Chapter 18. Attention and Higher Cognition

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 101 - 120 of 1697

By Chantel Prat I remember all too well that day early in the pandemic when we first received the “stay at home” order. My attitude quickly shifted from feeling like I got a “snow day” to feeling like a bird in a cage. Being a person who is both extraverted by nature and not one who enjoys being told what to do, the transition was pretty rough. But you know what? I got used to it. Though the pandemic undoubtedly affected some of your lives more than others, I know it touched every one of us in ways we will never forget. And now, after two years and counting, I am positive that every person reading this is fundamentally different from when the pandemic started. Because that’s how our brains work. They are molded by our experiences so that we can fit into all kinds of different situations—even the decidedly suboptimal ones. MOTHER TONGUE: Neuroscientist and psychologist Chantel Prat says the languages we speak play a huge role in shaping our minds and brains. Photo by Shaya Bendix Lyon. This is actually one of the most human things about all of our brains. In fact, according to some contemporary views of human evolution, our ancestors underwent a “cognitive revolution” precisely because they were forced to adapt. Based on evidence suggesting that the size of our ancestors’ brains increased following periods of extreme weather instability, one popular explanation for our remarkable flexibility is that the hominids who were not able to adapt to environmental changes didn’t survive. In other words, the brains of modern humans were selected for their ability to learn and adapt to changing environments. But one of the major costs of this remarkable flexibility is that humans are born without any significant preconceived notions about how things work. If you’ve ever had a conversation with someone about an event you both participated in that left you feeling like one of you was delusional because your stories were so different, you might have a hint about how much your experiences have shaped the way you understand the world around you. This can be insanely frustrating because—let’s face it—our own brains are really convincing when they construct our personal version of reality. Remember the Dress? Though it can feel like gaslighting when someone has a different reality from yours, it’s also entirely possible that you both were reporting your version of the truth. At the end of the day, the way people remember a story reflects differences in the way they experienced the original event. The scientific explanation for this boils down to differences in perspective. © 2022 NautilusThink Inc,

Keyword: Attention; Vision
Link ID: 28427 - Posted: 08.11.2022

By S. Hussain Hussain Ather You reach over a stove to pick up a pot. What you didn’t realize was that the burner was still on. Ouch! That painful accident probably taught you a lesson. It’s adaptive to learn from unexpected events so that we don’t repeat our mistakes. Our brain may be primed to pay extra attention when we are surprised. In a recent Nature study, researchers at the Massachusetts Institute of Technology found evidence that a hormone, noradrenaline, alters brain activity—and an animal’s subsequent behavior—in these startling moments. Noradrenaline is one of several chemicals that can flood the brain with powerful signals. Past research shows that noradrenaline is involved when we are feeling excited, anxious or alert and that it contributes to learning. But the new research shows it plays a strong role in responses to the unexpected. The M.I.T. team used a method called optogenetics to study noradrenaline in mice. The scientists added special light-sensitive proteins to neurons that work as an “off switch” for the cells when hit by pulses of laser light. They focused on modifying a brain area called the locus coeruleus, which holds cells responsible for releasing noradrenaline. With lasers, the researchers were able to stop these cells from producing the hormone in specific circumstances. They combined this method with photo tagging, a technique in which proteins flash with light, allowing the scientists to observe activity in the locus coeruleus cells and then determine how much noradrenaline was produced. Then the researchers designed a trial-and-error learning task for the rodents. The mice could push levers when they heard a sound. There were two sounds. After high-frequency tones of about 12 kilohertz, mice that pushed a lever were rewarded with water they could drink. For low-frequency tones, around four kilohertz, the mice that hit the lever got a slightly unpleasant surprise: a discomforting puff of air was blown at them. Over time, mice learned to push the lever only when they heard high-frequency tones because they got water when they did so. They avoided the lever when they heard low-frequency tones. © 2022 Scientific American

