Links for Keyword: Animal Communication

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 81 - 100 of 249

By Rachael Lallensack Goats know who their real friends are. A study published today in Royal Society Open Science shows that the animals can recognize what other goats look like and sound like, but only those they are closest with. Up until the late 1960s, the overwhelming assumption was that only humans could mentally keep track of how other individuals look, smell, and sound—what scientists call cross-modal recognition. We now know that many different kinds of animals can do this like horses, lions, crows, dogs, and certain primates. Instead of a lab, these researchers settled into Buttercups Sanctuary for Goats in Boughton Monchelsea, U.K., to find out whether goats had the ability to recognize each other. To do so, they first recorded the calls of individual goats. Then, they set up three pens in the shape of a triangle in the sanctuary’s pasture. Equidistant between the two pens at the base of the triangle was a stereo speaker, camouflaged as to not distract the goat participants. A “watcher” goat stood at the peak of the triangle, and the two remaining corners were filled with the watcher’s “stablemate” (they share a stall at night) and a random herd member. Then, the team would play either the stablemate’s or the random goat’s call over the speaker and time how long it took for the watcher to match the call with the correct goat. They repeated this test again, but with two random goats. The researchers found that the watcher goat would look at the goat that matched the call quickly and for a longer time, but only in the test that included their stablemate. The results indicate that goats are not only capable of cross-modal recognition, but that they might also be able to use inferential reasoning, in other words, process of elimination. Think back to the test: Perhaps when the goat heard a call that it knew was not its pal, it inferred that it must have been the other one. © 2017 American Association for the Advancement of Science.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 9: Hearing, Balance, Taste, and Smell
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 23229 - Posted: 02.15.2017

Squid and their cephalopod brethren have been the inspiration for many a science fiction creature. Their slippery appendages, huge proportions, and inking abilities can be downright shudder-inducing. (See: Arrival.) But you should probably be more concerned by the cephalopod’s huge brain—which not only helps it solve tricky puzzles, but also lets it converse in its own sign language. Right now, you’re probably imagining twisted tentacles spelling out creepy cephalopod communiqués. But it’s not that: Certain kinds of squid send messages by manipulating the color of their skin. “Their body patterning is fantastic, fabulous,” says Chuan-Chin Chiao, a neuroscientist at National Tsing Hua University in Taiwan. They can display bands, or stripes, or turn completely dark or light. And Chiao is trying to crack their code. Chiao got his inspiration from physiologist B. B. Boycott, who in the 1960s showed that the cuttlefish brain was the control center for changing skin color. Boycott copied his technique from neurosurgeon Wilder Penfield, who treated epilepsy patients by burning out the misbehaving bits of their brains. While their grey matter was exposed for surgery, Penfield also applied a gentle current through the electrodes in his patients’ brains. You know, just to see what would happen. A zap in one spot above the ears caused a tingle in the left hand. In another spot, tingles in the leg. And so Penfield discovered that the sensory cortex is a homunculus, with specific brain areas mapping onto different parts of your body. Over time, scientists tried the electrical stimulation technique on all kinds of animals—including Boycott’s cuttlefish.

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 23199 - Posted: 02.08.2017

By Virginia Morell We often say the same sweet, nonsensical things to our dogs that we say to our babies—and in almost the same slow, high-pitched voice. Now, scientists have shown that puppies find our pooch-directed speech exciting, whereas older dogs are somewhat indifferent. The findings show, for the first time, that young dogs respond to this way of talking, and that it may help them learn words—as such talk does with human babies. To find out how dogs reacted to human speech, Nicolas Mathevon, a bioacoustician at the University of Lyon in Saint Étienne, France, and his colleagues first recorded the voices of 30 women as they looked at a dog’s photograph and read from a script, “Hi! Hello cutie! Who’s a good boy? Come here! Good boy! Yes! Come here sweetie pie! What a good boy!” (The scientists were afraid the women would ad lib if they spoke to a real dog.) The women also repeated the passage to a person. When the scientists compared the human- and dog-directed speech, they found that, as expected, the women spoke in distinctive, high-pitched, sing-song tones to the pooches—but not the humans. “It didn’t matter if it was a puppy or an adult dog,” Mathevon says. But the women did speak at an even higher pitch when looking at puppy photos. Next, the researchers played these recordings in short trials with 10 puppies and 10 adult dogs at a New York City animal shelter and videotaped their responses. Nine of the puppies reacted strongly, barking and running toward the loudspeaker even when the recording had been made for an older dog, the team reports today in the Proceedings of the Royal Society B. Some even bent toward the loudspeaker in a play bow, a pose meant to initiate horseplay, suggesting they may regard dog-directed speech as “an invitation to play,” Mathevon says. © 2017 American Association for the Advancement of Science.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 11: Emotions, Aggression, and Stress
Link ID: 23082 - Posted: 01.11.2017

