Chapter 19. Language and Lateralization

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 2626

By Anna Gibbs Cradled inside the hushed world of the womb, fetuses might be preparing to come out howling. In the same way newborn humans can cry as soon as they’re born, common marmoset monkeys (Callithrix jacchus) produce contact calls to seek attention from their caregivers. Those vocalizations are not improv, researchers report in a preprint posted April 14 at bioRxiv. Ultrasound imaging of marmoset fetuses reveals that their mouths are already mimicking the distinctive pattern of movements used to emit their first calls, long before the production of sound. Early behaviors in infants are commonly described as “innate” or “hard-wired,” but a team at Princeton University wondered how exactly those behaviors develop. How does a baby know how to cry as soon as it’s born? The secret may lie in what’s happening before birth. “People tend to ignore the fetal period,” says Darshana Narayanan, a behavioral neuroscientist who did the research while at Princeton University. “They just think that it’s like the baby’s just vegetating and waiting to be born…. [But] that’s where many things begin.” Research shows, for instance, that chicks inside their eggs are already learning to identify their species’ call (SN: 9/16/21). “So much is developing so much earlier in development than we previously thought,” says developmental psychobiologist Samantha Carouso-Peck, executive director of Grassland Bird Trust in Fort Edward, N.Y., who was not involved in the research. But, she says, “we really haven’t looked much at all at the production side of this. Most of what we know is the auditory side.” Carouso-Peck studies vocal learning in songbirds and how it applies to how humans acquire language. © Society for Science & the Public 2000–2022.

Keyword: Animal Communication; Language
Link ID: 28325 - Posted: 05.11.2022

By Laura Sanders Young kids’ brains are especially tuned to their mothers’ voices. Teenagers’ brains, in their typical rebellious glory, are most decidedly not. That conclusion, described April 28 in the Journal of Neuroscience, may seem laughably obvious to parents of teenagers, including neuroscientist Daniel Abrams of Stanford University School of Medicine. “I have two teenaged boys myself, and it’s a kind of funny result,” he says. But the finding may reflect something much deeper than a punch line. As kids grow up and expand their social connections beyond their family, their brains need to be attuned to that growing world. “Just as an infant is tuned into a mom, adolescents have this whole other class of sounds and voices that they need to tune into,” Abrams says. He and his colleagues scanned the brains of 7- to 16-year-olds as they heard the voices of either their mothers or unfamiliar women. To simplify the experiment down to just the sound of a voice, the words were gibberish: teebudieshawlt, keebudieshawlt and peebudieshawlt. As the children and teenagers listened, certain parts of their brains became active. Previous experiments by Abrams and his colleagues have shown that certain regions of the brains of kids ages 7 to 12 — particularly those parts involved in detecting rewards and paying attention — respond more strongly to mom’s voice than to a voice of an unknown woman. “In adolescence, we show the exact opposite of that,” Abrams says. In these same brain regions in teens, unfamiliar voices elicited greater responses than the voices of their own dear mothers. The shift from mother to other seems to happen between ages 13 and 14. Society for Science & the Public 2000–2022.

Keyword: Language; Development of the Brain
Link ID: 28307 - Posted: 04.30.2022

By Katharine Q. Seelye Ursula Bellugi, a pioneer in the study of the biological foundations of language who was among the first to demonstrate that sign language was just as complex, abstract and systematic as spoken language, died on Sunday in San Diego. She was 91. Her death, at an assisted living facility, was confirmed by her son Rob Klima. Dr. Bellugi was a leading researcher at the Salk Institute for Biological Studies in San Diego for nearly five decades and, for much of that time, was director of its laboratory for cognitive neuroscience. She made significant contributions in three main areas: the development of language in children; the linguistic structure and neurological basis of American Sign Language; and the social behavior and language abilities of people with a rare genetic disorder, Williams syndrome. “She leaves an indelible legacy of shedding light on how humans communicate and socialize with each other,” Rusty Gage, president of the Salk Institute, said in a statement. Dr. Bellugi’s work, much of it done in collaboration with her husband, Edward S. Klima, advanced understanding of the brain and the origins of language, both signed and spoken. American Sign Language was first described as a true language in 1960 by William C. Stokoe Jr., a professor at Gallaudet University, the world’s only liberal arts university devoted to deaf people. But he was ridiculed and attacked for that claim. Dr. Bellugi and Dr. Klima, who died in 2008, demonstrated conclusively that the world’s signed languages — of which there are more than 100 — were actual languages in their own right, not just translations of spoken languages. Dr. Bellugi, who focused on American Sign Language, established that these linguistic systems were passed down, in all their complexity, from one generation of deaf people to the next. For that reason, the scientific community regards her as the founder of the neurobiology of American Sign Language. The couple’s work led to a major discovery at the Salk lab: that the left hemisphere of the brain has an innate predisposition for language, whether spoken or signed. That finding gave scientists fresh insight into how the brain learns, interprets and forgets language. © 2022 The New York Times Company