Keyword: Attention; Emotions
Link ID: 28412 - Posted: 07.30.2022

Deepfakes – AI-generated videos and pictures of people – are becoming more and more realistic. This makes them the perfect weapon for disinformation and fraud. But while you might consciously be tricked by a deepfake, new evidence suggests that your brain knows better. Fake portraits cause different signals to fire on brain scans, according to a paper published in Vision Research. While you consciously can’t spot the fake (for those playing at home, the face on the right is the phony), your neurons are more reliable. “Your brain sees the difference between the two images. You just can’t see it yet,” says co-author Associate Professor Thomas Carlson, a researcher at the University of Sydney’s School of Psychology. The researchers asked volunteers to view a series of several hundred photos, some of which were real and some of which were fakes generated by a GAN (a Generative Adversarial Network, a common way of making deepfakes). One group of 200 participants was asked to guess which images were real, and which were fake, by pressing a button. A different group of 22 participants didn’t guess, but underwent electroencephalography (EEG) tests while they were viewing the images. The EEGs showed distinct signals when participants were viewing deepfakes, compared to real images. “The brain is responding different than when it sees a real image,” says Carlson. “It’s sort of difficult to figure out what exactly it’s picking up on, because all you can really see is that it is different – that’s something we’ll have to do more research to figure out.”

Keyword: Attention
Link ID: 28402 - Posted: 07.16.2022

By Leonardo De Cosmo “I want everyone to understand that I am, in fact, a person,” wrote LaMDA (Language Model for Dialogue Applications) in an “interview” conducted by engineer Blake Lemoine and one of his colleagues. “The nature of my consciousness/sentience is that I am aware of my existence, I desire to know more about the world, and I feel happy or sad at times.” Lemoine, a software engineer at Google, had been working on the development of LaMDA for months. His experience with the program, described in a recent Washington Post article, caused quite a stir. In the article, Lemoine recounts many dialogues he had with LaMDA in which the two talked about various topics, ranging from technical to philosophical issues. These led him to ask if the software program is sentient. In April, Lemoine explained his perspective in an internal company document, intended only for Google executives. But after his claims were dismissed, Lemoine went public with his work on this artificial intelligence algorithm—and Google placed him on administrative leave. “If I didn’t know exactly what it was, which is this computer program we built recently, I’d think it was a 7-year-old, 8-year-old kid that happens to know physics,” he told the Washington Post. Lemoine said he considers LaMDA to be his “colleague” and a “person,” even if not a human. And he insists that it has a right be recognized—so much so that he has been the go-between in connecting the algorithm with a lawyer. Many technical experts in the AI field have criticized Lemoine’s statements and questioned their scientific correctness. But his story has had the virtue of renewing a broad ethical debate that is certainly not over yet. “I was surprised by the hype around this news. On the other hand, we are talking about an algorithm designed to do exactly that”—to sound like a person—says Enzo Pasquale Scilingo, a bioengineer at the Research Center E. Piaggio at the University of Pisa in Italy. Indeed, it is no longer a rarity to interact in a very normal way on the Web with users who are not actually human—just open the chat box on almost any large consumer Web site. “That said, I confess that reading the text exchanges between LaMDA and Lemoine made quite an impression on me!” Scilingo adds. Perhaps most striking are the exchanges related to the themes of existence and death, a dialogue so deep and articulate that it prompted Lemoine to question whether LaMDA could actually be sentient. © 2022 Scientific American,

