Links for Keyword: ALS-Lou Gehrig's Disease

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 144

Three years ago, Ady Barkan, a longtime activist and a leader of the Fed Up campaign pushing for policies that would encourage full employment and higher wages, was diagnosed with amyotrophic lateral sclerosis (ALS). The neurodegenerative disease, which paralyzes the body and has an average survival rate of three years, has put Barkan, now 35, in a wheelchair. He can no longer speak on his own. But he remains an organizer for the Center for Popular Democracy, now focusing on health care after co-founding the Be A Hero Project, and in April came to Washington from his home in California to testify for the Democrats’ Medicare-for-all bill. He spoke assisted by a computer. Barkan’s memoir, “Eyes to the Wind,” is being published Tuesday. He was interviewed recently by Lucy Kalanithi, host of a forthcoming podcast about hardship. She is an internist on the faculty at the Stanford University School of Medicine and widow of neurosurgeon Paul Kalanithi, who wrote the memoir “When Breath Becomes Air.” Here is an excerpt from their conversation, edited for clarity and length: LK: You have built this whole career defined around resistance and resisting injustice, and then you suddenly become a person for whom acceptance is this big priority, and the resistance part has to recede. How did you get there? AB: There were, perhaps, two different components to my acceptance. The first was intellectual: acknowledging that the disease is no joke and no bad dream, that it will almost certainly kill me and that the long future we had planned for was not going to happen. That intellectual acceptance happened very quickly. It was informed by my awareness of my tremendous privilege compared to most of the world’s 7 billion people and the others who came before us. Knowing what others have gone through made me feel less disbelieving that this could happen to me. But I think when we talk about acceptance, we mean something deeper, like finding peace in the new reality. © 1996-2019 The Washington Post

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 26589 - Posted: 09.09.2019

Tina Hesman Saey A friendly gut bacterium can help lessen ALS symptoms, a study of mice suggests. Mice that develop a degenerative nerve disease similar to amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease, fared better when bacteria making vitamin B3 were living in their intestines, researchers report July 22 in Nature. Those results suggest that gut microbes may make molecules that can slow progression of the deadly disease. The researchers uncovered clues that the mouse results may also be important for people with ALS. But the results are too preliminary to inform any changes in treating the disease, which at any given time affects about two out of every 100,000 people, or about 16,000 people in the United States, says Eran Elinav, a microbiome researcher at the Weizmann Institute of Science in Rehovot, Israel. “With respect to ALS, the jury is still out,” says Elinav, also of the German Cancer Research Center in Heidelberg. “We have to prove that what we found in mice is reproducibly found in humans.” Elinav and his colleagues examined the gut microbiomes — bacteria, archaea and other microbes that live in the colon, or large intestine — of mice that produce large amounts of a mutated form of the SOD1 protein. In the mice, as in human ALS patients, faulty SOD1 proteins clump together and lead to the death of nerve cells. |© Society for Science & the Public 2000 - 2019

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 26439 - Posted: 07.23.2019

By Rahul Desikan What is it like to be locked into your body, to be alive but not living? I’m dying — fast. My lungs are at 20 percent of vital capacity and it’s a matter of time before the nerves supplying my breathing muscles degenerate. I have a rapid form of ALS — amyotrophic lateral sclerosis, or Lou Gehrig’s disease. Two years ago, I was running around with my kids, hiking with my wife. All that is over. My body no longer moves. I cannot talk — my only voice is the one in my head, telling me over and over that I am going to die. Soon. I can’t even breathe for myself anymore — I am tethered to a ventilator that breathes for me. I don’t want you to feel sorry for me. At all. It is just ironic, this new, condensed life of mine. I went into medicine to take care of patients with brain diseases. Now, I have one of the diseases that I study. Even with this lethal disease, I continue to find neurology fascinating and beautiful. I wish you knew the old me. ALS has completely destroyed my body and parts of my brain. The new version has stripped me of control over regulating my emotions. I laugh and cry inappropriately during movies, and even during conversations. The cognitive parts of my brain are still working perfectly fine so I’m able to get through the day. But because swallowing has become increasingly difficult, eating and drinking are a battle: continuous bouts of choking, vomiting, crying, sweating, drooling — until finally, it goes through. It is not a pretty picture. What is it like to be locked in? When I swallow, I imagine my childhood in India — driving with my parents and sister in our sky-blue Maruti minivan through the wide roads of New Delhi, relishing my grandmother’s sambar, a savory soup of lentils and vegetables. In my mind, I am always in Boston where I lived for 15 years during college and then medical school and for my doctorate in neurobiology. In my mind, which is all I have left, I am playing house music records at Satellite Records in the Back Bay or trying the Persian eggplant dish at Lala Rokh with my wife or going out with my friends to River Gods or the Enormous Room in Central Square. I am so good at imagining the old me that I see, taste, hear, touch everything. And relive every single detail. © 1996-2019 The Washington Post

