Chapter 17. Learning and Memory

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1441

Laura Sanders In stark contrast to earlier findings, adults do not produce new nerve cells in a brain area important to memory and navigation, scientists conclude after scrutinizing 54 human brains spanning the age spectrum. The finding is preliminary. But if confirmed, it would overturn the widely accepted and potentially powerful idea that in people, the memory-related hippocampus constantly churns out new neurons in adulthood. Adult brains showed no signs of such turnover in that region, researchers reported November 13 at a meeting of the Society for Neuroscience in Washington, D.C. Previous studies in animals have hinted that boosting the birthrate of new neurons, a process called neurogenesis, in the hippocampus might enhance memory or learning abilities, combat depression and even stave off the mental decline that comes with dementia and old age (SN: 9/27/08, p. 5). In rodents, exercise, enriched environments and other tweaks can boost hippocampal neurogenesis — and more excitingly, memory performance. But the new study may temper those ambitions, at least for people. Researchers studied 54 human brain samples that ranged from fetal stages to age 77, acquired either postmortem or during brain surgery. These samples were cut into thin slices and probed with molecular tools that can signal dividing or young cells, both of which are signs that nerve cells are being born. As expected, fetal and infant samples showed evidence of both dividing cells that give rise to new neurons and young neurons themselves in the hippocampus. But with age, these numbers declined. In brain tissue from a 13-year-old, the researchers spotted only a handful of young neurons. And in adults, there were none. |© Society for Science & the Public 2000 - 2017.

Keyword: Neurogenesis
Link ID: 24334 - Posted: 11.16.2017

By Jef Akst | After Nelson Dellis’s grandmother passed away from Alzheimer’s disease in the summer of 2009, he became obsessed with memory. “I had seen her whole decline, so brain health was on my mind,” he says. He found out about annual memory competitions that tested people’s ability to remember large volumes of data—for example, the exact order of 104 playing cards in two decks—and began to learn the strategies so-called “memory athletes” used to pull off these incredible feats. “I found the techniques worked, and with a bit of practice, you can do a lot more than you ever thought you could,” Dellis says. He entered the 2010 USA Memory Championship in New York City and came in third. The next two years in a row, he took first. A mistake in the finals cost him the championship in 2013, but he regained the crown in 2014 and won again in 2015, making him the first and only four-time USA Memory Champion. And all it took was “a bit of practice.” Dellis says there are several strategies memory athletes use, but they’re all based on the same principle: “You want to turn information you’re trying to memorize into something that your brain naturally prefers to absorb”—typically, an image. “Once you have that picture, the next step is to store it somewhere—somewhere in your mind you can safely store it and retrieve it later.” This place is known as a “memory palace,” and it can be any place that’s familiar to you, such as your house. You can then place the images you’ve chosen along a particular path through the memory palace, and “the path, which you know very well, preserves the order.”

Keyword: Learning & Memory
Link ID: 24318 - Posted: 11.11.2017

Using an innovative “NeuroGrid” technology, scientists showed that sleep boosts communication between two brain regions whose connection is critical for the formation of memories. The work, published in Science, was partially funded by the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative, a project of the National Institutes of Health devoted to accelerating the development of new approaches to probing the workings of the brain. “Using new technologies advanced by the BRAIN Initiative, these researchers made a fundamental discovery about how the brain creates and stores new memories,” said Nick Langhals, Ph.D., program director at NIH’s National Institute of Neurological Disorders and Stroke. A brain structure called the hippocampus is widely thought to turn new information into permanent memories while we sleep. Previous work by the new study’s senior author, New York University School of Medicine professor György Buzsáki, M.D., Ph.D., revealed high-frequency bursts of neural firing called ripples in the hippocampus during sleep and suggested they play a role in memory storage. The current study confirmed the presence of ripples in the hippocampus during sleep and found them in certain parts of association neocortex, an area on the brain’s surface involved in processing complex sensory information. “When we first observed this, we thought it was incorrect because it had never been observed before,” said Dion Khodagholy, Ph.D., the study’s co-first author and assistant professor at Columbia University in New York.

