Links for Keyword: Sexual Behavior

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1659

Emily Willingham In 2016, pharmacologist Susan Howlett wrote up a study on how hormone levels during pregnancy affect heart function and sent it off to a journal. When the reviewers’ comments came back, two of the three had asked an unexpected question: where were the tissues from male mice? Because they were studying high hormone levels related to pregnancy, Howlett, at Dalhousie University in Halifax, Canada, and her team had used only female animals. “I was really surprised that they wanted us to repeat everything in males,” she said. Nonetheless, they obliged, and their findings were published in 2017. As expected, they found no effect of the hormone progesterone on heart function in males; in females, it influenced the activity of cardiac cells1. Howlett had mixed feelings about the request to add males. “It was a big ask and it was a lot more research.” But in general, she adds, it’s really important to factor sex into studies. “I’m a big proponent of doing experiments in both males and females.” Many of science’s gatekeepers — granting agencies and academic journals — feel the same way. Over the past decade or so, a growing list of funders and publishers, including the US National Institutes of Health (NIH) and the European Union, have been asking researchers to include two sexes in their work with cells and animal models. Two major catalysts motivated these policies. One was a growing recognition that sex-based differences, often related to hormone profiles or genes on sex chromosomes, can influence responses to drugs and other treatments. The other was the realization that including two sexes can increase the rigour of scientific inquiry, enhance reproducibility and open up questions for scientific pursuit. © 2022 Springer Nature Limited

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 28473 - Posted: 09.14.2022

Sofia Quaglia Dolphins form decade-long social bonds, and cooperate among and between cliques, to help one another find mates and fight off competitors, new research has found – behaviour not previously confirmed among animals. “These dolphins have long-term stable alliances, and they have intergroup alliances. Alliances of alliances of alliances, really,” said Dr Richard Connor, a behavioural ecologist at the University of Massachusetts Dartmouth and one of the lead authors of the paper. “But before our study, it had been thought that cooperative alliances between groups were unique to humans.” The findings, published on Monday in the journal Proceedings of the National Academy of Sciences, appear to support the “social brain” hypothesis: that mammals’ brains evolved to be larger in size for animals that keep track of their social interactions and networks. Humans and dolphins are the two animals with the largest brains relative to body size. “It’s not a coincidence,” Connor said. Connor’s team of researchers collected data between 2001 and 2006 by conducting intensive boat-based surveys in Shark Bay, Western Australia. The researchers tracked the dolphins by watching and listening to them, using their unique identifying whistles to tell them apart. They observed 202 Indo-Pacific bottlenose dolphins (Tursiops aduncus), including during the peak mating season between September and November. Back in the lab, they pored over data focusing on 121 of these adult male dolphins to observe patterns in their social networks. And for the next decade they continued to analyse the animals’ alliances. Dolphins’ social structures are fluid and complex. The researchers found alliances among two or three male dolphins – like best friends. Then the groups expanded to up to 14 members. Together, they helped each other find females to herd and mate with, and they help steal females from other dolphins as well as defend against any “theft” attempts from rivals. © 2022 Guardian News & Media Limited

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 28457 - Posted: 08.31.2022

By Sara Goudarzi Life isn’t always easy for little mouse pups: Hours to days after they are born, the squirmy babies, who can’t hear or see, can roll or stumble away from their nest. Cold and lonely, they call out to their mother. Luckily, Mom snaps into action to ensure the adventures of the little ones are short-lived. Grabbing each pup by the skin on their backs, Mama mouse brings each baby back home to safety. The mom’s behavior is innate, burnt into the mouse brain, and requires no training. But where in the brain does it happen and how does the brain process or execute it? And what happens in those rare cases when the animal brain doesn’t properly execute such behavior? That’s what Stephen Shea is trying to answer in mice, with hopes that it may someday be applicable to humans. Shea, an associate professor at Cold Spring Harbor Laboratory, discovered that this innate mothering behavior corresponds to the firing of cells in a region of the brain called locus coeruleus, a cluster of cells that can be found in the brainstem of all vertebrates. Locus coeruleus is also the source of noradrenaline, a chemical that affects some key brain functions. Shea’s work has greater implications. He hopes that understanding the brain circuits that facilitate this very simple action could be a window into how disruptions in wiring affect social behavior, and a key into understanding inappropriate social interactions, such as those observed in people with autism spectrum disorders. And it may even shed some light on the iconic debate about whether creatures are shaped by nature or nurture. © 2022 NautilusThink Inc,