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 26183 - Posted: 04.29.2019

By Elie Dolgin The compound eyes of the common fruit fly are normally brick red. But in neurologist Tom Lloyd's lab at Johns Hopkins University School of Medicine in Baltimore, Maryland, many of the fly eyes are pocked with white and black specks, a sign that neurons in each of their 800-odd eye units are shriveling away and dying. Those flies have the genetic equivalent of amyotrophic lateral sclerosis (ALS), the debilitating neurodegenerative disorder also known as Lou Gehrig's disease, and their eyes offer a window into the soul of the disease process. By measuring the extent of damage to each insect's eyes, researchers can quickly gauge whether a drug, genetic modification, or some other therapeutic intervention helps stop neuronal loss. Those eyes have also offered an answer to the central mystery of ALS: just what kills neurons—and, ultimately, the patient. The flies carry a mutation found in about 40% of ALS patients who have a family history of the disease, and in about 10% of sporadic cases. The mutation, in a gene called C9orf72, consists of hundreds or thousands of extra copies of a short DNA sequence, just six bases long. They lead to unusually large strands of RNA that glom onto hundreds of proteins in the cell nucleus, putting them out of action. Some of those RNA-ensnared proteins, Lloyd and his Hopkins colleague Jeffrey Rothstein hypothesized, might hold the key to ALS. © 2018 American Association for the Advancement of Science

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 25874 - Posted: 01.17.2019

Tom Goldman Tim Green first noticed the symptoms about five years ago. The former NFL player, whose strength was a job requirement, suddenly found his hands weren't strong enough to use a nail clipper. His words didn't come out as fast as he was thinking them. "I'm a strange guy," Tim says. "I get something in my head and I can just run with it. I was really afraid I had ALS. But there was enough doubt that I said, 'Alright, I don't. Let's not talk about it. Let's not do anything.' " Denying pain and injury had been a survival strategy in football. "I was well trained in that verse," he says. But a diagnosis in 2016 made denial impossible. Doctors confirmed that Tim, also a former NPR commentator, had ALS, known as Lou Gehrig's disease. The degenerative illness attacks the body's motor nerve cells, weakening muscles in the arms and legs as well as the muscles that control speech, swallowing and breathing. Tim tried to keep it private — he didn't want people feeling sorry for him. But he says, "I got to a point where I couldn't hide it anymore." So Tim went on 60 Minutes and revealed his illness. "What we said is, you either write your own history or someone's going to write it for you," says his 24-year-old son, Troy Green. When one isn't enough I was one of Tim Green's producers for his Morning Edition commentaries back in the 1990s. We went to dinner once when he was in Washington, D.C., for a game — his Atlanta Falcons were playing Washington. Tim had a huge plate of pasta. When we finished, the waiter came over and asked, "Anything else?" Tim pointed to his clean plate and said, "Yeah. Let's do it again." © 2018 npr

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 25785 - Posted: 12.13.2018

Jenny Rood In 1999, a paper in Nature Medicine reported that mouse models of the fatal neurodegenerative disorder amyotrophic lateral sclerosis fared better with a simple treatment: a diet supplemented with creatine, a compound that helps regulate energy levels in the brain and muscles (5:347–50). That promising, albeit preliminary, result soon launched not one but three clinical trials, with a total of 386 patients in the US and Europe. Disappointingly, the trials revealed that creatine had no effect in people. It was a familiar outcome: more than 50 other clinical trials of potential amyotrophic lateral sclerosis (ALS) drugs, ranging from lithium to celecoxib (Celebrex), have failed. Also known as Lou Gehrig’s disease, ALS results from the degeneration and death of motor neurons, and affects approximately two to five of every 100,000 people worldwide. ALS’s devastating symptoms—including progressively worsening muscle weakness and spasming, and difficulties with speech, swallowing, and breathing, leading ultimately to paralysis and death—have led to an intense hunt for treatments to halt its progression. Unfortunately, the desire to give patients hope has often outstripped good scientific sense. “Many drugs that have gone into ALS clinical trials shouldn’t have, because the preclinical data package didn’t support it,” says Steve Perrin, CEO and CSO of the nonprofit ALS Therapy Development Institute (TDI) based in Cambridge, Massachusetts. Only five of the 420 ALS therapy candidates that his center has retested in mouse and cellular models have shown a therapeutic effect. © 1986 - 2018 The Scientist