Keyword: Language; Laterality
Link ID: 28296 - Posted: 04.23.2022

Grace Browne In early February 2016, after reading an article featuring a couple of scientists at the Massachusetts Institute of Technology who were studying how the brain reacts to music, a woman felt inclined to email them. “I have an interesting brain,” she told them. EG, who has requested to go by her initials to protect her privacy, is missing her left temporal lobe, a part of the brain thought to be involved in language processing. EG, however, wasn’t quite the right fit for what the scientists were studying, so they referred her to Evelina Fedorenko, a cognitive neuroscientist, also at MIT, who studies language. It was the beginning of a fruitful relationship. The first paper based on EG’s brain was recently published in the journal Neuropsychologia, and Fedorenko’s team expects to publish several more. For EG, who is in her fifties and grew up in Connecticut, missing a large chunk of her brain has had surprisingly little effect on her life. She has a graduate degree, has enjoyed an impressive career, and speaks Russian—a second language–so well that she has dreamed in it. She first learned her brain was atypical in the autumn of 1987, at George Washington University Hospital, when she had it scanned for an unrelated reason. The cause was likely a stroke that happened when she was a baby; today, there is only cerebro-spinal fluid in that brain area. For the first decade after she found out, EG didn't tell anyone other than her parents and her two closest friends. “It creeped me out,” she says. Since then, she has told more people, but it's still a very small circle that is aware of her unique brain anatomy. © Condé Nast Britain 2022.

Keyword: Development of the Brain; Language
Link ID: 28295 - Posted: 04.20.2022

By Paula Span On a recent afternoon in Bastrop, Texas, Janet Splawn was walking her dog, Petunia, a Pomeranian-Chihuahua mix. She said something to her grandson, who lives with her and had accompanied her on the stroll. But he couldn’t follow; her speech had suddenly become incoherent. “It was garbled, like mush,” Ms. Splawn recalled a few days later from a hospital in Austin. “But I got mad at him for not understanding. It was kind of an eerie feeling.” People don’t take chances when 87-year-olds develop alarming symptoms. Her grandson drove her to the nearest hospital emergency room, which then transferred her to a larger hospital for a neurology consultation. The diagnosis: a transient ischemic attack, or T.I.A. For decades, patients have been relieved to hear that phrase. The sudden onset of symptoms like weakness or numbness (often on one side), loss of vision (often in one eye) and trouble with language (speaking, understanding or both) — if resolved in a few minutes — is considered “transient.” Whew. But in a recent editorial in JAMA, two neurologists called for doctors and patients to abandon the term transient ischemic attack. It’s too reassuring, they argued, and too likely to lead someone with passing symptoms to wait until the next morning to call a doctor or let a week go by before arranging an appointment. That’s dangerous. Better, they said, to call a T.I.A. what it is: a stroke. More specifically, a minor ischemic stroke. (Almost 90 percent of strokes, which afflict 795,000 Americans a year, are ischemic, meaning they result from a clot that reduces blood flow to the brain.) Until recently, T.I.A.s “were played down,” said Dr. J. Donald Easton, a neurologist recently retired from the University of California, San Francisco, and an author of the editorial. “The person thinks, ‘Oh, it’s over. It goes away, so all is well.’ But all is not well. There’s trouble to come, and it’s coming soon.” The advent of brain imaging — first CT scans in the late 1970s, then the more precise M.R.I.s in the 1990s — has shown that many T.I.A.s, sometimes called ministrokes, cause visible and permanent brain damage. © 2022 The New York Times Company