Keyword: Learning & Memory
Link ID: 24274 - Posted: 11.01.2017

Jon Hamilton When it comes to brain training, some workouts seem to work better than others. A comparison of the two most common training methods scientists use to improve memory and attention found that one was twice as effective as the other. The more effective method also changed brain activity in a part of the brain involved in high-level thinking. But neither method made anyone smarter, says Kara Blacker, the study's lead author and a researcher at The Henry M. Jackson Foundation for the Advancement of Military Medicine in Bethesda, Md. "Our hypothesis was that training might improve fluid intelligence or IQ," Blacker says. "But that's not what we found." Blacker did the memory research when she was part of a team at Johns Hopkins University and the Kennedy Krieger Institute in Baltimore. The results were reported in the Journal of Cognitive Enhancement. The team compared two approaches to improving working memory, which acts as a kind of mental workspace where we store information temporarily. "If somebody gives you directions, you have to keep that information in mind long enough to actually execute going to that location," Blacker says. "If someone tells you a phone number, you have to be able to remember it." To test different methods for improving working memory, the team had 136 young adults spend a month training their brains for 30 minutes a day, five days a week. Johns Hopkins University YouTube One group did something called a "complex span" test, which involves remembering the location of an item despite distractions. A second group trained with something called the dual n-back test. Each day they would sit at a computer watching flashing squares appear on a grid and listening to a voice reading letters from the alphabet. © 2017 npr

Keyword: Learning & Memory; Attention
Link ID: 24231 - Posted: 10.23.2017

by Sari Harrar, AARP Bulletin, At 99 years old Brenda Milner continues to explore the mind and its relationship to people’'s behavior. You'’re a preeminent neuroscientist, and a professor at Canada's prestigious McGill University. At age 99, what motivates you to keep up your research at the Montreal Neurological Institute and Hospital? I am very curious. Human quirks attract my interest. If you’'re a theoretical person, you can sit and dream up beautiful theories, but my approach is, “What would happen if …”or, “Why is this person doing [that] …”and then, “How can I measure it?” I wouldn't still be working if I didn't find it exciting. AARP Membership: Join or Renew for Just $16 a Year Are you curious in real life, too? Yes. I'm a good "noticer—" of behavior as much as the kind of furniture people have! In the 1950s, you made a revolutionary discovery— that memories are formed in a brain area called the hippocampus, which is now getting lots of attention for its role in memory loss and dementia. Has brain research gotten easier? Nowadays, everyone has functional magnetic resonance imaging. Anybody with access to a medical school can get a good look at the patients' brain while they're alive and young, but it wasn't like that [then]. Psychologists were studying patients who were much older and beginning to show memory impairment. Then they had to wait for their patients to die.

Keyword: Learning & Memory
Link ID: 24196 - Posted: 10.16.2017

By Virginia Morell Dog owners often wonder what—if anything—is going on when their pooches are sleeping. It turns out they may be learning, according to a new study. Researchers in Hungary trained 15 pet dogs to sit and lie down using English phrases instead of the Hungarian they already knew. Afterward, the scientists attached small electrodes to the dogs’ heads to record their brain activity while they slept. Electroencephalograms (EEGs) showed that during 3-hour naps, the dogs’ brains experienced brief, repeated moments of “slow-wave” brain activity, lasting 0.5 to 5 seconds. These bursts—called sleep spindles because they look like a train of fast, rhythmic waves on EEG recordings—occur during non-REM sleep and are known to support memory, learning, general intelligence, and healthy aging in humans and rats. But this is the first time they’ve been studied in detail in dogs. Like those of humans and rats, the dogs’ sleep spindles occur in short cycles in the 9-hertz to 16-hertz range; in humans and rats, these cycles are associated with memory consolidation. The scientists also discovered that the number of spindle sessions per minute correlated with how well the dogs learned their new, foreign vocabulary, the researchers report this week in Scientific Reports. And—just like in humans—females had more spindle sessions per minute than males and performed better during testing. About 30% of the females learned the new words, compared to about 10% of the males. That suggests, the researchers say, that dogs can serve as models to better understand the function of our own sleep spindles. © 2017 American Association for the Advancement of Science