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 25469 - Posted: 09.20.2018

NIH-funded researchers delayed signs of amyotrophic lateral sclerosis (ALS) in rodents by injecting them with a second-generation drug designed to silence the gene, superoxide dismutase 1 (SOD1). The results, published in the Journal of Clinical Investigation, suggest the newer version of the drug may be effective at treating an inherited form of the disease caused by mutations in SOD1. Currently, the drug is being tested in an ALS clinical trial (NCT02623699). ALS destroys motor neurons responsible for activating muscles, causing patients to rapidly lose muscle strength and their ability to speak, swallow, move, and breathe. Most die within three to five years of symptom onset. Previous studies suggested that a gene therapy drug, called an antisense oligonucleotide, could be used to treat a form of ALS caused by mutations in the gene SOD1. These drugs turned off SOD1 by latching onto versions the gene encoded in messenger RNA (mRNA), tagging them for disposal and preventing SOD1 protein production. Using rats and mice genetically modified to carry normal or disease-mutant versions of human SOD1, a team of researchers led by Timothy M. Miller, M.D., Ph.D., Washington University, St. Louis, MO, discovered that newer versions of the drug may be more effective at treating ALS than the earlier one that had been tested in a phase 1 clinical trial. For instance, injections of the newer versions were more efficient at reducing normal, human SOD1 mRNA levels in rats and mice and they helped rats, genetically modified to carry a disease-causing mutation in SOD1, live much longer than previous versions of the drug. Injections of the new drugs also delayed the age at which mice carrying a disease-mutant SOD1 gene had trouble balancing on a rotating rod and appeared to prevent muscle weakness and loss of connections between nerves and muscles, suggesting it could treat the muscle activation problems caused by ALS. These and other results were the basis for a current phase 1 clinical trial testing the next generation drug in ALS patients (NCT02623699).

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 25261 - Posted: 07.27.2018

A new neck brace for people with motor neurone disease (MND) makes a "substantial difference" to their quality of life, a patient has said. The disease causes muscle wasting, eventually leaving people with the condition unable to support their head. MND patient Philip Brindle said the collar, designed in Sheffield, "opened up opportunities that I do not think I would have had otherwise". The device is now being used by 25 NHS Trusts, according to its designers. MND is a progressive and terminal disease that damages the function of nerves and leads to muscle wasting and mobility problems, among other symptoms. It affects up to 5,000 adults in the UK, according to charity the MND Association. Dr Brian Dickie, director of research development at the association, said the collar has been "preferred by the majority of people who tried it". Image caption Mr Brindle's MND has left him unable to hold his head up independently Mr Brindle, 72, from Chesterfield, said since he was diagnosed with MND in 2015 his head had begun to drop and he did not want to be seen in public. "I just do not have the strength to hold [my head] up anymore and that makes life extremely unpleasant," he said. "You can't read, you can't watch TV, you can't have a conversation with anyone and you can't eat or drink with your head in that position." Image caption The Head Up collar is made from the same material used in space suits The new collar was designed by researchers at the University of Sheffield and Sheffield Hallam University, together with patients and clinicians at Sheffield Teaching Hospital. It has a soft fabric base, made from a material used by NASA to make space suits, on to which a series of shaped supports can be added to provide additional stability. © 2018 BBC