Keyword: Stroke
Link ID: 28275 - Posted: 04.09.2022

By Ingrid K. Williams This article is part of a limited series on artificial intelligence’s potential to solve everyday problems. Imagine a test as quick and easy as having your temperature taken or your blood pressure measured that could reliably identify an anxiety disorder or predict an impending depressive relapse. Health care providers have many tools to gauge a patient’s physical condition, yet no reliable biomarkers — objective indicators of medical states observed from outside the patient — for assessing mental health. But some artificial intelligence researchers now believe that the sound of your voice might be the key to understanding your mental state — and A.I. is perfectly suited to detect such changes, which are difficult, if not impossible, to perceive otherwise. The result is a set of apps and online tools designed to track your mental status, as well as programs that deliver real-time mental health assessments to telehealth and call-center providers. Psychologists have long known that certain mental health issues can be detected by listening not only to what a person says but how they say it, said Maria Espinola, a psychologist and assistant professor at the University of Cincinnati College of Medicine. With depressed patients, Dr. Espinola said, “their speech is generally more monotone, flatter and softer. They also have a reduced pitch range and lower volume. They take more pauses. They stop more often.” Patients with anxiety feel more tension in their bodies, which can also change the way their voice sounds, she said. “They tend to speak faster. They have more difficulty breathing.” Today, these types of vocal features are being leveraged by machine learning researchers to predict depression and anxiety, as well as other mental illnesses like schizophrenia and post-traumatic stress disorder. The use of deep-learning algorithms can uncover additional patterns and characteristics, as captured in short voice recordings, that might not be evident even to trained experts. © 2022 The New York Times Company

Keyword: Depression; Schizophrenia
Link ID: 28271 - Posted: 04.06.2022

ByTess Joosse My dog Leo clearly knows the difference between my voice and the barks of the beagle next door. When I speak, he looks at me with love; when our canine neighbor makes his mind known, Leo barks back with disdain. A new study backs up what I and my fellow dog owners have long suspected: Dogs’ brains process human and canine vocalizations differently, suggesting they evolved to recognize our voices from their own. “The fact that dogs use auditory information alone to distinguish between human and dog sound is significant,” says Jeffrey Katz, a cognitive neuroscientist at Auburn University who is not involved with the work. Previous research has found that dogs can match human voices with expressions. When played an audio clip of a lady laughing, for example, they’ll often look at a photo of a smiling woman. But how exactly the canine brain processes sounds isn’t clear. MRI has shown certain regions of the dog brain are more active when a pup hears another dog whine or bark. But those images can’t reveal exactly when neurons in the brain are firing, and whether they fire differently in response to different noises. So in the new study, Anna Bálint, a canine neuroscientist at Eötvös Loránd University, turned to an electroencephalogram, which can measure individual brain waves. She and her colleagues recruited 17 family dogs, including several border collies, golden retrievers, and a German shepherd, that were previously taught to lie still for several minutes at a time. The scientists attached electrodes to each dog’s head to record its brain response—not an easy task, it turns out. Unlike humans’ bony noggins, dog heads have lots of muscles that can obstruct a clear readout, Bálint says. © 2022 American Association for the Advancement of Science.