Keyword: Sleep; Learning & Memory
Link ID: 24191 - Posted: 10.14.2017

Laura Sanders The brain’s mapmakers don’t get a break, even for sleep. Grid cells, specialized nerve cells that help keep people and other animals oriented, stay on the clock 24/7, two preliminary studies on rats suggest. Results from the studies, both posted October 5 at bioRxiv.org, highlight the stability of the brain’s ‘inner GPS’ system. Nestled in a part of the brain called the medial entorhinal cortex, grid cells fire off regularly spaced signals as a rat moves through the world, marking a rat’s various locations. Individual grid cells work together to create a mental map of the environment. But scientists didn’t know what happens to this map when an animal no longer needs it, such as during sleep. Grid cells, it turns out, maintain their mapmaking relationships even in sleeping rats, report two teams of researchers, one from the University of Texas at Austin and one from the Norwegian University of Science and Technology in Trondheim. (The Norway group includes the researchers who won a Nobel Prize in 2014 for discovering grid cells (SN Online: 10/6/14).) By eavesdropping on pairs of grid cells, researchers found that the cells maintain similar relationships to each other during sleep as they do during active exploration. For instance, two grid cells that fired off signals nearly in tandem while the rat was awake kept that same pattern during sleep, a sign that the map is intact. The results provide insights into how grid cells work together to create durable mental maps. © Society for Science & the Public 2000 - 2017.

Keyword: Learning & Memory
Link ID: 24186 - Posted: 10.13.2017

Children with attention deficit hyperactivity disorder may fidget, tap and swivel around in a chair much more than normally developing children because it helps them to learn complex material, psychologists have found. ADHD is often perceived as a behavioural problem because it can result in symptoms such as inattention, impulsivity, and hyperactivity that can affect social interaction and learning. Scientists increasingly recognize ADHD as a brain disorder that affects about five per cent of the school-age population. Now brain tests show children with ADHD tend to learn less when sitting still compared to when they're moving. It is not for lack of motivation, says Prof. Mark Rapport, a child psychopathology researcher who focuses on ADHD at the University of Central Florida in Orlando. Rapport and his colleagues set out to test an observation made by many parents — that children with ADHD can pay attention if they are doing an activity they enjoy. They put 32 boys aged eight to 12 with ADHD and 30 of their peers who are not affected by the disorder through a battery of memory and other tests. Participants watched two videos on separate days: an instructional math lesson without performing the calculations, and a scene from Star Wars Episode 1 — The Phantom Menace. During the Star Wars movie, the boys with ADHD did not squirm more than other children, but when asked to concentrate on the math lesson, there was a difference between the two groups. "All children and all people in general, moved more when they were engaged in a working memory task. Kids with ADHD move about twice as much under the same conditions," Rapport said. ©2017 CBC/Radio-Canada.

Keyword: ADHD; Learning & Memory
Link ID: 24164 - Posted: 10.09.2017

By Giorgia Guglielmi This mantis shrimp (Gonodactylus smithii) might have a much more elaborate brain than previously thought. That’s the conclusion of the first study to peer into the head of more than 200 crustaceans, including crabs, shrimp, and lobsters. Researchers discovered that the brain of mantis shrimp contains memory and learning centers, called mushroom bodies, which so far have been seen only in insects. The team also found similar structures in close relatives of these sea creatures: cleaner shrimp, pistol shrimp, and hermit crabs. This may not be a coincidence, the researchers say, because mantis shrimp and their brethren are the only crustaceans that hunt over long distances and might have to remember where to get food. But the finding, reported in eLife, is likely to stir debate: Scientists agree that mushroom bodies evolved after the insect lineage split off from the crustacean lineage about 480 million years ago; finding these learning centers in mantis shrimp means that either mushroom bodies are much more ancient than scientists realized and were lost in all crustaceans but mantis shrimp, or that these structures are similar to their counterparts in insects but have evolved independently. © 2017 American Association for the Advancement of Science.