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 25033 - Posted: 05.30.2018

Aided by advanced stem cell technology and tissue chips, National Institutes of Health-funded researchers used stem cells originally derived from a person’s skin to recreate interactions between blood vessels and neurons that may occur early in the formation of the fetal human spinal cord. The results published in Stem Cell Reports suggest that the system can mimic critical parts of the human nervous system, raising the possibility that it may one day, be used to test personalized treatments of neurological disorders. Led by Samuel Sances, Ph.D., and Clive N. Svendsen, Ph.D., Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, the researchers first converted the stem cells into newborn spinal cord neurons or epithelial cells that line walls of brain blood vessels. In most experiments, each cell type was then injected into one of two chambers embedded side-by-side in thumb-sized, plastic tissue chips and allowed to grow. Six days after injections, the researchers found that the growing neurons exclusively filled their chambers while the growing blood vessel cells not only lined their chamber in a cobblestone pattern reminiscent of vessels in the body, but also snuck through the perforations in the chamber walls and contacted the neurons. This appeared to enhance maturation of both cell types, causing the neurons to fire more often and both cell types to be marked by some gene activity found in fetal spinal cord cells. Tissue chips are relatively new tools for medical research and since 2012 the NIH has funded several tissue-chip projects. Unlike traditional petri dish systems, tissue chips help researchers grow cells in more life-like environments. Using microprocessor manufacturing techniques, the chambers can be built to recreate the three-dimensional shapes of critical organ parts and the tight spaces that mimic the way viscous, bodily fluids normally flow around the cells.

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 24915 - Posted: 04.28.2018

NIH-funded researchers at Stanford University used the gene editing tool CRISPR-Cas9 to rapidly identify genes in the human genome that might modify the severity of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) caused by mutations in a gene called C9orf72. The results of the search, published in Nature Genetics, uncovered a new set of genes that may hasten neuron death during the disease. Accounting for nearly 40 percent of inherited cases of ALS and 25 percent of inherited FTD cases, disease-causing mutations in C9orf72 insert extra sequences of DNA, called hexanucleotide repeats, into the gene. These repeats produce potentially toxic RNA and protein molecules that kill neurons resulting in problems with movement and eventually paralysis for ALS patients and language and decision-making problems for FTD patients. Led by Aaron D. Gitler, Ph.D., and Michael C. Bassik, Ph.D., the researchers used CRISPR to disable each gene, one-by-one, in a line of human leukemia cells and then tested whether the cells would survive exposure to toxic proteins derived from the hexanucleotide repeats, called DPRs. Any disabled genes that caused cells to live longer or die faster than normal were considered suspects in DPR toxicity. They confirmed that genes that control the movement of molecules in and out of a cell’s nucleus may be partners. They also identified several new players, including genes that modify chromosomes and that help cells assemble proteins passing through a maze-like structure called the endoplasmic reticulum (ER). A second CRISPR search conducted on mouse brain cells confirmed the initial results. Disabling the top 200 genes identified in the leukemia cells helped neurons survive DPR exposure.

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 13: Memory, Learning, and Development
Link ID: 24745 - Posted: 03.13.2018

By Katarina Zimmer | CRISPR-Cas9 gene editing can extend survival in a mouse model of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, according to a study published yesterday (December 20) in Science Advances. “The treatment did not make the ALS mice normal and it is not yet a cure,” study coauthor David Schaffer, a professor of chemical and biomolecular engineering at the University of California, Berkeley, says in a press release. “But based upon what I think is a really strong proof of concept, CRISPR-Cas9 could be a therapeutic molecule for ALS.” ALS, or Lou Gehrig’s disease, affects some 20,000 Americans and is characterized by the premature death of motor neurons in the brain stem and spinal cord. The disease causes progressive muscle deterioration and eventually results in paralysis and death. There are no available treatments to delay the muscle wasting and currently approved drugs can extend survival by a few months at most. Schaffer and his colleagues suspected that ALS could be treated through genome editing because some forms of the disease (around 20 percent of inherited forms and 2 percent of all cases) are caused by dominant mutations in a gene that encodes superoxide dismutase 1 (SOD1), an enzyme that helps protect cells against toxic free radicals. © 1986-2017 The Scientist