Keyword: Language; Animal Communication
Link ID: 28270 - Posted: 04.06.2022

By Jessica Contrera The carpet cleaner heaves his machine up the stairs, untangles its hoses and promises to dump the dirty water only in the approved toilet. Another day scrubbing rugs for less than $20 an hour. Another Washington area house with overflowing bookshelves and walls covered in travel mementos from places he would love to go one day. But this was not that day. “Tell me about this stain,” 46-year-old Vaughn Smith asks his clients. “Well,” says one of the homeowners, “Schroeder rubbed his bottom across it.” Vaughn knows just what to do about that, and the couple, Courtney Stamm and Kelly Widelska, know they can trust him to do it. They’d been hiring him for years, once watching him erase even a splattered Pepto Bismol stain. But this time when Vaughn called to confirm their January appointment, he quietly explained that there was something about himself that he’d never told them. That he rarely told anyone. And well, a reporter was writing a story about it. Could he please bring her along? Now as they listen to Vaughn discuss the porousness of wool, and the difference between Scotchgard and sanitizer, they can’t help but look at him differently. Once the stool stain is solved, Kelly just has to ask. “So, how many languages do you speak?” “Oh goodness,” Vaughn says. “Eight, fluently.” “Eight?” Kelly marvels. “Eight,” Vaughn confirms. English, Spanish, Bulgarian, Czech, Portuguese, Romanian, Russian and Slovak. “But if you go by like, different grades of how much conversation,” he explains, “I know about 25 more.” Vaughn glances at me. He is still underselling his abilities. By his count, it is actually 37 more languages, with at least 24 he speaks well enough to carry on lengthy conversations. He can read and write in eight alphabets and scripts. He can tell stories in Italian and Finnish and American Sign Language. He’s teaching himself Indigenous languages, from Mexico’s Nahuatl © 1996-2022 The Washington Post

Keyword: Language; Autism
Link ID: 28269 - Posted: 04.06.2022

Jonathan Franklin Legendary actor Bruce Willis announced Wednesday his departure from the big screen following his diagnosis with aphasia, which is "impacting his cognitive abilities," his family said in a statement. While details of what led to Willis' aphasia diagnosis are unknown at this time, medical experts stress the importance of the brain condition and how its specifically treated — depending on its severity. "[At some point], people will know somebody who's had a stroke and has aphasia," Dr. Swathi Kiran, professor of neurorehabilitation at Boston University, told NPR. Bruce Willis stepping away from acting for health reasons, his family says Aphasia is defined as a condition that affects the ability to speak, write and understand language, according to the Mayo Clinic. The brain disorder can occur after strokes or head injuries — and can even lead in some cases to dementia. "As a result of this and with much consideration Bruce is stepping away from the career that has meant so much to him," his daughter, Rumer Willis, said on Instagram. "This is a really challenging time for our family and we are so appreciative of your continued love, compassion and support." Medical experts say the impacts of aphasia can vary, depending on the person's diagnosis. But mainly, the condition affects a person's ability to communicate — whether it's written, spoken or both. People living with aphasia can experience changes in their ability to communicate; as they may find difficulty finding words, using words out of order or will even speak in a short manner, according to the American Speech-Language-Hearing Association. © 2022 npr

Keyword: Language; Stroke
Link ID: 28264 - Posted: 04.02.2022

Dolphins are known to use physical contact like petting and rubbing to bond with their closest allies. But for more distant contacts, male dolphins bond by trading whistles instead. KELSEY SNELL, HOST: You know those friends who live far away, but you still stay in touch? You can't really hug, so you call or text them instead. Well, dolphins do something sort of similar. AILSA CHANG, HOST: That, my friends, is whistling. A new study found that the male bottlenose dolphins in Western Australia whistle to the other male dolphins they don't have strong bonds with. SNELL: University of Bristol marine biologist Emma Chereskin is the lead author of the study. She explains that male bottlenose dolphins have an alliance structure. They have their closest circle where the bonds are strong. EMMA CHERESKIN: They often use physical touch, so rubbing their fins together, swimming side by side. CHANG: Then there is another circle where the bonds are weaker and they don't use as much physical touch, but they do whistle to identify themselves and to keep alliances intact. In other words, they bond at a distance. Sound familiar? SNELL: That was a whistle exchange between three dolphins. The researchers gave them names - Kooks (ph), Spirit and Guppy. CHERESKIN: They're saying, hi, I'm Kooks. I'm right here. And then Spirit would reply, hi, I'm Spirit. I'm also right here. And then Guppy gets in on it towards the end. He's saying, hi, I'm Guppy. I'm also here. CHANG: The study tests the social bonding hypothesis of Robin Dunbar. He proposed that animal vocalizations evolved as a form of vocal grooming to replace physical grooming. Karl Berg from the University of Texas Rio Grande Valley says this study advances that hypothesis. KARL BERG: These dolphin groups can be in really large groups in the dark ocean where visual communication isn't going to be possible. It makes sense that this vocal communication system is very important to them. © 2022 npr