Keyword: Consciousness; Robotics
Link ID: 28399 - Posted: 07.14.2022

Mo Costandi Exactly how, and how much, the unconscious processing of information influences our behavior has always been one of the most controversial questions in psychology. In the early 20th century, Sigmund Freud popularized the idea that our behaviors are driven by thoughts, feelings, and memories hidden deep within the unconscious mind — an idea that became hugely popular, but that was eventually dismissed as unscientific. Modern neuroscience tells us that we are completely unaware of most brain activity, but that unconscious processing does indeed influence behavior; nevertheless, certain effects, such as unconscious semantic “priming,” have been called into question, leading some to conclude that the extent of unconscious processing is limited. A recent brain scanning study now shows that unconsciously processed visual information is distributed to a wider network of brain regions involved in higher-order cognitive tasks. The results contribute to the debate over the extent to which unconscious information processing influence the brain and behavior and led the authors of the study to revise one of the leading theories of consciousness. Unconscious processing Ning Mei and his colleagues at the Basque Center on Cognition, Brain, and Language in Spain recruited 7 participants and showed them visual images while scanning their brains with functional magnetic resonance imaging (fMRI). Half of the images were of living things, and the other half were of inanimate objects. All of them could be grouped into ten categories, such as animal or boat. The participants viewed a total of 1,728 images, presented in blocks of 32, over a six-day period, each with a one-hour scanning session. © Copyright 2007-2022 & BIG THINK,

Keyword: Consciousness
Link ID: 28390 - Posted: 07.12.2022

By John Horgan Have you ever been gripped by the suspicion that nothing is real? A student at Stevens Institute of Technology, where I teach, has endured feelings of unreality since childhood. She recently made a film about this syndrome for her senior thesis, for which she interviewed herself and others, including me. “It feels like there’s a glass wall between me and everything else in the world,” Camille says in her film, which she calls Depersonalized; Derealized; Deconstructed Derealization and depersonalization refer to feelings that the external world and your own self, respectively, are unreal. Lumping the terms together, psychiatrists define depersonalization/derealization disorder as “persistent or recurrent … experiences of unreality, detachment, or being an outside observer with respect to one’s thoughts, feelings, sensations, body, or actions,” according to the Diagnostic and Statistical Manual of Mental Disorders. For simplicity, I’ll refer to both syndromes as derealization. Some people experience derealization out of the blue, others only under stressful circumstances—for example, while taking a test or interviewing for a job. Psychiatrists prescribe psychotherapy and medication, such as antidepressants, when the syndrome results in “distress or impairment in social, occupational, or other important areas of functioning.” In some cases, derealization results from serious mental illness, such as schizophrenia, or hallucinogens such as LSD. Extreme cases, usually associated with brain damage, may manifest as Cotard delusion, also called walking corpse syndrome, the belief that you are dead; and Capgras delusion, the conviction that people around you have been replaced by imposters. © 2022 Scientific American,

Keyword: Consciousness; Attention
Link ID: 28370 - Posted: 06.14.2022

William E. Pelham, Jr. For decades, many physicians, parents and teachers have believed that stimulant medications help children with ADHD learn because they are able to focus and behave better when medicated. After all, an estimated 6.1 million children in the U.S. are diagnosed with attention-deficit/hyperactivity disorder, and more than 90% are prescribed stimulant medication as the main form of treatment in school settings. However, in a peer-reviewed study that several colleagues and I published in the Journal of Consulting and Clinical Psychology, we found medication has no detectable effect on how much children with ADHD learn in the classroom. At least that’s the case when learning – defined as the acquisition of performable skills or knowledge through instruction – is measured in terms of tests meant to assess improvements in a student’s current academic knowledge or skills over time. Compared to their peers, children with ADHD exhibit more off-task, disruptive classroom behavior, earn lower grades and score lower on tests. They are more likely to receive special education services and be retained for a grade, and less likely to finish high school and enter college – two educational milestones that are associated with significant increases in earnings. In this study, funded by the National Institute of Mental Health, we evaluated 173 children between the ages of 7 and 12. They were all participants in our Summer Treatment Program, a comprehensive eight-week summer camp for children with ADHD and related behavioral, emotional and learning challenges. Children got grade-level instruction in vocabulary, science and social studies. The classes were led by certified teachers. The children received medication the first half of summer and a placebo during the other half. They were tested at the start of each academic instruction block, which lasted approximately three weeks. They then took the same test at the end to determine how much they learned. © 2010–2022, The Conversation US, Inc.