Keyword: Learning & Memory; Evolution
Link ID: 24158 - Posted: 10.07.2017

By Clare Wilson OUR braininess may have evolved thanks to gene changes that made our brain cells less sticky. The cortex is the thin, highly folded outer layer of our brains and it is home to some of our most sophisticated mental abilities, such as planning, language and complex thoughts. Around three millimetres thick, this layer is folded into an intricate pattern of ridges and valleys, which allows the cortex to be large, but still fit into a relatively small space. Many larger mammals, such as primates, dolphins and horses, have various patterns of folds in their cortex, but folds are rarer in smaller animals like mice. So far, we have only identified a few genetic mutations that contributed to the evolution of the human brain, including ones that boosted the number of cells in the cortex. One theory about how the cortex came to be folded is that it buckled as the layer of cells expanded. Daniel del Toro at the Max Planck Institute of Neurobiology in Munich, Germany, and colleagues wondered if some of the genetic changes in our brain’s evolution might have been about more than just an increasing number of cells. They investigated the genes for two molecules – FLRT1 and FLRT3 – which make developing brain cells stick to each other more. Human brain cells produce only a small amount of these compounds, while mice brain cells make lots. Del Toro’s team created mice embryos that lacked functioning FLRT1 and FLRT3 genes, which meant their cortex cells were only loosely attached to each other, like those of humans. © Copyright New Scientist Ltd.

Keyword: Development of the Brain; Learning & Memory
Link ID: 24153 - Posted: 10.05.2017

By Jessica Hamzelou AT LAST, we’ve seen how the brain memories when we sleep. By scanning slumbering people, researchers have watched how the “trace” of a memory moves from one region of the brain to another. “The initial memory trace kind of disappears, and at the same time, another emerges,” says Shahab Vahdat at Stanford University in California. It is the first time memories have been observed being filed away in humans during sleep, he says. Vahdat and his colleagues did this by finding people who were able to fall asleep in the confined, noisy space of an fMRI scanner, which is no easy undertaking. “We screened more than 50 people in a mock scanner, and only 13 made it through to the study,” says Vahdat. The team then taught this group of volunteers to press a set of keys in a specific sequence – in the same way that a pianist might learn to play a tune. It took each person between about 10 and 20 minutes to master a sequence involving five presses. “They had to learn to play it as quickly and as accurately as possible,” says Vahdat. Once they had learned the sequence, each volunteer put on a cap of EEG electrodes to monitor the electrical activity of their brain, and entered an fMRI scanner – which detects which regions of the brain are active. The team saw a specific pattern of brain activity while the volunteers performed the key-pressing task. Once they had stopped, this pattern kept replaying, as if each person was subconsciously revising what they had learned. © Copyright New Scientist Ltd.

