - Posted: 11.25.2013

by Simon Makin "The only thing we have to fear is fear itself," said Franklin D. Roosevelt. He might have been onto something: research suggests that the anticipation of pain is actually worse than the pain itself. In other words, people are happy to endure a bit more pain, if it means they spend less time waiting for it. Classical theories of decision-making suppose that people bring rewards forward and postpone punishments, because we give far-off events less weight. This is called "temporal discounting". But this theory seems to go out the window when it comes to pain. One explanation for this is that the anticipation of pain is itself unpleasant, a phenomenon that researchers have appropriately termed "dread". To investigate how dread varies with time, Giles Story at University College London, and his colleagues, hooked up 33 volunteers to a device that gave them mild electric shocks. The researchers also presented people with a series of choices between more or less mildly painful shocks, sooner or later. During every "episode" there was a minimum of two shocks, which could rise to a maximum of 14, but before they were given them, people had to make a choice such as nine extra shocks now or six extra shocks five episodes from now. The number of shocks they received each time was determined by these past choices. Although a few people always chose to experience the minimum pain, 70 per cent of the time, on average, participants chose to receive the extra shocks sooner rather than a smaller number later. By varying the number of shocks and when they occurred, the team was able to figure out that the dread of pain increased exponentially as pain approached in time. Similar results occurred in a test using hypothetical dental appointments. © Copyright Reed Business Information Ltd.

Keyword: Pain & Touch; Aggression
Link ID: 18959 - Posted: 11.23.2013

By Helen Briggs BBC News A condition where people experience a mixing of the senses, such as tasting words, has been linked with autism. Research suggests synaesthesia is nearly three times as common in adults with autism spectrum disorder than in the general population. The two conditions may share common features such as unusual wiring of the brain, say UK scientists. The study helps understanding of how people with autism experience life, says the National Autistic Society. Synaesthesia is a condition where one sense automatically triggers another. Some people experience tastes when they read or hear words, some perceive numbers as shapes, others see colours when they hear music. People with synaesthesia might say: "The letter q is dark brown," or: "The word 'hello' tastes like coffee," for example. Following anecdotal evidence of links between synaesthesia and Asperger's syndrome, researchers at the Autism Research Centre at Cambridge University set out to test the idea. More than 200 study participants - 164 adults diagnosed with high-functioning autism or Asperger's syndrome, and 97 adults without autism - were asked to fill in questionnaires to measure synaesthesia and autism traits. The study found one in five adults with autism spectrum conditions - a range of related developmental disorders, including autism and Asperger's syndrome - had synaesthesia compared with about 7% of people with no signs of the disorders. Prof Simon Baron-Cohen, who led the research, told BBC News: "Synaesthesia involves a mixing of the senses and it's a very subjective private experience, so the only way we know it's happening is if you ask people to report on their experiences. BBC © 2013

Keyword: Autism
Link ID: 18948 - Posted: 11.20.2013

Helen Shen To researchers who study how living things move, the octopus is an eight-legged marvel, managing its array of undulating appendages by means of a relatively simple nervous system. Some studies have suggested that each of the octopus’s tentacles has a 'mind' of its own, without rigid central coordination by the animal’s brain1. Now neuroscientist Guy Levy and his colleagues at the Hebrew University in Jerusalem report that the animals can rotate their bodies independently of their direction of movement, reorienting them while continuing to crawl in a straight line. And, unlike species that use their limbs to move forward or sideways relative to their body's orientation, octopuses tend to slither around in all directions. The team presented its findings on 10 November at the annual meeting of the Society for Neuroscience in San Diego, California. The new description of octopus movement is “not how one would imagine that would happen, but it seems to give a lot of control to the animal", says Gal Haspel, a neuroscientist at the New Jersey Institute of Technology in Newark. Haspel studies worm locomotion, and he was also surprised by the researchers’ report that the octopus pushes itself with worm-like contractions of its tentacles. Different combinations flex together to produce movement in different directions. Levy, who began the research as part of a project to design and control flexible, octopus-like robots, says that the work could also help to uncover basic biological principles of locomotion. Levy’s team deconstructed octopus movement using a transparent tank rigged with a system of mirrors and video cameras, in which they tested nine adult common octopuses (Octopus vulgaris). © 2013 Nature Publishing Group