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 28424 - Posted: 08.06.2022

By Gina Kolata It’s been known for more than half a century that many men lose their Y chromosomes as they age. But no one knew if it really mattered. The loss of Y could just be a sign of aging, like gray hair, with no clinical relevance. Now, though, researchers report that it can matter. Very much. A new study using male mice genetically engineered to lose their Y chromosomes provides insight. The paper, published on Thursday in the journal Science, found that when the Y chromosome was gone from blood cells in those mice, scar tissue built up in the heart, leading to heart failure and a shortened life span. Because there was a direct cause-and-effect relationship between the loss of Y and ailments of aging in the mice, the study bolsters the notion that the same thing can happen in human males. Researchers have documented an increase in risk for chronic diseases like heart disease and cancer related to loss of the Y chromosome in many studies over the years, including the new one, which used data from a large genetic study of the British population. The loss of Y could even account for some of the difference between the life spans of men and women, the authors of the Science study say. Other investigators not associated with the work were impressed. “The authors really nailed it here,” said Dr. Ross Levine, the deputy physician in chief for translational research at Memorial Sloan Kettering Cancer Center. “It’s super important work.” The inspiration for the new research came when Lars Forsberg, a researcher at Uppsala University, ran into a former professor on a bus in Uppsala, Sweden, in 2013. They began talking, and the professor told Dr. Forsberg that the Y chromosomes in fruit flies were more important than previously appreciated. Dr. Forsberg was intrigued. He had never paid much attention to the loss of Y chromosomes. Males have one X and one Y (females have two X’s), and nearly all the genes used by male cells are genes on the X. Dr. Forsberg had shared the common view that the Y chromosome was pretty much a genetic wasteland. © 2022 The New York Times Company

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 28400 - Posted: 07.16.2022

By Emily Bazelon Scott Leibowitz is a pioneer in the field of transgender health care. He has directed or worked at three gender clinics on the East Coast and the Midwest, where he provides gender-affirming care, the approach the medical community has largely adopted for embracing children and teenagers who come out as transgender. He also helps shape policy on L.G.B.T. issues for the American Academy of Child and Adolescent Psychiatry. As a child and adolescent psychiatrist who is gay, he found it felt natural to work under the L.G.B.T. “umbrella,” as he put it, aware of the overlap as well as the differences between gay and trans identity. It was for all these reasons that Leibowitz was selected, in 2017, to be a leader of a working group of seven clinicians and researchers drafting a chapter on adolescents for a new version of guidelines called the Standards of Care to be issued by the World Professional Association for Transgender Health (WPATH). The guidelines are meant to set a gold standard for the field of transgender health care, and this would be the first update since 2012. What Leibowitz and his co-authors didn’t foresee, when they began, was that their work would be engulfed by two intersecting forces: a significant rise in the number of teenagers openly identifying as transgender and seeking gender care, and a right-wing backlash in the United States against allowing them to medically transition, including state-by-state efforts to ban it. During the last decade, the field of transgender care for youth has greatly shifted. A decade ago, there were a handful of pediatric gender clinics in the United States and a dozen or so more in other countries. The few doctors and therapists who worked in them knew one another, and the big debate was whether kids in preschool or elementary school should be allowed to live fully as the gender they identified as when they strongly and consistently asserted their wishes. Now there are more than 60 comprehensive gender clinics in the United States, along with countless therapists and doctors in private practice who are also seeing young patients with gender-identity issues. The number of young people who identify as transgender nationally is about 300,000, according to a new report by the Williams Institute, a research center at U.C.L.A.’s law school, which is much higher than previous estimates. In countries that collect national data, like the Netherlands and Britain, the number of 13-to-17-year-olds seeking treatment for gender-identity issues has also increased, from dozens to hundreds or thousands a year. © 2022 The New York Times Company