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 24454 - Posted: 12.22.2017

(Reuters) - Cytokinetics Inc will stop developing one of its treatments for ALS, which afflicts Stephen Hawking, after the drug failed in a late-stage trial, the company said on Tuesday, sending its shares tumbling about 35 percent. The drugmaker said two of the three doses it was testing failed to show a statistically significant difference compared to a placebo when measured by their ability to lower the lungs’ ‘slow vital capacity’, a measure of respiratory function. Amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease, is a fatal neuro-degenerative condition that affects nerve cells in the brain and the spinal cord. Deaths and disability in ALS patients are strongly related to respiratory failure, according to Cytokinetics. More than 6,000 people are diagnosed with the disease in the United States every year, according to the ALS Association. ALS garnered international attention in 2014 with the “Ice Bucket Challenge”, which involved people pouring ice-cold water on themselves, posting a video on social media, and donating funds for research on the disease. After the failure of its drug tirasemtiv, Cytokinetics said it will focus on its other ALS treatment, CK-2127107, that it is developing in collaboration with Japan’s Astellas Pharma Inc. Cytokinetics’ chief executive, Robert Blum, said he believes that the limitations of tirasemtiv will be addressed in the development of CK-2127107. © 2017 Business Insider Inc.

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 24345 - Posted: 11.22.2017

By JANE E. BRODY A neighbor of mine was recently told he has a devastating neurological disorder that is usually fatal within a few years of diagnosis. Though a new drug was recently approved for the illness, treatments may only slow progression of the disease for a time or extend life for maybe two or three months. He is a man of about 60 I’ve long considered the quintessential Mr. Fix-it, able to repair everything from bicycles to bathtubs. Now he is facing amyotrophic lateral sclerosis, or Lou Gehrig’s disease — a disease that no one yet knows how to fix. I can only imagine what he is going through because he does not want to talk about it. However, many others similarly afflicted have openly addressed the challenges they faced, though it is usually up to friends and family to express them and advocate for more and better research and public understanding. A.L.S. attacks the nerve cells in the brain and spinal cord that control voluntary muscle movements, like chewing, walking, breathing, swallowing and talking. It is invariably progressive. Lacking nervous system stimulation, the muscles soon begin to weaken, twitch and waste away until individuals can no longer speak, eat, move or even breathe on their own. Last year, the Centers for Disease Control and Prevention estimated that between 14,000 and 15,000 Americans have A.L.S., which makes it sound like a rare disease, but only because life expectancy is so short. A.L.S. occurs throughout the world, and it is probably far more common than generally thought. Over the course of a lifetime, one person in about 400 is likely to develop it, a risk not unlike that of multiple sclerosis. But with the rare exception of an outlier like the brilliant physicist Stephen Hawking, who has had A.L.S. for more than 50 years, it usually kills so quickly that many people do not know anyone living with this disease. Only one person in 10 with A.L.S. is likely to live for a decade or longer. © 2017 The New York Times Company

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 23675 - Posted: 05.29.2017

By DENISE GRADY A new drug for amyotrophic lateral sclerosis, or Lou Gehrig’s disease, was approved on Friday by the Food and Drug Administration. The drug, called Radicava or edaravone, slowed the progression of the degenerative disease in a six-month study in Japan. It must be given by intravenous infusion and will cost $145,524 a year, according to its manufacturer, MT Pharma America, a subsidiary of the Japanese company Mitsubishi Tanabe Pharma Corporation. Radicava is only the second drug ever approved to treat A.L.S. The first, riluzole, was approved by the F.D.A. more than 20 years ago. Riluzole can increase survival by two or three months. There is no information yet about whether Radicava has any effect on survival. In the study in Japan, 137 patients were picked at random to receive either Radicava or a placebo. At the end of six months, the condition of those taking the drug declined less than those receiving placebos. Dr. Neil A. Shneider, director of the Eleanor and Lou Gehrig ALS Center at Columbia University Medical Center, said, “The effect is modest but significant.” He added, “I’m very happy, frankly, that there is a second drug approved for A.L.S.” The disease kills nerve cells that control voluntary muscles, so patients gradually weaken and become paralyzed. Most die within three to five years, usually from respiratory failure. About 12,000 to 15,000 people in the United States have A.L.S., according to the Centers for Disease Control and Prevention. Dr. Shneider predicted that patients would be eager to try the new drug. He said several of his patients were already receiving it because they had obtained it themselves from Japan. If more want it, he will prescribe it, he said. “It’s very safe,” he said. But he was uncertain about whether he would actually recommend it, because the method of administration is difficult. Patients have to have an intravenous line inserted and left in place indefinitely, which poses an infection risk. The first round of treatment requires a one-hour infusion every day for 14 days, followed by 14 days off. After that, the infusions are given daily for 10 out of 14 days, with 14 days off. © 2017 The New York Times Company