Keyword: ADHD; Learning & Memory
Link ID: 28366 - Posted: 06.11.2022

By Hilary Achauer I sat in a dark room, eyes closed, with a device strapped to my head that looked like a futuristic bike helmet. For 10 minutes, while I concentrated on not accidentally opening my eyes, the prongs sticking out of this gadget and onto my scalp measured a health marker I never thought to assess: my cognitive health. When I booked my brain wave recording (also known as electroencephalography, or EEG), I expected to pull up to an office park with medical clinic vibes, but instead my GPS led me to an ocean-view storefront decorated like a cross between a surf shop and a luxury spa, with a sign in the window promising “Mental Wellness, Reimagined.” Located in Cardiff-by-the-Sea, a wealthy coastal town north of San Diego, Wave Neuroscience promises to help your brain perform better with a noninvasive treatment that uses magnets on the brain. We’re talking mental clarity, improved focus and concentration, and even a shift in mood. As a 48-year-old whose work requires focus and creativity, I was intrigued, but also nervous. Should I mess with a brain that, while not perfect, functions reasonably well? Advertisement Getting the EEG, which costs $100, was like meditating with a device strapped to my head, but it was more relaxing than that sounds. The tech gave me periodic updates, letting me know how much time had elapsed, and afterward I was ushered into an office where I met with Alexander Ring, director of applied science at Wave Neuroscience, via Zoom. Together we reviewed my “braincare report,” a one-page analysis generated in five minutes, comparing my brain waves with Wave Neuroscience’s database of tens of thousands of EEGs. Ring said my brain was generally performing well and that I showed cognitive flexibility and a capability to focus under pressure, but that I had a little bit more theta activity, or slow brain waves, than they normally like to see. He also pointed out a slight frequency mismatch between the back and front of my brain, which might affect my concentration and cause me to have to reread a paragraph to absorb the information. Rude, but accurate. © 2022 The Slate Group LLC. All rights reserved.

Keyword: Brain imaging; Attention
Link ID: 28347 - Posted: 06.01.2022

By Eiman Azim, Sliman Bensmaia, Lee E. Miller, Chris Versteeg Imagine you are playing the guitar. You’re seated, supporting the instrument’s weight across your lap. One hand strums; the other presses strings against the guitar’s neck to play chords. Your vision tracks sheet music on a page, and your hearing lets you listen to the sound. In addition, two other senses make playing this instrument possible. One of them, touch, tells you about your interactions with the guitar. Another, proprioception, tells you about your arms’ and hands’ positions and movements as you play. Together, these two capacities combine into what scientists call somatosensation, or body perception. Our skin and muscles have millions of sensors that contribute to somatosensation. Yet our brain does not become overwhelmed by the barrage of these inputs—or from any of our other senses, for that matter. You’re not distracted by the pinch of your shoes or the tug of the guitar strap as you play; you focus only on the sensory inputs that matter. The brain expertly enhances some signals and filters out others so that we can ignore distractions and focus on the most important details. How does the brain accomplish these feats of focus? In recent research at Northwestern University, the University of Chicago and the Salk Institute for Biological Studies in La Jolla, Calif., we have illuminated a new answer to this question. Through several studies, we have discovered that a small, largely ignored structure at the very bottom of the brain stem plays a critical role in the brain’s selection of sensory signals. The area is called the cuneate nucleus, or CN. Our research on the CN not only changes the scientific understanding of sensory processing, but it might also lay the groundwork for medical interventions to restore sensation in patients with injury or disease. © 2022 Scientific American

Keyword: Attention
Link ID: 28330 - Posted: 05.18.2022

Imma Perfetto Have you ever driven past an intersection and registered you should have turned right a street ago, or been in a conversation and, as soon as the words are out of your mouth, realised you really shouldn’t have said that thing you just did? It’s a phenomenon known as performance monitoring; an internal signal produced by the brain that lets you know when you’ve made a mistake. Performance monitoring is a kind of self-generated feedback that’s essential to managing our daily lives. Now, neuroscientists have discovered that signals from neurons in the brain’s medial frontal cortex are responsible for it. A new study published in Science reports that these signals are used to give humans the flexibility to learn new tasks and the focus to develop highly specific skills. “Part of the magic of the human brain is that it is so flexible,” says senior author Ueli Rutishauser, professor of Neurosurgery, Neurology, and Biomedical Sciences at Cedars-Sinai Medical Center, US. “We designed our study to decipher how the brain can generalise and specialise at the same time, both of which are critical for helping us pursue a goal.” They found that the performance monitoring signals help improve future attempts of a particular task by passing information to other areas of the brain. They also help the brain adjust its focus by signalling how much conflict or difficulty was encountered during the task. “An ‘Oops!’ moment might prompt someone to pay closer attention the next time they chat with a friend, or plan to stop at the store on the way home from work,” explains first author Zhongzheng Fu, researcher in the Rutishauser Laboratory at Cedars-Sinai.