Keyword: Movement Disorders; Aggression
Link ID: 18936 - Posted: 11.16.2013

By BARRY MEIER Addiction experts protested loudly when the Food and Drug Administration approved a powerful new opioid painkiller last month, saying that it would set off a wave of abuse much as OxyContin did when it first appeared. An F.D.A. panel had earlier voted, 11 to 2, against approval of the drug, Zohydro, in part because unlike current versions of OxyContin, it is not made in a formulation designed to deter abuse. Now a new issue is being raised about Zohydro. The drug will be manufactured by the same company, Alkermes, that makes a popular medication called Vivitrol, used to treat patients addicted to painkillers or alcohol. In addition, the company provides financial support to a leading professional group that represents substance abuse experts, the American Society of Addiction Medicine. For some critics, the company’s multiple roles in the world of painkillers is troubling. Dr. Gregory L. Jones, an addiction specialist in Louisville, Ky., said he had long been concerned about financial links between the group and the drug industry, adding that the Zohydro situation amplified those potential conflicts. Dr. Stuart Gitlow, the current president of the American Society of Addiction Medicine, said he had been unaware until now of Alkermes’s involvement with Zohydro. Dr. Gitlow, who is affiliated with Mount Sinai Hospital in New York City, said that the group would seek more information from Alkermes about the situation and then decide what, if anything, to do next. Officials of Alkermes appear to recognize the issue they face. In recent years, the company has been trying to increase sales of Vivitrol, a form of a drug called naltrexone, that is used to treat both alcoholism and opioid addiction. © 2013 The New York Times Company

Keyword: Drug Abuse; Aggression
Link ID: 18931 - Posted: 11.16.2013

by Jessica Griggs, San Diego No practice required. Wouldn't it be great if you could get better at playing sport or hone your piano skills simply by thinking about it? A small pilot study suggests that it might be possible. In the last few years, brain training using computer games that provide neurofeedback – a real-time representation of your brain activity – has become a popular, if controversial, method of enhancing cognitive abilities such as spatial memory, planning and multitasking. It has even been used to help actors get into character. Most of the games aim to enhance activation in a single part of the brain. But motor skills are known to involve two main areas – the premotor cortex and the supplementary motor cortex. Both are involved when people make movements or imagine moving. Brain activity between these regions is known to be less synchronised in people who are poor at motor tasks than in those who excel at them. So to see if brain training could target both areas and improve motor performance, Sook-Lei Liew and her colleagues from the National Institute of Neurological Disorders and Stroke in Bethesda, Maryland, recruited eight young adults. The researchers and asked the participants to watch a white circle on a screen while an fMRI machine scanned their brain. When the circle turned into a red triangle, the volunteers were told to move their fingers. This movement caused activation in their premotor cortex and supplementary motor cortex, which in turn moved a bar on the screen. The higher the synchronisation of activity between the two brain areas, the higher the bar went. © Copyright Reed Business Information Ltd.

Keyword: Stroke
Link ID: 18928 - Posted: 11.14.2013

Helen Shen Long used to treat movement disorders, deep-brain stimulation (DBS) is rapidly emerging as an experimental therapy for neuropsychiatric conditions including depression, Tourette’s syndrome, obsessive–compulsive disorder and even Alzheimer’s disease. But despite some encouraging results in patients, it remains largely unknown how the electrical pulses delivered by implants deep within the brain affect neural circuits and change behaviour. Now there is a prototype DBS device that could provide some answers, researchers reported on 10 November at the Society for Neuroscience’s annual meeting in San Diego, California. Called Harmoni, the device is the first DBS implant to monitor electrical and chemical responses in the brain while delivering electrical stimulation. “That’s new data that we haven’t really had access to in humans before,” says Cameron McIntyre, a biomedical engineer at Case Western Reserve University in Cleveland, Ohio, who is not involved in the work. Researchers hope that the device will identify the electrical and chemical signals in the brain that correlate in real time with the presence and severity of symptoms, including the tremors experienced by people with Parkinson’s disease. This information could help to uncover where and how DBS exerts its therapeutic effects on the brain, and why it sometimes fails, says Kendall Lee, a neurosurgeon at the Mayo Clinic in Rochester, Minnesota, who is leading the project. The results come at a time of great excitement in the DBS field. Last month, the US government's Defense Advanced Research Projects Agency (DARPA) announced a 5-year, US$70-million initiative to support development of the next generation of therapeutic brain-stimulating technologies. © 2013 Nature Publishing Group,