Keyword: Animal Communication; Evolution
Link ID: 28262 - Posted: 04.02.2022

By Bruce Bower Human language, in its many current forms, may owe an evolutionary debt to our distant ape ancestors who sounded off in groups of scattered individuals. Wild orangutans’ social worlds mold how they communicate vocally, much as local communities shape the way people speak, researchers report March 21 in Nature Ecology & Evolution. This finding suggests that social forces began engineering an expanding inventory of communication sounds among ancient ancestors of apes and humans, laying a foundation for the evolution of language, say evolutionary psychologist Adriano Lameira, of the University of Warwick in England, and his colleagues. Lameira’s group recorded predator-warning calls known as “kiss-squeaks” — which typically involve drawing in breath through pursed lips — of 76 orangutans from six populations living on the islands of Borneo and Sumatra, where they face survival threats (SN: 2/15/18). The team tracked the animals and estimated their population densities from 2005 through 2010, with at least five consecutive months of observations and recordings in each population. Analyses of recordings then revealed how much individuals’ kiss-squeaks changed or remained the same over time. Orangutans in high-density populations, which up the odds of frequent social encounters, concoct many variations of kiss-squeaks, the researchers report. Novel reworkings of kiss-squeaks usually get modified further by other orangutans or drop out of use in crowded settings, they say. © Society for Science & the Public 2000–2022.

Keyword: Language; Evolution
Link ID: 28258 - Posted: 03.30.2022

Dave Davies Did Stone Age people conduct brain surgery? Medical historian Ira Rutkow points to evidence that suggests they did. "There have been many instances of skulls that have been found dating back to Neolithic times that have grooves in them where portions of the skull have been removed. And it's evident if you look at these skulls, that this was all done by hand," Rutkow says. There's no written record of Stone Age neurosurgery, but Rutkow theorizes it may have been conducted by a shaman on patients who were comatose or who had been otherwise injured. What's more, he says, physical evidence indicates that some patients likely survived: "With many of these older skulls, new bone growth had already formed, and bone in the skull can only form if the patient is alive," he says. Rutkow is a surgeon himself. His new book, Empire of the Scalpel, traces the history of surgery, from the days when barbers did most operations and patients died in great numbers, to today's high tech operations that use robots with artificial intelligence. He says that when looking back, it's important to keep in mind the body of knowledge that existed at a particular point in history — and to not judge surgeons of yore too harshly. "People write about medical history and they say, 'Oh, it was barbaric,' or 'The doctors were maltreating,'" he says. "We have to remember at all times that whatever I write about in the past was considered state of the art at the time. ... I would hate to think that 200 years from now, somebody is looking at what we are doing today and saying, 'Boy, that treatment that they were doing was just barbaric. How do they do that to people?'" © 2022 npr