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 23585 - Posted: 05.06.2017

In two studies of mice, researchers showed that a drug, engineered to combat the gene that causes spinocerebellar ataxia type 2 (SCA2), might also be used to treat amyotrophic lateral sclerosis (ALS). Both studies were published in the journal Nature with funding from National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health. “Our results provide hope that we may one day be able to treat these devastating disorders,” said Stefan M. Pulst, M.D., Dr. Med., University of Utah, professor and chair of neurology and a senior author of one the studies. In 1996, Dr. Pulst and other researchers discovered that mutations in the ataxin 2 gene cause spinocerebellar ataxia type 2, a fatal inherited disorder that primarily damages a part of the brain called the cerebellum, causing patients to have problems with balance, coordination, walking and eye movements. For this study his team found that they could reduce problems associated with SCA2 by injecting mouse brains with a drug programmed to silence the ataxin 2 gene. In the accompanying study, researchers showed that injections of the same type of drug into the brains of mice prevented early death and neurological problems associated with ALS, a paralyzing and often fatal disorder. “Surprisingly, the ataxin 2 gene may act as a master key to unlocking treatments for ALS and other neurological disorders,” said Aaron Gitler, Ph.D., Stanford University, associate professor and senior author of the second study. In 2010, Dr. Gitler and colleagues discovered a link between ataxin 2 mutations and ALS.

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 23486 - Posted: 04.13.2017

Workplace exposure to electromagentic fields is linked to a higher risk of developing the most common form of motor neurone disease. Amyotrophic lateral sclerosis (ALS) is a disease that ravages the body’s nerve cells, leaving people unable to control their bodies. People can die as soon as two years after first experiencing symptoms. “Several previous studies have found that electrical workers are at increased risk of ALS,” says Neil Pearce, at the London School of Hygiene and Tropical Medicine. “We don’t know why the risk is higher, but the two most likely explanations involve either electrical shocks, or ongoing exposure to extremely low frequency magnetic fields.” Now an analysis of data from more than 58,000 men and 6,500 women suggests it is the latter. Roel Vermeulen, at Utrecht University in the Netherlands, and his team found that people whose jobs exposed them to high levels of very low frequency magnetic fields were twice as likely to develop ALS as people who have never had this kind of occupational exposure. Jobs with relatively highe extremely low frequency electromagnetic fields levels include electric line installers, welders, sewing-machine operators, and aircraft pilots, says Vermuelen. “These are essentially jobs where workers are placed in close proximity to appliances that use a lot of electricity.” © Copyright Reed Business Information Ltd.

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 23424 - Posted: 03.30.2017

By DENISE GRADY Dr. Lewis P. Rowland, a neurologist who made fundamental discoveries in nerve and muscle diseases and clashed with government investigators during the McCarthy era, died on March 16 in Manhattan. He was 91. The cause was a stroke, his son Steven said. Dr. Rowland, the chairman of Columbia University’s neurology department for 25 years, died at NewYork-Presbyterian/Columbia University Medical Center. Dr. Rowland was a prolific researcher and writer, with nearly 500 published scientific articles that focused on devastating neuromuscular diseases, including muscular dystrophy, myasthenia gravis and many rare syndromes. He took a special interest in amyotrophic lateral sclerosis, or A.L.S., also called Lou Gehrig’s disease, which causes degeneration of nerves in the brain and spinal cord, leading to weakness, paralysis and death. Dr. Rowland led research teams that delineated a number of uncommon diseases that had been poorly understood. They also found that in a subgroup of A.L.S. patients, the disease was linked to lymphoma, a cancer of the immune system. Other studies led to the discovery that a gene defect causes an unusual form of dementia in some patients with A.L.S. In myasthenia gravis, Dr. Rowland and his colleagues documented its high death rate and helped identify treatments that prolonged survival. In the 1970s, long before the tools existed to study DNA’s role in neurological diseases like A.L.S., Alzheimer’s and Parkinson’s, Dr. Rowland predicted correctly that genetics would be the key to understanding them. One of his accomplishments at Columbia was the expansion in 1982 of an intensive care unit that added beds for patients who were severely ill with neurological disorders. Before then, it was often difficult to find I.C.U. space for them. © 2017 The New York Times Company