By Alice Klein It’s something all whale-watchers yearn to see. The sight of whales breaking the surface and slapping their fins on the water is a true spectacle – but the animals don’t do it just for show. Instead, it appears that all that splashing is about messaging other whales, and the big splashes are for long-distance calls. Ailbhe Kavanagh at the University of Queensland in Gatton, Australia, and her colleagues studied 94 different groups of humpback whales migrating south along the Queensland coast in 2010 and 2011. Humpback whales regularly leap out of the water and twist on to their backs – an action known as breaching – and slap their tails and fins in a repetitive fashion. The resulting sounds travel underwater and could possibly communicate messages to other whales. Drowning in sound: The sad case of the baby beluga whales The team found evidence for this idea. The animals were significantly more likely to breach when the nearest other whale group was more than 4 kilometres away, suggesting that the body-slapping sound of breaching was used to signal to distant groups. In contrast, repetitive tail and pectoral-fin slapping appeared to be for close-range communication. There was a sudden increase in this behaviour just before new whales joined or the group split up. © Copyright Reed Business Information Ltd.

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 22948 - Posted: 12.05.2016

By NATALIE ANGIER Their word is their bond, and they do what they say — even if the “word” on one side is a loud trill and grunt, and, on the other, the excited twitterings of a bird. Researchers have long known that among certain traditional cultures of Africa, people forage for wild honey with the help of honeyguides — woodpecker-like birds that show tribesmen where the best beehives are hidden, high up in trees. In return for revealing the location of natural honey pots, the birds are rewarded with the leftover beeswax, which they eagerly devour. Now scientists have determined that humans and their honeyguides communicate with each other through an extraordinary exchange of sounds and gestures, which are used only for honey hunting and serve to convey enthusiasm, trustworthiness and a commitment to the dangerous business of separating bees from their hives. The findings cast fresh light on one of only a few known examples of cooperation between humans and free-living wild animals, a partnership that may well predate the love affair between people and their domesticated dogs by hundreds of thousands of years. Claire N. Spottiswoode, a behavioral ecologist at Cambridge University, and her colleagues reported in the journal Science that honeyguides advertise their scout readiness to the Yao people of northern Mozambique by flying up close while emitting a loud chattering cry. For their part, the Yao seek to recruit and retain honeyguides with a distinctive vocalization, a firmly trilled “brrr” followed by a grunted “hmm.” In a series of careful experiments, the researchers then showed that honeyguides take the meaning of the familiar ahoy seriously. The birds were twice as likely to offer sustained help to Yao foragers who walked along while playing recordings of the proper brrr-hmm signal than they were to participants with recordings of normal Yao words or the sounds of other animals. © 2016 The New York Times Company

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 22468 - Posted: 07.23.2016

by Helen Thompson Young zebra finches (Taeniopygia guttata) learn to sing from a teacher, usually dad. Remembering dad’s tunes may even be hardwired into the birds’ brains. Researchers at the Okinawa Institute of Science and Technology in Japan measured activity in the brains of male juvenile birds listening to recordings of singing adult males, including their fathers. The team focused its efforts on neurons in a part of the brain called the caudomedial nidopallium that’s thought to influence song learning and memory. A subset of neurons in the caudomedial nidopallium lit up in response to songs performed by dad but not those of strangers, the team reports June 21 in Nature Communications. The more baby birds heard songs, the more their neurons responded and the clearer their own songs became. Sleep and a neurotransmitter called GABA influenced this selectivity. The researchers suggest that this particular region of the brain stores song memories as finches learn to sing, and GABA may drive the storage of dad’s songs over others. Researchers played a variety of sounds for young zebra finches: their own song, dad’s song and songs and calls from other adult finches. Over time, their songs became more and more similar to that of their father. |© Society for Science & the Public 2000 - 2016

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 13: Memory and Learning
Link ID: 22351 - Posted: 06.23.2016