Keyword: Brain Injury/Concussion; Evolution
Link ID: 28257 - Posted: 03.30.2022

By Ken Belson For more than two decades, Paul McCrory has been the world’s foremost doctor shaping the concussion protocols that are used by sports leagues and organizations globally. As the leader of the Concussion in Sport Group, McCrory helped choose the members of the international group and write its quadrennial consensus statement on the latest research on concussions — a veritable bible for leagues, trainers, doctors and academics that an N.F.L. spokesman once called “the foundation of all sports-related research.” But McCrory’s status as a leading gatekeeper for concussion treatment and research is under attack as he faces multiple accusations that he plagiarized other scientists, including in articles for a medical journal that he edited. He has denied intentionally lifting copy without credit, and has called one since-retracted piece an “isolated and unfortunate incident.” The scandal facing the pre-eminent doctor, who has long cast doubt on the legitimacy of C.T.E., or chronic traumatic encephalopathy, has raised questions about his relationship to sports leagues and the influence they may have in shaping how the research on brain trauma is interpreted. “It’s concerning because he’s taken the lead on writing a consensus statement that is so influential, and we should have access to his insights,” said Kathleen Bachynski, who teaches public health at Muhlenberg College and has written about head trauma in sports. “McCrory’s research agenda and published statements and work as an expert witness come from a point of view of minimizing C.T.E.” McCrory’s prominence grew as sports leagues looked for consensus on concussions. McCrory’s rise to power in concussion circles is notable partly because he is based in Australia, far from the research centers studying head trauma in Europe and America. A neurologist at the Florey Institute of Neuroscience and Mental Health, McCrory worked for 15 years as a team doctor for the Collingwood Football Club, an Australian rules football team in Melbourne, beginning around 1990. He came to advise the Australian Football League, as well as Formula 1 racing, boxing, soccer, rugby and a who’s who of sports organizations, including the International Olympic Committee, FIFA and the International Ice Hockey Federation, at the turn of the century. © 2022 The New York Times Company

Keyword: Brain Injury/Concussion
Link ID: 28249 - Posted: 03.23.2022

Terry Gross One morning in 2017, New York Times columnist Frank Bruni woke up to find that everything looked blurry and smeared. "There was a fog, a dappled fog over the right side of my field of vision," Bruni says. "And I thought for hours that there must be some gunk in my eye, or maybe I'd had too much to drink the night before. Then I thought, Oh, no, it's my eyeglasses. I just have to clean them. And on and on, until deep into the day, I realized there was something wrong beyond all of that." Bruni, then 52, soon learned that he'd experienced a rare kind of stroke that had irreparably damaged his optic nerve. The prognosis: His vision in that eye would never return. What's more, there was a 20 to 40% chance that another stroke would impact his good eye. The news was devastating. "I had some emotional, psychological and really spiritual work to do to accept this and figure out how to go on in the most productive and constructive fashion," he says. But after going through a period of shock and terror, Bruni saw himself at a decision point: He could fixate on what had been lost, or he could focus on what remained. He chose to do the latter. "I feel like once you've recognized what's happened, ... it is so important and so constructive and so right to focus instead on all the things you can still do, all the blessings that remain," he says. "I ended up determined — determined to show myself that I could adapt to whatever was going to happen." In the memoir, The Beauty of Dusk, Bruni chronicles the changes to his vision and the adaptations he's had to make in his work, personal life and attitude. The book also profiles a number of other people who've survived and thrived in ways that Bruni says are profoundly instructive. © 2022 npr

Keyword: Vision; Stroke
Link ID: 28248 - Posted: 03.23.2022

Rina Torchinsky Over the weekend, the model Hailey Bieber told her Instagram followers that she experienced stroke-like symptoms while at breakfast with her husband Thursday morning. Doctors found a small clot in her brain, she said, which caused "a small lack of oxygen." Bieber said on Instagram that her body passed the clot on its own, and she recovered within a few hours. Though Bieber recovered in her case, blood clots in the brain can lead to ischemic strokes, which make up a majority of all strokes. And among young people, stroke rates are on the rise. Here's what you need to know. Ischemic strokes happen when blood flow is blocked through an artery that delivers blood to the brain. These strokes account for the vast majority of all strokes, according to the Centers for Disease Control and Prevention. Transient ischemic attacks, which are sometimes called "mini-strokes," are different than ischemic strokes because these strokes block blood flow from the brain for a short period of time only — often, as short as five minutes. Like ischemic strokes, these strokes are also often caused by blood clots. Although these are short-lived, transient ischemic attacks warn of future strokes and are medical emergencies. More than a third of people who experience these do not receive treatment and have a major stroke within a year, according to the CDC. A hemorrhagic stroke is another type of stroke, which occurs when an artery in the brain leaks blood or ruptures. The leaked blood puts pressure on brain cells and damages them. High blood pressure and aneurysms can cause these strokes, the CDC says. Over the past 30 years, stroke incidence among adults 49 and younger has continued to increase in Southern states and the Midwest, the American Heart Association said in February. Rates have declined for those older than 75. © 2022 npr