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 13: Memory and Learning
Link ID: 28375 - Posted: 06.15.2022

By Erika Engelhaupt To Charles Darwin, nature had a certain order. And in that order, males always came out on top. They were the leaders, the innovators, the wooers and the doers. “The males of almost all animals have stronger passions than the females,” Darwin wrote in 1871. “The female, on the other hand, with the rarest of exceptions, is less eager.” The founder of evolutionary theory posited that throughout the animal kingdom, males are active, females are passive, and that’s pretty much that. Females, in sum, are boring. That’s poppycock, Lucy Cooke writes in her latest book, Bitch. This blinkered view of nature as a man’s world was conceived and promulgated by Victorian men who imposed their values and world view on animals, she says. Cooke, a documentary filmmaker and the author of The Truth About Animals and two children’s books (SN: 4/14/18, p. 26), has traveled the world and met scientists who are exposing the truth about the sexes. She takes readers on a wild ride as she observes the ridiculous mating rituals of sage grouse, searches for orca poop (to monitor sex hormones) and watches female lemurs boss around males. Through such adventures, Cooke learns that females are anything but boring. “Female animals are just as promiscuous, competitive, aggressive, dominant and dynamic as males,” she writes. That may not sound radical to today’s feminists, but in the field of evolutionary biology, such a pronouncement has long bordered on the heretical. Generations of biologists have focused on male behavior and physiology, on the assumption that females are little more than baby-making machines to be won over by the strongest, showiest males. © Society for Science & the Public 2000–2022.

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 28372 - Posted: 06.15.2022

By Amber Dance Suppose a couple has two children, a boy and a girl. Chances are, they’ll both grow up with typical, healthy brains. But should either diverge from the usual route of brain development, or suffer mental health issues, their paths are likely to be different. The son’s differences might show up first. All else being equal, he’s four times more likely than his sister to be diagnosed with autism. Rates of other neurodevelopmental conditions and disabilities are also higher in boys. As he grows into a young man, his chances of developing schizophrenia will be two to three times higher than hers. When the siblings hit puberty, those relative risks will flip. The sister will be almost twice as likely to experience depression or an anxiety disorder. Much later in life, she’ll be at higher risk of developing Alzheimer’s disease. Those trends are not hard and fast rules, of course: Men can and do suffer from depression and Alzheimer’s; some girls develop autism; women aren’t immune to schizophrenia. Male and female brains are more alike than they are different. But scientists are learning that there’s more to these different risk profiles than, say, the pressures women face in a patriarchal society or the fact that women tend to live longer, giving diseases of aging time to develop. Subtle biological differences between male and female brains, and bodies, are important contributors. To explain these sex differences, there are some obvious places to look. The female’s two X chromosomes, to the male’s single copy, is one. Differing sex hormones — primarily testosterone in males and estrogen in females — is another. But a steadily growing body of research points to a less obvious influence: the cells and molecules of the immune system. © 2022 Annual Reviews