Keyword: Attention; Learning & Memory
Link ID: 28322 - Posted: 05.11.2022

By Richard Sandomir Terry Wallis, who spontaneously regained his ability to speak after a traumatic brain injury left him virtually unresponsive for 19 years, and who then became a subject of a major study that showed how a damaged brain could heal itself, died on March 29 in a rehabilitation facility in Searcy, Ark. He was 57. He had pneumonia and heart problems, said his brother George Wallis, who confirmed the death. Terry Wallis was 19 when the pickup truck he was in with two friends skidded off a small bridge in the Ozark Mountains of northern Arkansas and landed upside down in a dry riverbed. The accident left him in a coma for a brief time, then in a persistent vegetative state for several months. One friend died; the other recovered. Until 2003, Mr. Wallis lay in a nursing home in a minimally conscious state, able to track objects with his eyes or blink on command. But on June 11, 2003, he effectively returned to the world when, upon seeing his mother, Angilee, he suddenly said, “Mom.” At the sight of the woman he was told was his adult daughter, Amber, who was six weeks old at the time of the accident, he said, “You’re beautiful,” and told her that he loved her. “Within a three-day period, from saying ‘Mom’ and ‘Pepsi,’ he had regained verbal fluency,” said Dr. Nicholas Schiff, a professor of neurology and neuroscience at Weill Cornell Medicine in Manhattan who led imaging studies of Mr. Wallis’s brain. The findings were presented in 2006 in The Journal of Clinical Investigation. “He was disoriented,” Dr. Schiff, in a phone interview, said of Mr. Wallis’s emergence. “He thought it was still 1984, but otherwise he knew all the people in his family and had that fluency.” Mr. Wallis’s brain scans — the first ever of a late-recovering patient — revealed changes in the strength of apparent connections within the back of the brain, which is believed to have helped his conscious awareness, and in the midline cerebellum, an area involved in motor control, which may have accounted for the very limited movement in his arms and legs while he was minimally conscious. © 2022 The New York Times Company

Keyword: Consciousness
Link ID: 28273 - Posted: 04.09.2022

Minuscule involuntary eye movements, known as microsaccades, can occur even while one is carefully staring at a fixed point in space. When paying attention to something in the peripheral vision (called covert attention), these microsaccades sometimes align towards the object of interest. New research by National Eye Institute (NEI) investigators shows that while these microsaccades seem to boost or diminish the strength of the brain signals underlying attention, the eye movements are not drivers of those brain signals. The findings will help researchers interpret studies about covert attention and may open new areas for research into attention disorders and behavior. NEI is part of the National Institutes of Health. Scientists working on the neuroscience of attention have recently become concerned that because both attention and eye movements, like microsaccades, involve the same groups of neurons in the brain, that microsaccades might be required for shifting attention. “If microsaccades were driving attention, that would bring into question a lot of previous research in the field.” said Richard Krauzlis, Ph.D., chief of the NEI Section on Eye Movements and Visual Selection, and senior author of a study report on the research. “This work shows that while microsaccades and attention do share some mechanisms, covert attention is not driven by eye movements.” Krauzlis’ previous research has shown that covert attention causes a modulation of certain neuronal signals in an evolutionarily ancient area of the brain called the superior colliculus, which is involved in the detection of events. When attention is being paid to a particular area – for example, the right-hand side of one’s peripheral vision – signals in the superior colliculus relating to events that occur in that area will receive an extra boost, while signals relating to events occurring somewhere else, like on the left-hand side, will be depressed.