Keyword: Sleep; Learning & Memory
Link ID: 24151 - Posted: 10.05.2017

By Claudia Wallis, A funny thing happened in the Dutch city of Maastricht in the fall of 2011. A policy went into effect banning the sale of marijuana at the city’s 13 legal cannabis shops to visitors from most other countries. The goal was to discourage disruptive drug tourism in a city close to several international borders. The policy had its intended effect, but also a remarkable unintended one: foreign students attending Maastricht University starting getting better grades. According to an analysis published earlier this year in Review of Economic Studies, students who had been passing their courses at a rate of 73.9% when they could legally buy weed were now passing at a rate of 77.9% — a sizeable jump. The effect, which was based on data from 336 undergraduates in more than 4,000 courses, was most dramatic for weaker students, women, and in classes that required more math. Some of this falls in line with past research: marijuana use has been linked to inferior academic achievement (and vice versa), so it makes sense that poorer students might benefit most from a ban, and the drug is known to have immediate effects on cognitive performance, including in math. But what’s really unusual about the study, notes one of its authors, economist Ulf Zoelitz of the Briq Institute on Behavior and Inequality, is that rather than merely correlating academic performance with cannabis use, as much past research has done, “we could cleanly identify the causal impact of a drug policy.” Zoelitz co-authored the study with Olivier Marie of Erasmus University Rotterdam. © 2017 KQED Inc.

Keyword: Learning & Memory; Drug Abuse
Link ID: 24139 - Posted: 10.03.2017

By Matthew Hutson Studying the human mind is tough. You can ask people how they think, but they often don’t know. You can scan their brains, but the tools are blunt. You can damage their brains and watch what happens, but they don’t take kindly to that. So even a task as supposedly simple as the first step in reading—recognizing letters on a page—keeps scientists guessing. Now, psychologists are using artificial intelligence (AI) to probe how our minds actually work. Marco Zorzi, a psychologist at the University of Padua in Italy, used artificial neural networks to show how the brain might “hijack” existing connections in the visual cortex to recognize the letters of the alphabet, he and colleagues reported last month in Nature Human Behaviour. Zorzi spoke with Science about the study and about his other work. This interview has been edited for brevity and clarity. Q: What did you learn in your study of letter perception? A: We first trained the model on patches of natural images, of trees and mountains, and then this knowledge becomes a vocabulary of basic visual features the network uses to learn about letter shapes. This idea of “neural recycling” has been around for some time, but as far as I know this is the first demonstration where you actually gained in performance: We saw better letter recognition in a model that trained on natural images than one that didn’t. Recycling makes learning letters much faster compared to the same network without recycling. It gives the network a head start. © 2017 American Association for the Advancement of Science.

Keyword: Learning & Memory; Robotics
Link ID: 24130 - Posted: 09.30.2017

By Gary Stix Donald Hebb was a famed Canadian scientist who produced key findings that ranged across the field of psychology, providing insights into perception, intelligence and emotion. He is perhaps best known, though, for his theory of learning and memory, which appears as an entry in most basic texts on neuroscience. But now an alternative theory—along with accompanying experimental evidence—fundamentally challenges some central tenets of Hebb’s thinking. It provides a detailed account of how cells and the electrical and molecular signals that activate them are involved in forming memories of a series of related events. Put forward in 1949, Hebb’s theory holds that when electrical activity in one neuron—perhaps triggered by observing one’s surroundings—repeatedly induces a neighboring “target cell” to fire electrical impulses, a process of conditioning occurs and strengthens the connection between the two neurons. This is a bit like doing arm curls with a weight; after repeated lifts the arm muscle grows stronger and the barbell gets easier to hoist. At the cellular level, repeated stimulation of one neuron by another enables the target cell to respond more readily the next time it is activated. In basic textbooks, this boils down to a simple adage to describe the physiology of learning and memory: “Cells that fire together, wire together.” Every theory requires experimental evidence, and scientists have toiled for years to validate Hebb’s idea in the laboratory. Many research findings have showed that when a neuron repeatedly fires off an electrical impulse (called an “action potential”) at virtually the same time as an adjacent neuron, their connection does indeed grow more efficient. The target cell fires more easily, and the signal transmitted is stronger. This process—known as long-term potentiation (LTP)—apparently induces physiological change or “plasticity” in target cells. LTP is routinely cited as a possible explanation for how the brain learns and forms memories at the cellular level. © 2017 Scientific American,