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 28345 - Posted: 06.01.2022

NPR's Sacha Pfeiffer talks with Eliot Schrefer, author of Queer Ducks (And Other Animals): The Natural World of Animal Sexuality. It's about how "natural sex" may not be as binary as some think. SACHA PFEIFFER, HOST: At its worst, a nonfiction science book about animal sexuality could read like a dry biology textbook. But that's not the kind of book Eliot Schrefer wrote. His book, called "Queer Ducks (And Other Animals): The Natural World Of Animal Sexuality," is designed to be teenager-friendly, for one thing. It's a young adult book filled with comics and humor and accessible science, and it's filled with research on the diversity of sexual behavior in the animal world. Eliot Schrefer is with us to explain more. Welcome, Eliot. ELIOT SCHREFER: Hi. I'm really happy to be here. PFEIFFER: We're glad to have you. I really liked the way you structured your book. It's basically an animal per chapter, in a way. But you also have these wonderful illustrations. You have interviews with scientists. Tell us a little bit about how you decided to make it accessible because, again, you're aiming for adolescents, as I understand it, in a nonfiction way, and they might be inclined to think nonfiction equals boring, dry textbook. SCHREFER: Right. I sort of imagine, like, we're kind of sitting in the science classroom, passing notes back and forth, and it even comes down to the doodles. There's an artist, Jules Zuckerberg, who did a one-page comic for each of the animal species that we discuss. So it's - the premise is that it's an animal GSA. PFEIFFER: A gender sexuality alliance meeting. SCHREFER: That's right. And so they're each taking a turn introducing themselves. And so the bonobo takes a turn introducing how her family works, and then the doodlebug and the dolphin and so on. PFEIFFER: Yeah, they're really great. They make the book really accessible. As we said, every chapter basically tackles an animal and something about the sexuality of that animal. Do you have a favorite or one of your favorites that you could tell us about? © 2022 npr

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 28335 - Posted: 05.25.2022

By Hope Reese Can we do without love? For many years, the neuroscientist Stephanie Ortigue believed that the answer was yes. Even though she researched the science of human connections, Dr. Ortigue — an only child and, in her 20s and 30s, contentedly single — couldn’t completely grasp its importance in her own life. “I told myself that being unattached made me a more objective researcher: I could investigate love without being under its spell,” she writes in her new book, “Wired for Love: A Neuroscientist’s Journey Through Romance, Loss and the Essence of Human Connection.” But then, in 2011, at age 37, she met John Cacioppo at a neuroscience conference in Shanghai. Dr. Cacioppo, who popularized the concept that prolonged loneliness can be as toxic to health as smoking, intrigued her. The two scientists fell hard for each other and married. She took his last name and they soon became colleagues at the University of Chicago’s Pritzker School of Medicine (where she now directs the Brain Dynamics Laboratory) — forming a team at home and in the lab. “Wired for Love” is the neurobiological story of how love rewires the brain. It’s also a personal love story — one that took a sad turn when John died of cancer in March 2018. Here, Dr. Cacioppo discusses what exactly love does to the brain, how to fight loneliness and how love is, literally, a product of the imagination. You went from being happily single, to coupled, to then losing your husband. How did meeting him bring your research on love to life? Sign Up for Love Letter Your weekly dose of real stories that examine the highs, lows and woes of relationships. This newsletter will include the best of Modern Love, weddings and love in the news. Get it sent to your inbox. When we first met, we spoke for three hours, but I couldn’t feel time go by. I felt euphoria — from the rush of dopamine. I blushed — a sign of adrenaline. We became closer, physically, and started imitating each other. This was from the activation of mirror neurons, a network of brain cells that are activated when you move or feel something, and when you see another person moving. When you have a strong connection with someone, the mirror neuron system is boosted. © 2022 The New York Times Company

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 28302 - Posted: 04.27.2022

Carrie Arnold Playing the mating game is risky. Organisms must cope with the existential risk that swiping right on the wrong choice could doom future generations to a lifetime of bad genes. They also have to contend with more immediate burdens and risks: Participants need to gather resources for courting and summon energy to pursue a potential partner. Animals engaged in amorous activities also make easy targets for predators. Small wonder, then, that when times are good, the roundworm Caenorhabditis elegans doesn’t bother with the process. As a mostly hermaphroditic species (with a few males thrown in for variety), a C. elegans worm usually self-fertilizes its eggs until its sperm stash is depleted late in life; only then does it produce a pheromone to attract males and stay in the reproductive game. But when environmental conditions become stressful, the worms become sexually attractive much sooner. For them, sex is the equivalent of a Hail Mary pass — a desperate gamble that if their offspring are more genetically diverse, some will fare better under the new, rougher conditions. Scientists thought this stress-induced shift was purely fleeting. But recently when scientists at Tel Aviv University raised C. elegans in too-warm conditions for more than 10 generations, they discovered that the worms continued to be sexually attractive for several more generations after they were moved to cooler surroundings. It’s an observation that highlights how inheritance does not always reduce to a simple accounting of the genes in organisms, and it may point to a mechanism that works in tandem with traditional natural selection in shaping the evolution of some organisms. As the new paper in Developmental Cell shows, the cause of this trait wasn’t a genetic change to the worm’s DNA but rather an inherited “epigenetic” change that influenced how the DNA was used. The researchers — senior author Oded Rechavi, a biologist at Tel Aviv University, first author Itai Toker (now a postdoctoral fellow at Columbia University) and their colleagues — identified a small RNA molecule that can be passed between generations to signal for production of the pheromone. In effect, this heritable RNA molecule improves the odds that the worms will evolve in stressful times. All Rights Reserved © 2022