Keyword: Parkinsons
Link ID: 18922 - Posted: 11.13.2013

Sedentary adults may improve their memory as soon as six weeks after taking up aerobic exercise, a small brain imaging study suggests. Cardiovascular fitness and cognitive performance such as attention seem to improve after six months or more of aerobic exercise in previous aging studies. Now researchers in Texas have found signs of increased regional blood flow in the brain of 37 sedentary adults with an average age of 64 who were randomized to physical training or a control group who had the training after a waiting period. They found a higher resting cerebral blood flow in the brain's anterior cingulate region in the physical training group compared with controls. The anterior cingulate region is associated with better memory functions. The size of this brain region was also larger in another study of "successful cognitive agers" over the age of 80 compared to middle-aged or elderly controls. "A relatively rapid health benefit across brain, memory and fitness in sedentary adults soon after starting to exercise, some gains starting as early as six weeks, could motivate adults to start exercising regularly," the study's lead author, Sandra Bond Champman of the Center for BrainHealth in Dallas and her co-authors concluded in Monday's issue of the journal Frontiers in Aging Neuroscience. "The current findings shed new light on ways exercise promotes cognitive/brain health in aging." The participants all had a physical exam and screening for dementia, early cognitive impairment, depression and IQ before the study began. A noninvasive type of MRI was used to measure brain blood flow before, half way through the 6-week training sessions and at 12 weeks. © CBC 2013

Keyword: Learning & Memory
Link ID: 18920 - Posted: 11.13.2013

Babies born to women who exercised during pregnancy have enhanced brain development compared with babies born to moms who didn’t exercise while they were pregnant, a new Canadian study suggests. The babies of 10 women who did as little as 20 minutes of moderate exercise three times a week during pregnancy showed more advanced brain activity when they were tested at eight to 12 days old than the babies of eight women who did not exercise during pregnancy, reported University of Montreal researcher David Ellemberg and his colleagues at the Neuroscience 2013 conference in San Diego on Sunday. “We are optimistic that this will encourage women to change their health habits, given that the simple act of exercising during pregnancy could make a difference for their child's future,” Ellemberg said in a statement. The women in the study were randomly assigned to an exercise group or a sedentary group at the beginning of their second trimester. Those in the exercise group had to spend at least 20 minutes three times a week doing exercise intense enough to lead to at least a slight shortness of breath. After their babies were born, the researchers tested them by placing a cap of electrodes on the babies' heads and then playing novel sounds while they slept. They measured the electrical response of the babies' brains to see how well they could distinguish between different sounds. The researchers found that the babies in the exercise group produced signals associated with more mature brains. The researchers said they plan to test the children’s cognitive, motor and language development at age one to see if there are lasting effects. © CBC 2013

Keyword: Development of the Brain
Link ID: 18916 - Posted: 11.12.2013

By PAM BELLUCK It is probably no accident that the pivotal object in Martin Cruz Smith’s newest detective thriller, “Tatiana,” is a notebook nobody can read. Early on, Mr. Smith worried that his novel, being published Tuesday by Simon & Schuster, would be unreadable too — or wouldn’t be written at all. Author of the 1981 blockbuster “Gorky Park” and many acclaimed books since, Mr. Smith writes about people who uncover and keep secrets. But for 18 years, he has had a secret of his own. In 1995, he received a diagnosis of Parkinson’s disease. But he kept it hidden, not only from the public, but from his publisher and editors. He concealed it, although for years, tremors and stiffness have kept him from taking detailed notes and sketching people, places and objects for his research — and even as he became unable to type the words he needed to finish his 2010 best seller “Three Stations.” “I didn’t want to be judged by that,” Mr. Smith, 71, explained recently in his light-filled Victorian home north of San Francisco. “Either I’m a good writer or I’m not. ‘He’s our pre-eminent Parkinson’s writer.’ Who needs that?” In talking about his Parkinson’s odyssey, including a relatively new but promising treatment, Mr. Smith is opening a window on the still incurable disorder affecting four million people worldwide, a disease that is becoming increasingly prevalent as baby boomers age. His experience reflects a common desire to conceal often-stigmatizing symptoms, like shaking, slowness, and rigidity. (He mostly didn’t mind his Parkinsonian hallucinations: a black cat in his lap, whirlwinds spiraling from computer keys, a butler, a British military officer in full regalia. “Having hallucinations for a fiction writer is redundant,” he said.) Copyright 2013 The New York Times Company

Keyword: Parkinsons
Link ID: 18914 - Posted: 11.12.2013