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 23399 - Posted: 03.24.2017

A study in Neurology suggests that analyzing levels of the protein p75ECD in urine samples from people with amyotrophic lateral sclerosis (ALS) may help monitor disease progression as well as determine the effectiveness of therapies. The study was supported by National Institute of Neurological Disorders and Stroke (NINDS) and National Center for Advancing Translational Sciences (NCATS), both part of the National Institutes of Health. Mary-Louise Rogers, Ph.D., senior research fellow at Flinders University in Adelaide, Australia, and Michael Benatar, M.D., Ph.D, professor of neurology at the University of Miami, and their teams, discovered that levels of urinary p75 ECD increased gradually in patients with ALS as their disease progressed over a 2-year study period. “It was encouraging to see changes in p75ECD over the course of the study, because it suggests an objective new method for tracking the progression of this aggressive disease,” said Amelie Gubitz, Ph.D., program director at NINDS. “In addition, it indicates the possibility of assessing whether levels of that protein decrease while patients try future treatments, to tell us whether the therapies are having any beneficial effects.” Further analysis of the samples from 54 patients revealed that those who began the study with lower levels of urinary p75ECD survived longer than did patients who had higher levels of the protein initially, suggesting that it could be a prognostic marker of the disease and may inform patients about their illness. Dr. Benatar and his team noted that this may be useful in selecting participants for clinical trials and in improving study design.

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 23396 - Posted: 03.23.2017

By KATHRYN SHATTUCK After his short film screened at the Sundance Film Festival in 2008, a euphoric Simon Fitzmaurice was walking the snowy streets of Park City, Utah, when his foot began to hurt. Back home in Ireland that summer, by then dealing with a pronounced limp, he received a shattering diagnosis: motor neuron disease, or M.N.D. (more commonly known in the United States as A.L.S., or Lou Gehrig’s Disease), a neurological disorder that causes increasing muscle weakness and eventual paralysis and is, in most cases, fatal. The doctor gave Mr. Fitzmaurice, then 33, three or four years to live. That might have been the end of any normal existence. But Mr. Fitzmaurice, by his own measure a “bit of a stubborn bastard,” was determined to leave his wife, Ruth, and their two young sons — with a third on the way — a legacy other than self-pity. The result is Mr. Fitzmaurice’s first feature film, and perhaps his salvation — “My Name Is Emily.” The movie, which opened in limited release in the United States on Feb. 17, stars Evanna Lynch, the airy Luna Lovegood of “Harry Potter” fame, as a teenage outlier in both her Dublin foster home and high school who goes on the lam with her only friend (George Webster) to free her father (Michael Smiley) from a mental hospital. The film — with gorgeous scenes of Ms. Lynch plunged, nymphlike, into a cerulean sea or riding shotgun through the emerald countryside in a canary-yellow vintage Renault — won for best cinematography when it debuted at the Galway Film Fleadh in 2015. “I am not trying to prove anything,” Mr. Fitzmaurice wrote in an email, before quickly reconsidering. “Actually, I am trying to prove something. I remember thinking, ‘I must do this to show my children to never give up.’” Mr. Fitzmaurice was writing with his hands when he began the script for “My Name Is Emily.” By the time he was finished, he was writing with his eyes. © 2017 The New York Times Company

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 23275 - Posted: 02.24.2017

By Jessica Hamzelou Three people with paralysis have learned to type by thought alone using a brain implant – at the fastest speeds recorded using such a system. Two have motor neurone disease, also known as ALS – a degenerative disorder that destroys neurons associated with movement – while the other has a spinal cord injury. All three have weakness or paralysis in all of their limbs. There is a chance that those with ALS will eventually lose the ability to speak, too, says Jaimie Henderson, a neurosurgeon at Stanford University Medical Center in California. People who have lost the ability to talk may be offered devices that allow them to select letters on a screen using head, cheek or eye movements. This is how Stephen Hawking communicates, for example. But brain-machine interfaces are also being developed in the hope that they may one day be a more intuitive way of communicating. These involve reading brain activity, either externally or via an implant embedded in the brain, and turning it into a signal that can be used to direct something in the environment. At the moment, these devices are a little slow. Henderson and his colleagues wanted to make a device that was quicker and easier to use than those currently in trials. © Copyright Reed Business Information Ltd.

Related chapters from BN8e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 23264 - Posted: 02.22.2017