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 13: Memory and Learning
Link ID: 28299 - Posted: 04.23.2022

By Jake Buehler Earthen piles built by a chicken-like bird in Australia aren’t just egg incubators — they may also be crucial for the distribution of key nutrients throughout the ecosystem. In the dry woodlands of South Australia, sandy mounds rise between patches of many-stemmed “mallee” eucalyptus trees. These monuments — big enough to smother a parking space — are nests, painstakingly constructed by the malleefowl bird. By inadvertently engineering a patchwork of nutrients and churned soil, the industrious malleefowl may be molding surrounding plant and soil communities and even blunting the spread of fire, researchers report March 27 in the Journal of Ecology. Such ecosystem impacts suggest malleefowl conservation could benefit many species, says Heather Neilly, an ecologist at the Australian Landscape Trust in Calperum Station. The species is currently listed as “vulnerable” and declining by the International Union for Conservation of Nature. Some animals — termed “ecosystem engineers” — produce habitats for other species by shaping the environment around them. Beavers build dams that create homes for pond-dwelling lifeforms. In deserts, owls and giant lizards support plant and animal life with their burrows (SN: 10/8/19; SN: 1/19/21). “In Australia in particular, the focus has largely been on our array of digging mammals,” Neilly says. But malleefowl (Leipoa ocellata) — found throughout western and southern Australia — also perturb the soil. They and their close relatives are “megapodes,” a group of fowl native to Australasia and the South Pacific that have the unusual habit of incubating their eggs much like alligators do: in a massive pile of rotting compost. Heat from the decaying vegetation — locked in with an insulating sand layer on top — regulates the eggs’ temperature, and the young scratch their way to the surface upon hatching. © Society for Science & the Public 2000–2022.

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 28280 - Posted: 04.13.2022

By Christina Caron Q: Are there any proven treatments for low libido in women? “Proven” is a strong word — and one that makes scientists squeamish. But it is safe to say that there is “very strong evidence” for increasing sexual desire through certain types of psychological interventions like cognitive behavioral therapy and mindfulness meditation, said Lori A. Brotto, a psychologist and professor at the University of British Columbia in Vancouver and a renowned expert in women’s sexual health. When it comes to medications, however, it’s a different story. In recent years, two new medications for women with low libido have been approved by the U.S. Food and Drug Administration, “though their efficacy is marginally better than a placebo,” said Dr. Stacy Tessler Lindau, a gynecologist at the University of Chicago Medicine and the creator of WomanLab, a website about sexual health. These drugs, flibanserin (a pill) and bremelanotide (an injection that is self-administered about 40 minutes before sexual activity), were approved for the “very small subset of women” who are premenopausal, have low libidos and do not have any identifiable physical, mental or relationship problems, Dr. Lindau said. “They may have modest benefit, but they also come with side effects and cost,” she added. “So far, insurance coverage has been limited.” In the end, the most beneficial solution will depend on the reason you are experiencing low libido and why you consider your libido to be a problem. For older women, loss of estrogen during menopause is commonly associated with a change in libido because it can cause vaginal dryness and tightness that can make intercourse painful. Some women also find it more difficult to get aroused. And when menopause is accompanied by hot flashes and night sweats, that can make sex seem less appealing too. © 2022 The New York Times Company