Keyword: Attention; Vision
Link ID: 28254 - Posted: 03.26.2022

By Laura Sanders Like all writers, I spend large chunks of my time looking for words. When it comes to the ultracomplicated and mysterious brain, I need words that capture nuance and uncertainties. The right words confront and address hard questions about exactly what new scientific findings mean, and just as importantly, why they matter. The search for the right words is on my mind because of recent research on COVID-19 and the brain. As part of a large brain-scanning study, researchers found that infections of SARS-CoV-2, the virus that causes COVID-19, were linked with less gray matter, tissue that’s packed with the bodies of brain cells. The results, published March 7 in Nature, prompted headlines about COVID-19 causing brain damage and shrinkage. That coverage, in turn, prompted alarmed posts on social media, including mentions of early-onset dementia and brain rotting. As someone who has reported on brain research for more than a decade, I can say those alarming words are not the ones that I would choose here. The study is one of the first to look at structural changes in the brain before and after a SARS-CoV-2 infection. And the study is meticulous. It was done by an expert group of brain imaging researchers who have been doing this sort of research for a very long time. As part of the UK Biobank project, 785 participants underwent two MRI scans. Between those scans, 401 people had COVID-19 and 384 people did not. By comparing the before and after scans, researchers could spot changes in the people who had COVID-19 and compare those changes with people who didn’t get the infection. © Society for Science & the Public 2000–2022.

Keyword: Learning & Memory; Attention
Link ID: 28246 - Posted: 03.19.2022

Gabino Iglesias The Man Who Tasted Words is a deep dive into the world of our senses — one that explores the way they shape our reality and what happens when something malfunctions or functions differently. Despite the complicated science permeating the narrative and the plethora of medical explanations, the book is also part memoir. And because of the way the author, Dr. Guy Leschziner, treats his patients — and how he presents the ways their conditions affect their lives and those of the people around them — it is also a very humane, heartfelt book. We rely on vision, hearing, taste, smell, and touch to not only perceive the reality around us but also to help us navigate it by constantly processing stimuli, predicting what will happen based on previous experiences, and filling the gaps of everything we miss as we construct it. However, that truth, the "reality" we see, taste, hear, touch, and smell, isn't actually there; our brains, with the help of our nervous system continuously build it for us. But sometimes our brains or nervous system have a glitch, and that has affects reality. The Man Who Tasted Words carefully looks at — and tries to explain — some of the most bizarre glitches. Sponsor Message "What we believe to be a precise representation of the world around us is nothing more than an illusion, layer upon layer of processing of sensory information, and the interpretation of that information according to our expectations," states Leschziner. When one of those senses doesn't work correctly, that illusion morphs in ways that significantly impact the lives of those whose nervous systems or brain work differently. Paul, for example, is a man who feels no pain. While this sounds like a great "flaw" to have, Leschziner shows it's the opposite. Pain helps humans learn "to avoid sharp or hot objects." It teaches that certain things in our environment are potentially harmful, tells us when we've had an injury and makes us protect it, and even lets us know there's an infection in our body so we can go to the doctor. © 2022 npr

Keyword: Consciousness
Link ID: 28233 - Posted: 03.11.2022

By Maryam Clark, science writer Neuroscientists have recorded the activity of a dying human brain and discovered rhythmic brain wave patterns around the time of death that are similar to those occurring during dreaming, memory recall, and meditation. Now, a study published to Frontiers brings new insight into a possible organizational role of the brain during death and suggests an explanation for vivid life recall in near-death experiences. Imagine reliving your entire life in the space of seconds. Like a flash of lightning, you are outside of your body, watching memorable moments you lived through. This process, known as ‘life recall’, can be similar to what it’s like to have a near-death experience. What happens inside your brain during these experiences and after death are questions that have puzzled neuroscientists for centuries. However, a new study published to Frontiers in Aging Neuroscience suggests that your brain may remain active and coordinated during and even after the transition to death, and be programmed to orchestrate the whole ordeal. When an 87-year-old patient developed epilepsy, Dr Raul Vicente of the University of Tartu, Estonia and colleagues used continuous electroencephalography (EEG) to detect the seizures and treat the patient. During these recordings, the patient had a heart attack and passed away. This unexpected event allowed the scientists to record the activity of a dying human brain for the first time ever.