Keyword: Learning & Memory
Link ID: 24093 - Posted: 09.21.2017

by Emilie Reas Paranoia. Munchies. Giggles. Sleepiness. Memory loss. Although the effects of cannabinoids–the active components of marijuana–are familiar to many, their neurobiological substrates are poorly characterized. Perhaps the effect of greatest interest to both neuroscientists and to cannabis users hoping to preserve their cognitive function, is short-term memory impairment that often accompanies marijuana use. Our partial understanding of its physiological and behavioral effects is not for want of studies into its neural effects. Ample research has shown a range of changes to neurotransmission, receptors, ion channels and mitochondria following cannabinoid exposure. However, knowledge of its cellular and molecular properties alone cannot offer a complete picture of its system-wide effects leading to cognitive and behavioral changes. A recent study published in PLOS Computational Biology took a novel approach to address this issue, combining computational modeling with electrophysiological brain recordings from rats performing a memory task, to unravel the dynamics of neural circuits under the influence of cannabinoids. To assess memory changes induced by cannabinoids, the scientists injected tetrahydrocannabinol (THC), the main psychoactive compound in marijuana, into rats before they performed a “delayed-nonmatch-to-sample” working memory task. In this task, rats are cued with one of two levers, and after a delay, are required to select the opposite lever. Compared to sober sessions, performance under THC was impaired by 12%, confirming the all-too-familiar memory impairment associated with cannabis use. THC alters hippocampal activity

Keyword: Learning & Memory; Drug Abuse
Link ID: 24087 - Posted: 09.21.2017

By Clare Wilson Have we had our first peek at the source of nightmares? When rats are given a fright while they are awake, the fear centre of their brains gets reactivated when they next go to sleep. This could explain why people who go through frightening experiences often have nightmares afterwards, says György Buzsáki of New York University. Rats store mental maps of the world they experience in their hippocampi – two curved structures in the brain. Different places are processed by distinct groups of neurons in the hippocampi that fire together in sequence as rats run around a maze, for example. Later, after exploring an environment like this, these firing sequences have been seen replaying as the animals sleep, as if dreaming of the routes they’d taken. This process is thought to allow memories to become consolidated for longer term storage, and has recently been detected in people for the first time. Buzsáki’s team wondered if such memory replay might include not just spatial information but also how the animal was feeling at the time. They tested this by giving a rat an unpleasant but harmless experience – a puff of air in the face from a computer keyboard cleaner – at a particular spot along a route. As expected, the rats learned to fear that particular place. “They slow down before the location of the air puff, then run superfast away from it,” says Buzsáki’s colleague, Gabrielle Girardeau. “If you do it in the face of a human, they don’t like it either.” © Copyright New Scientist Ltd.

Keyword: Sleep; Learning & Memory
Link ID: 24058 - Posted: 09.12.2017

Laura Sanders Peer inside the brain of someone learning. You might be lucky enough to spy a synapse pop into existence. That physical bridge between two nerve cells seals new knowledge into the brain. As new information arrives, synapses form and strengthen, while others weaken, making way for new connections. You might see more subtle changes, too, like fluctuations in the levels of signaling molecules, or even slight boosts in nerve cell activity. Over the last few decades, scientists have zoomed in on these microscopic changes that happen as the brain learns. And while that detailed scrutiny has revealed a lot about the synapses that wire our brains, it isn’t enough. Neuroscientists still lack a complete picture of how the brain learns. They may have been looking too closely. When it comes to the neuroscience of learning, zeroing in on synapse action misses the forest for the trees. A new, zoomed-out approach attempts to make sense of the large-scale changes that enable learning. By studying the shifting interactions between many different brain regions over time, scientists are beginning to grasp how the brain takes in new information and holds onto it. These kinds of studies rely on powerful math. Brain scientists are co-opting approaches developed in other network-based sciences, borrowing tools that reveal in precise, numerical terms the shape and function of the neural pathways that shift as human brains learn. © Society for Science & the Public 2000 - 2017.