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 8: Hormones and Sex
Link ID: 28235 - Posted: 03.11.2022

By Azeen Ghorayshi An upsurge in teenagers requesting hormones or surgeries to better align their bodies with their gender identities has ignited a debate among doctors over when to provide these treatments. An international group of experts focused on transgender health last month released a draft of new guidelines, the gold standard of the field that informs what insurers will reimburse for care. Many doctors and activists praised the 350-page document, which was updated for the first time in nearly a decade, for including transgender people in its drafting and for removing language requiring adults to have psychological assessments before getting access to hormone therapy. But the guidelines take a more cautious stance on teens. A new chapter dedicated to adolescents says that they must undergo mental health assessments and must have questioned their gender identity for “several years” before receiving drugs or surgeries. Experts in transgender health are divided on these adolescent recommendations, reflecting a fraught debate over how to weigh conflicting risks for young people, who typically can’t give full legal consent until they are 18 and who may be in emotional distress or more vulnerable to peer influence than adults are. Some of the drug regimens bring long-term risks, such as irreversible fertility loss. And in some cases, thought to be quite rare, transgender people later “detransition” to the gender they were assigned at birth. Given these risks, as well as the increasing number of adolescents seeking these treatments, some clinicians say that teens need more psychological assessment than adults do. “They absolutely have to be treated differently,” said Laura Edwards-Leeper, a child clinical psychologist in Beaverton, Ore., who works with transgender adolescents. Dr. Edwards-Leeper was one of seven authors of the new adolescent chapter, but the organization that publishes the guidelines, the World Professional Association for Transgender Health, did not authorize her to comment publicly on the draft’s proposed wording. © 2022 The New York Times Company

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 13: Memory and Learning
Link ID: 28156 - Posted: 01.15.2022

By Sabrina Imbler Common bottlenose dolphins have sex frequently — very likely multiple times in a day. Copulation lasts only a few seconds, but social sex, which is used to maintain social bonds, can last much longer, happen more frequently and involve myriad heterosexual and homosexual pairings of dolphins and their body parts. Anything is possible, and, as new research suggests, probably pleasurable for swimmers of both sexes. According to a paper published on Monday in the journal Current Biology, female bottlenose dolphins most likely experience pleasure through their clitorises. The findings come as little surprise to scientists who research these dolphins. “The only thing that surprises me is how long it has taken us as scientists to look at the basic reproductive anatomy,” Sarah Mesnick, an ecologist at NOAA Fisheries who was not involved with the research, said, speaking of the clitoris. She added, “It took a team of brilliant women,” referring to two of the authors. “A lot of people assume that humans are unique in having sex for pleasure,” Justa Heinen-Kay, a researcher at the University of Minnesota who was not involved with the paper, wrote in an email. “This research challenges that notion.” And learning more about the anatomy of marine mammals’ genitalia has clear implications for their survival, Dr. Mesnick said: “The more we know about the social behavior of these animals, the better we’re able to understand their evolution and help use that to manage and conserve them.” Historically, researchers have focused on male genitalia, driven by prejudice toward male subjects, prejudice against female choice in sexual selection and the fact that it can be easier to study something that sticks out. “Female genitalia were assumed to be simple and uninteresting,” Dr. Heinen-Kay said. “But the more that researchers study female genitalia, the more we’re learning that this isn’t the case at all.” She added that this shift may be driven in part by the increasing number of women researchers. © 2022 The New York Times Company