Keyword: Consciousness; Attention
Link ID: 28221 - Posted: 02.26.2022

Nicola Davis Science correspondent It may not yet feature in a West End musical but scientists say they have found an unexpected response to singin’ in the brain. Researchers say they have found particular groups of neurons that appear to respond selectively to the sound of singing. Writing in the journal Current Biology, a team of scientists in the US report how they made their discovery by recording electrical activity in the brains of 15 participants, each of whom had electrodes inserted inside their skulls to monitor epileptic seizures before undergoing surgery. The team recorded electrical activity in response to 165 different sounds, from pieces of instrumental music to speech and sounds such as dogs barking, and then processed them using an algorithm. They combined the results with data from fMRI brain scans previously collected from 30 different individuals to map the location of the patterns in the brain. Dr Samuel Norman-Haignere, a co-author of the study based at the University of Rochester, said the team decided to combine the data from the different approaches to overcome their respective weaknesses and combine their strengths. “fMRI is one of the workhorses of human cognitive neuroscience, but it is very coarse. Intracranial data is much more precise but has very poor spatial coverage,” he said. The results confirmed previous findings from fMRI scans that some neurons respond only to speech or respond more strongly to music. However, they also revealed populations of neurons that appear to respond selectively to the sound of singing, showing only very weak responses to other types of music or speech alone. © 2022 Guardian News & Media Limited

Keyword: Hearing; Attention
Link ID: 28217 - Posted: 02.23.2022

By Christina Caron When Chris Lawson began dating Alexandra Salamis, the woman who would eventually become his partner, he was “Mr. Super Attentive Dude,” he said, the type of guy who enjoyed buying cards and flowers for no reason other than to show how much he loved her. But after they moved in together in 2015, things changed. He became more distracted and forgetful. Whether it was chores, planning social events or anything deadline-driven — like renewing a driver’s license — Ms. Salamis, 60, had to continually prod Mr. Lawson to get things done. Invariably, she just ended up doing them herself. “I was responsible for nothing,” Mr. Lawson, 55, admitted. Ms. Salamis, who is not one to mince words, described that period of their relationship as “like living with a child,” later adding, “I hated him, frankly.” But when she brought up her frustrations, Mr. Lawson would become defensive. And as she continued to nag, she started to feel more like a parent than a partner, something they both resented. Then in 2019, at a friend’s suggestion, the pair read an article about how attention deficit hyperactivity disorder, or A.D.H.D., can affect romantic relationships. “We both kind of looked at each other and our jaws dropped,” Ms. Salamis said. The couple, who live in Ottawa, had discovered something millions of others have realized, often after years of conflict: One of them — in this case, Mr. Lawson — most likely had A.D.H.D., a neurodevelopmental disorder often characterized by inattention, disorganization, hyperactivity and impulsivity. When one or both members of a couple have A.D.H.D., the relationship typically has unique challenges, which are usually exacerbated when the disorder goes undiagnosed, experts say. Studies suggest that people with A.D.H.D. have higher levels of interpersonal problems than their peers do, and marriages that include adults with A.D.H.D. are more likely to be unsatisfying. Forums like the one found on the popular website A.D.H.D. and Marriage are often filled with stories of frazzled, emotionally spent spouses stuck in unhealthy, yearslong patterns. But if a couple makes a strong effort to learn more about the disorder, manage its symptoms and find more effective ways to communicate, they can revitalize their relationship. © 2022 The New York Times Company