Keyword: Learning & Memory
Link ID: 24041 - Posted: 09.06.2017

Anna VlasitsAnna Vlasits A sheen is starting to appear on Rocky Blumhagen’s forehead, just below his gray hair. He’s marching in place in a starkly lit room decked out with two large flatscreens. On both of the TVs, a volcano lets off steam through wide cracks glowing with lava, their roar muffling the Andean percussion and flutes on the soundtrack. Golden coins slide across the screen. Rocky reaches out his left hand, as if to grasp a coin from midair, and one of them disappears with a brrring. “I don’t know if I can do it,” he says to a guy named Josh sitting nearby in a felt-covered lounge chair. He looks up from his iPad, watching Rocky, age 66, grab, jog, kick, and reach his way through the videogame. “Keep it up,” Josh says as the heart monitor in the corner of the screen reads 129. Rocky and research assistant Josh Volponi are technically in a lab clinic at the University of California, San Francisco, but aside from the mannequin heads studded with electrodes, the room looks more like a man cave. But here, the videogames could halt the mental decay of aging. This is the premise that the university’s new research institute, named Neuroscape, was built to test. This is Rocky’s 18th training session at Neuroscape, founded by neuroscientist Adam Gazzaley. Rocky is fit for his age—he works as a substitute yoga instructor, after retiring from careers producing radio and performing Cole Porter songs—but as he makes it to the end of the level, he looks exhausted. The game cuts to an animation of a jungle, birds chirping and light playing through the canopy as a list of his past scores pops up. This round wasn’t his best. “I haven’t been here for a week,” he says. Volponi asks him to rate his physical exertion level. Rocky gives it a 15 out of 20; Volponi marks it on the iPad. “I feel rusty,” he says, wiping his hands on his orange exercise shorts.

Keyword: Alzheimers; Learning & Memory
Link ID: 24033 - Posted: 09.04.2017

By The Scientist Staff Researchers demonstrated that the mouse subiculum, a brain region associated with the hippocampus, is important for recalling certain types of memories, but it doesn’t appear to play a role in forming them. When they optogenetically turned off neurons within the subiculum, mice’s abilities to retrieve a memory they had previously formed was disrupted. Some scientists think that brain circuits responsible for forming memories are the same as those necessary for retrieving them, write the authors in their report. These data, however, offer evidence to the contrary. See D.S. Roy et al., “Distinct neural circuits for the formation and retrieval of episodic memories,” Cell, doi:10.1016/j.cell.2017.07.013, 2017. © 1986-2017 The Scientist

Keyword: Learning & Memory; Brain imaging
Link ID: 24014 - Posted: 08.31.2017

By DAVID DeSTENO, CYNTHIA BREAZEAL and PAUL HARRIS Why is educational technology such a disappointment? In recent years, parents and schools have been exposing children to a range of computer-mediated instruction, and adults have been turning to “brain training” apps to sharpen their minds, but the results have not been encouraging. A six-year research project commissioned by the Department of Education examined different cybertechnology programs across thousands of students in hundreds of schools and found little to no evidence that they improved academic performance. Unfortunately, it appears the same goes for cognitive-training programs. Lumos Labs, the company behind Lumosity, one of the leading programs in this area, agreed to pay $2 million to settle charges by the Federal Trade Commission that it misled customers with claims that Lumosity improved people’s performance in school and at work. In our view, the problem stems partly from the fact that the designers of these technologies rely on an erroneous set of assumptions about how the mind learns. Yes, the human brain is an amazing information processor, but it evolved to take in, analyze and store information in a specific way: through social interaction. For millenniums, the environs in which we learned best were social ones. It was through other people’s testimony or through interactive discourse and exploration with them that we learned facts about our world and new ways of solving problems. And it’s precisely because of this history that we can expect the mind to be socially tuned, meaning that it should rely on and incorporate social cues to facilitate learning. © 2017 The New York Times Company

Keyword: Learning & Memory
Link ID: 24007 - Posted: 08.29.2017