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 28147 - Posted: 01.12.2022

By Tara Ellison As menopause hit, I found I wasn’t as interested in intimacy as I used to be. Sex started to feel like a box that needed to be checked a couple of times a week, and that was causing problems in my marriage. But it wasn’t just sex. I felt was slowing down in many areas. After hot flashes in my 40s had sent me running to the gynecologist for help, I’d been using bioidentical creams to balance my declining hormones. When, at 51, I confided to a friend that I’d had limited success with what my doctor prescribed, she said that she was thriving on something called hormonal “pellets.” I grilled her about them and then made an appointment with her practitioner, an internal medicine doctor. He ordered extensive lab work, which showed that my testosterone levels were very low, which can happen with aging. The doctor said I had two options: do nothing, which he said would eventually likely lead to loss of muscle, decreased bone density and a host of other health complications. Or up my testosterone. Testosterone therapy for women is a hotly debated subject. Studies suggest that testosterone can heighten libido in women with hypoactive sexual desire disorder (HSDD), at least in the short term. A recent statement by a group of international medical societies involved with women’s health endorsed the use of testosterone therapy in women for HSDD, and specifically excluded pellets and injectables as “not recommended.” It also cautioned there was not enough data to support the use of testosterone therapy for cognitive performance.

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 28009 - Posted: 09.29.2021

By Kimberly Hickok Seahorses are some of the most dazzling fish in the sea. They’re also the only group of animals in which the males, not the females, go through pregnancy and give birth. Now, new research finds the male’s brood pouch—which can hold up to 1000 baby seahorses at a time—develops and functions like a human placenta. “Evolution is just mind boggling,” says Camilla Whittington, an evolutionary biologist at the University of Sydney who led the new work. The study is the first to thoroughly examine how males nurture their young brood while they’re still in the pouch, says Mari Kawaguchi, an evolutionary biologist at Sophia University in Tokyo. Kawaguchi, who has studied seahorses for some 2 decades, has long suspected pregnant seahorses develop something resembling a placenta. Now, at last, there’s proof. Male seahorses start their path toward fatherhood with a dance. They twirl together with their chosen female under the water, changing colors and linking tails as they pirouette around a shared holdfast. Next, they align the female’s ovipositor with the male’s pouch opening so the female can deposit her eggs. Once the deed is done, the male gently sways to settle the eggs. Ten days to 6 weeks later, depending on the species, the male spends hours in labor, pumping and thrusting to force hundreds of tiny babies out into the water. There, they drift until they are grown. As for dad, he is ready for another round of courtship within hours after birth. But during pregnancy, males have one goal: Provide the embryos with everything they need, from oxygen to nutrients to antibodies. “One of the biggest challenges that all pregnant parents have is getting oxygen to their embryos and carbon dioxide away from the embryos,” Whittington says. “That’s really what motivated our study–how do those baby seahorses actually breathe, if you will, inside the brood pouch?” © 2021 American Association for the Advancement of Science.

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 28004 - Posted: 09.25.2021

By Carolyn Wilke Some female hummingbirds don flashy feathers to avoid being bothered by other hummingbirds, a new study suggests. Male white-necked jacobin hummingbirds (Florisuga mellivora) have bright blue heads and throats. Females tend to have more drab hues, but some sport the blue coloring too. Appearing fit and fine to impress potential mates can often explain animals’ vibrant colors. But mate choice doesn’t seem to drive these females’ pretty plumage since males don’t appear to prefer the blue females. Instead, bright colors may help lady birds blend in with the guys, and as a result, feed for longer without harassment from other hummingbirds, researchers report August 26 in Current Biology. Beyond vying for mates, animals often also compete for territory, parental attention, social ranks and food (SN: 4/7/16). Mating choices don’t capture all those other interactions and can’t always explain animals’ looks, says Jay Falk, an evolutionary biologist at the University of Washington in Seattle. To begin investigating why some female jacobins have colorful blue plumage, Falk and colleagues captured and released over 400 of the birds in Gamboa, Panama, using genetics to determine their sex. Most females had drab colors — olive green heads and backs and mottled throats. But nearly 30 percent of females had the shimmery blue noggins that all juveniles have and that are characteristic of adult males. © Society for Science & the Public 2000–2021.