Keyword: Stroke
Link ID: 28240 - Posted: 03.16.2022

By Christa Hillstrom To hear more audio stories from publications like The New York Times, download Audm for iPhone or Android. In 2017, when Becky was about to turn 40, she woke up in the middle of the night and was startled by her reflection in the bathroom mirror. Her face, gaunt from weight loss, looked pale. A scar snaked under her chin from when her boyfriend punched her. Her nostrils were now asymmetrical from when he broke her nose. Smaller scars marked her eyebrows and her bottom lip, where a tooth once cut through. She always wore her hair in a bun to mask a bald spot; he had slammed her head against a door frame, and she had needed staples there. She could barely hear from one ear. Her chipped front tooth was harder to hide than the broken molars knocked loose during two decades of beatings. When she went shopping, she would hold items in her hands, assessing how much damage they would do to her body. She had stopped buying leather belts, the braided kind. She remembered getting some of her injuries. With others, the memories hung fuzzy and distant. They met in 1996, when she was a teenager with a new baby. She had already spent years raising her younger siblings when her own mother, who suffered from mental illness and was a survivor of domestic abuse, could not. The first time Becky remembers her boyfriend hurting her, about six months into their relationship, was when he was joking around: a tug on her hair that was surprisingly forceful. Underneath the laughing, something felt mean. And then the meanness got darker. From the beginning of their relationship, Becky’s boyfriend drew the reins tightly around their lives. She could never predict what would set him off. Some days, he attacked her for sleeping too late; others, for waking him up too early. He hit her when the house was too messy or if he wasn’t in the mood for the breakfast she made. Becky, who asked to be identified by a nickname for her safety, often showed up to work with bruises on her face, caked over with foundation, but her co-workers never said anything. © 2022 The New York Times Company

Keyword: Brain Injury/Concussion; Aggression
Link ID: 28229 - Posted: 03.02.2022

Jordana Cepelewicz We often think of memory as a rerun of the past — a mental duplication of events and sensations that we’ve experienced. In the brain, that would be akin to the same patterns of neural activity getting expressed again: Remembering a person’s face, for instance, might activate the same neural patterns as the ones for seeing their face. And indeed, in some memory processes, something like this does occur. But in recent years, researchers have repeatedly found subtle yet significant differences between visual and memory representations, with the latter showing up consistently in slightly different locations in the brain. Scientists weren’t sure what to make of this transformation: What function did it serve, and what did it mean for the nature of memory itself? Now, they may have found an answer — in research focused on language rather than memory. A team of neuroscientists created a semantic map of the brain that showed in remarkable detail which areas of the cortex respond to linguistic information about a wide range of concepts, from faces and places to social relationships and weather phenomena. When they compared that map to one they made showing where the brain represents categories of visual information, they observed meaningful differences between the patterns. And those differences looked exactly like the ones reported in the studies on vision and memory. The finding, published last October in Nature Neuroscience, suggests that in many cases, a memory isn’t a facsimile of past perceptions that gets replayed. Instead, it is more like a reconstruction of the original experience, based on its semantic content. All Rights Reserved © 2022