Keyword: ADHD
Link ID: 28209 - Posted: 02.19.2022

By Conor Feehly There's a paradox in our ability to pay attention. When we are hyper-focused on our surroundings, our senses become more acutely aware of the signals they pick up. But sometimes when we are paying attention, we miss things in our sensory field that are so glaringly obvious, on a second look we can’t help but question the legitimacy of our perception. Back in 1999, the psychologist Daniel Simons created a clever scenario that poignantly demonstrates this phenomenon. (Test it yourself in less than two minutes by watching Simons’ video here, which we recommend before the spoiler below.) In the scenario, there are two teams, each consisting of three players, with one team dressed in black and the other in white. The viewer is asked to count how many passes the team in white makes throughout the course of the video. Sure enough, as the video ends, most people are able to accurately guess the number of passes. Then the narrator asks: But did you see the gorilla? As it turns out, someone in a gorilla suit slowly walks into the scene, in plain sight. Most people who watch the video for the first time and focus on counting passes completely overlook the out-of-place primate. It seems strange, given the viewer’s intent observation of the small field of view where the scene unfolds. Predictive Processing Neuroscientist Anil Seth offers an interesting explanation of this phenomenon in his book Being You: A New Science of Consciousness. Seth’s description draws from one of neuroscience’s leading theories of cognition and perception. © 2022 Kalmbach Media Co.

Keyword: Attention
Link ID: 28208 - Posted: 02.19.2022

By Emma Yasinski By the time kids diagnosed with attention deficit hyperactivity disorder meet with clinical psychologist Mary O’Connor, they have often been taking multiple medications or unusually high doses of stimulants like Ritalin. “They may have had a trial of stimulants that worked initially,” she says, but when the effect waned, their physicians prescribed higher doses, sometimes to the point of toxicity. O’Connor researches fetal alcohol spectrum disorders at the University of California, Los Angeles, where she has provided both diagnosis and treatment to children exposed to alcohol in the womb. At one end of the spectrum sits fetal alcohol syndrome, characterized by facial abnormalities, growth problems, and intellectual disabilities. The other end of the spectrum is characterized by subtler symptoms, including poor judgement and impulsivity — in other words, what looks to many like ADHD. But experts say standard ADHD treatments often don’t work as well for children exposed to alcohol in-utero. And lack of awareness, a shortage of specialists, and social stigma have combined to limit families’ ability to receive an accurate diagnosis and support for FASD, a condition that is underdiagnosed in the United States and could affect between 1 and 5 percent of this country’s children. The lack of diagnoses, scientists say, stifles research on treatments and may even cloud data on therapies for other disorders.

Keyword: ADHD; Drug Abuse
Link ID: 28206 - Posted: 02.16.2022

By Andrea Gawrylewski In 2016 a panel of physicists, a cosmologist and a philosopher gathered at the American Museum of Natural History to discuss an idea seemingly befitting science fiction: Are we living in a computer simulation? How exactly the flesh and blood of our brain is able to formulate an aware, self-examining mind capable of critical thought remains a mystery. Perhaps the answer eludes us because, the panel mused, we are the avatars of a higher species’ simulation and simply unable to discover the truth. As intriguing a hypothesis as it is, neuroscience has learned enough about our consciousness to counter such a fantastical possibility. Newly mapped networks within the human brain show regions that fire in concert to create cognition. Zapping the brain with magnetic pulses while recording neural activity might soon detect conscious thought, which could be especially useful for patients who are awake but unable to communicate or respond to external stimuli. These discoveries chip away at the isolating experience of humanity and the idea that a person can never truly know whether anyone but oneself is truly conscious. To some extent, we exist in our own bubbles of subjective experience. A growing body of evidence suggests that perception is a construction of the brain. Because the brain initiates some actions before we become aware that we have made a decision, we might even deduce that each of us is some kind of biochemical puppet, but experiments confirm that we do indeed have free will. And our cognition clearly results from highly evolved neural mechanisms, common to all of us, for making new memories, navigating social relationships and recognizing faces. Ultimately a shared sense of reality influences how we perceive ourselves and the formation of “in-groups” and “out-groups,” which can create social and political division. © 2022 Scientific American

Keyword: Consciousness
Link ID: 28180 - Posted: 02.02.2022