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 27969 - Posted: 08.28.2021

By Teresa Carr In the fall of 2016, sex therapist and researcher Leonore Tiefer shuttered the New View Campaign, an organization she had founded to combat what she refers to as “the medicalization of sex” — essentially, the pharmaceutical industry’s efforts to define variations in sexuality and sexual problems as medical issues requiring a drug fix. For 16 years, the group had fought against industry’s involvement in sex research, including its push for a drug to boost women’s sex drives. New View hosted conferences and its members penned papers and testified before the United States Food and Drug Administration. The campaign was prominently featured in an 80-minute documentary called Orgasm Inc, and promoted a clever (if off-pitch) video advising women to “throw that pink pill away,” a reference to the female-libido drug flibanserin (Addyi), which was seeking FDA approval at the time. New View counted some successes: The FDA didn’t approve an allegedly libido-boosting testosterone patch for women, on the grounds that the patch’s slim benefits didn’t outweigh its risks, and the FDA twice rejected flibanserin for the same reason. But in August 2015, the agency reversed itself and approved the so-called pink Viagra. “I felt we’d said everything we had to say,” said Tiefer of ending the campaign. Advocates predicted FDA approval would be sought for additional women’s libido drugs, but the group felt there was nothing they could do to stop it. “However many more drugs were going to come down the pike,” said Tiefer, “it was just going to be more of the same.”

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 27948 - Posted: 08.14.2021

Jake Buehler As the midday sun hangs over the Scandinavian spruce forest, a swarm of hopeful suitors takes to the air. They are dance flies, and it is time to attract a mate. Zigzagging and twirling, the flies show off their wide, darkened wings and feathery leg scales. They inflate their abdomens like balloons, making themselves look bigger and more appealing to a potential partner. Suddenly, the swarm electrifies with excitement at the arrival of a new fly, the one they have all been waiting for: a male. It’s time for the preening flock of females to shine. The flies are flipping the classic drama reenacted across the animal kingdom, in which eager males with dazzling plumage, snarls of antlers or other extraordinary traits compete for a chance to woo a reluctant female. Such competitions between males for the favor of choosy females are enshrined in evolutionary theory as “sexual selection,” with the females’ choices molding the evolution of the males’ instruments of seduction over generations. Yet it’s becoming clear that this traditional picture of sexual selection is woefully incomplete. Dramatic and obvious reversals of the selection scenario, like that of the dance flies, aren’t often observed in nature, but recent research suggests that throughout the tree of animal life, females jockey for the attention of males far more than was believed. A new study hosted on the preprint server biorxiv.org has found that in animals as diverse as sea urchins and salamanders, females are subject to sexual selection — not as harshly as males are, but enough to make biologists rethink the balance of evolutionary forces shaping species in their accounts of the history of life. All Rights Reserved © 2021

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 27934 - Posted: 08.07.2021

Rebecca Brooker & Tristin Nyman Even before the pandemic, there was plenty for expectant mothers to worry about. Pregnant women must withstand a barrage of arguably well-intentioned, but often hyperbolic, warnings about their health and what’s to come, including concerns about everything from what to eat, to what to wear, to how to feel. Health professionals know that mothers-to-be experience predictable increases in anxiety levels before infants are born. Maternal mental health has been steadily deteriorating in the U.S., particularly among poor and minority women. The calls to “be afraid, be very afraid” are, of course, countered by the equally strong cautions for pregnant women to not worry too much, lest it lead to long-term negative outcomes for them and their infants. Such warnings are not entirely off base. Maternal stress hormones cross the placenta and affect the vulnerable fetus. Fetal exposure to the stress hormone cortisol has been linked to an array of negative outcomes, including miscarriage and preterm birth, and irritable temperament for the child and increased risk of emotional problems during childhood. One thing researchers know is that anxious mothers tend to have anxious children. This common, albeit not prescriptive, phenomenon is likely due to numerous factors, both pre- and postpartum. In our laboratory, we focus on what happens when women start their pregnancies already worried or anxious and what clues we can uncover about how to help them and their children. Our research suggests that worry during pregnancy can have long-term impacts on how mothers’ brains communicate – but also that there might be some simple steps that can help rein in the effects. © 2010–2021, The Conversation US, Inc.

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 8: Hormones and Sex
Link ID: 27820 - Posted: 05.15.2021