Keyword: Learning & Memory; Language
Link ID: 28202 - Posted: 02.12.2022

By Benjamin Mueller It appeared to be an ordinary fall: Bob Saget, the actor and comedian, knocked his head on something and, perhaps thinking nothing of it, went to sleep, his family said on Wednesday. But the chilling consequences — Mr. Saget, 65, died some hours later on Jan. 9 from blunt head trauma, a medical examiner ruled — have underscored the dangers of traumatic brain injuries, even those that do not initially seem to be causes for alarm. Some 61,000 deaths in 2019 were related to traumatic brain injuries, according to the Centers for Disease Control and Prevention, and nearly half of head trauma-related hospitalizations result from falls. Brain injury experts said on Thursday that Mr. Saget’s case was relatively uncommon: People with serious head trauma would be expected to have noticeable symptoms, like a headache, nausea or confusion. And they can generally be saved by surgeons opening up their skull and relieving pressure on the brain from bleeding. But certain situations put people at higher risk for the sort of deterioration that Mr. Saget experienced, doctors said. As serious a risk factor as any, doctors said, is simply being alone. Someone with a head injury can lose touch with their usual decision-making capacities and become confused, agitated or unusually sleepy. Those symptoms, in turn, can stand in the way of getting help. And while there was no indication that Mr. Saget was taking blood thinners, experts said the medications can greatly accelerate the type of bleeding after a head injury that forces the brain downward and compresses the centers that regulate breathing and other vital functions. More Americans are being prescribed these drugs as the population ages. Mr. Saget had been in an Orlando hotel room during a weekend of stand-up comedy acts when he was found unresponsive. The local medical examiner’s office announced on Wednesday that his death resulted from “blunt head trauma,” and said that “his injuries were most likely incurred from an unwitnessed fall.” © 2022 The New York Times Company

Keyword: Brain Injury/Concussion
Link ID: 28201 - Posted: 02.12.2022

Megan Lim Any parents out there will be familiar with the unique sort of misery that results when your kid has a new favorite song. They ask to hear it over and over, without regard for the rest of us. Well, it turns out that song sparrows might be better than children (and many adults, for that matter) when it comes to curating their playlists. Male sparrows, which attract females by singing, avoid tormenting their listeners with the same old tune. Instead they woo potential mates with a selection of 6 to 12 different songs. The song sparrow medley It might be hard to tell, but that audio clip contains three distinctive sparrow songs, each containing a unique signature of trills and notes. Even more impressive than the execution, though, is the way sparrows string their songs together. William Searcy, an ornithologist at the University of Miami, recently published a study in The Royal Society that analyzed patterns of song sparrow serenades. He said it would be easy for the birds to sing the first song, then the second, then the third and fourth. "But that's not what song sparrows are doing. They're not going through in a set order. They're varying the order from cycle to cycle, and that's more complicated," he said. In other words, rather than sing the same playlist every time, they hit shuffle. "What we're arguing is what they do is keep in memory the whole past cycle so they know what to sing next," Searcy said. The researchers are not sure why male sparrows shuffle their songs. But past work has shown that females prefer hearing a wider range of tunes, so maybe a new setlist keeps females interested. © 2022 npr

Keyword: Animal Communication; Sexual Behavior
Link ID: 28181 - Posted: 02.02.2022

By Meeri Kim Kellie Carr and her 13-year-old son, Daniel, sat in the waiting room of a pediatric neurology clinic for yet another doctor’s appointment in 2012. For years, she struggled to find out what was causing his weakened right side. It wasn’t an obvious deficit, by any means, and anyone not paying close attention would see a normal, healthy teenage boy. At that point, no one had any idea that Daniel had suffered a massive stroke as a newborn and lost large parts of his brain as a result. “It was the largest stroke I’d ever seen in a child who hadn’t died or suffered extreme physical and mental disability,” said Nico Dosenbach, the pediatric neurologist at Washington University School of Medicine in St. Louis who finally diagnosed him using a magnetic resonance imaging (MRI) scan. "If I saw the MRI first, I would have assumed this kid's probably in a wheelchair, has a feeding tube and might be on a ventilator," Dosenbach said. "Because normally, when a child is missing that much brain, it's bad." But Daniel — as an active, athletic young man who did fine in school — defied all logic. Before the discovery of the stroke, his mother had noticed some odd mannerisms, such as zipping up his coat or eating a burger using only his left hand. When engaged, his right hand often served as club-like support instead of a dexterous appendage with fingers. Daniel excelled as a left-handed pitcher in competitive baseball, but his coach found it unusual that he would always switch the glove to his left hand when catching the ball. Medical professionals tried to help — first his pediatrician, followed by an orthopedic doctor who sent him to physical therapy — but no one could figure out the root cause. They tried constraint-induced movement therapy, which forces patients to use the weaker arm by immobilizing the other in a cast, but Daniel soon rebelled and broke himself free. © 1996-2022 The Washington Post

Keyword: Development of the Brain; Stroke
Link ID: 28174 - Posted: 01.26.2022