By SINDYA N. BHANOO Male zebra finches learn their courtship songs from their fathers. Now, a new study details the precise changes in brain circuitry that occur during that process. As a young male listens to his father’s song, networks of brain cells are activated that the younger bird will use later to sing the song himself, researchers have found. As the learning process occurs, inhibitory cells suppress further activity in the area and help sculpt the song into a permanent memory. “These inhibitory cells are really smart — once you’ve gotten a part of the song down, the area gets locked,” said Michael Long, a neuroscientist at NYU Langone Medical Center and an author of the new study, which appears in the journal Science. Zebra finches learn their courtship song from their fathers and reach sexual maturity in about 100 days. At this point, they ignore their fathers’ tutoring altogether, Dr. Long said. In their study, he and his colleagues played recorded courtship songs to young and old birds and monitored neural activity in their brains. In sexually mature birds, the courtship song did not elicit any neural response. Understanding the role of the inhibitory cells in the brain could help researchers develop ways to manipulate this network, Dr. Long said. “Maybe we could teach old birds new tricks,” he said. “And extrapolating widely, maybe we could even do this in mammals, maybe even humans, and enrich learning.” © 2016 The New York Times Company

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 8: Hormones and Sex
Link ID: 21798 - Posted: 01.19.2016

By Emily Underwood The boisterous songs a male zebra finch sings to his mate might not sound all that melodious to humans—some have compared them to squeaky dog toys—but the courtship tunes are stunningly complex, with thousands of variations. Now, a new study helps explain how the birds master such an impressive repertoire. As they learn from a tutor, usually their father, their brains tune out phrases they’ve already studied, allowing them to focus on unfamiliar sections bit by bit. The mechanism could help explain how other animals, including humans, learn complex skills, scientists say. The study is a “technical tour de force,” and “an important advance in our understanding of mechanisms of vocal learning and of motor learning generally,” says Erich Jarvis, a neuroscientist at Duke University in Durham, North Carolina. Many species—including humans, chimpanzees, crows, dolphins, and even octopuses—learn complex behaviors by imitating their peers and parents, but little is known about how that process works on a neuronal level. In the case of zebra finches, young males spend the whole of their teenage lives trying to copy their fathers, says Michael Long, a neuroscientist at New York University in New York City. It comes out “all wrong” at first, but after practicing hundreds of times, the birds “sound a lot like dad.” In the new study, Long’s graduate student Daniela Vallentin used a tiny electrode implant to record the activity of neurons in a region of the finch brain called the HVC, which is essential for birdsong learning and production. Weighing less than a penny, the implant can be affixed to a bird’s head and record activity in the brains of freely moving and singing birds, Long says. The researchers also used a powerful light microscope to visualize the activity of individual neurons as the birds listened to a fake “tutor” bird that taught young finches only one “syllable” of a song at a time. © 2016 American Association for the Advancement of Science.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 8: Hormones and Sex
Link ID: 21797 - Posted: 01.18.2016

by Sarah Zielinski When you get a phone call or a text from a friend or acquaintance, how fast you respond — or whether you even bother to pick up your phone — often depends on the quality of the relationship you have with that person. If it’s your best friend or mom, you probably pick up right away. If it’s that annoying coworker contacting you on Sunday morning, you might ignore it. Ring-tailed lemurs, it seems, are even pickier in who they choose to respond to. They only respond to calls from close buddies, a new study finds. These aren’t phone calls but contact calls. Ring-tailed lemurs live in female-dominated groups of 11 to 16, and up to 25, animals, and when the group is on the move, it’s common for one member to yell out a “meow!” and for other members to “meow!” back. A lemur may also make the call if it gets lost. The calls serve to keep the group together. The main way ring-tailed lemurs (and many other primates) build friendships, though, is through grooming. Grooming helps maintain health and hygiene and, more importantly, bonds between members. It’s a time-consuming endeavor, and animals have to be picky about who they bother to groom. Ipek Kulahci and colleagues at Princeton University wanted to see if there was a link between relationships built through grooming and vocal exchanges among ring-tailed lemurs. Contact calls don’t require nearly as much time or effort as grooming sessions, so it is possible that animals could be less discriminating when they respond to calls. But, the researchers reasoned, if the vocalizations were a way of maintaining the relationships built through painstaking grooming sessions, then the lemurs would be as picky in their responses as in their grooming partners. © Society for Science & the Public 2000 - 2015.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 21727 - Posted: 12.29.2015

By C. CLAIBORNE RAY Q. We know that aquatic mammals communicate with one another, but what about fish? A. Fish have long been known to communicate by several silent mechanisms, but more recently researchers have found evidence that some species also use sound. It is well known that fish communicate by gesture and motion, as in the highly regimented synchronized swimming of schools of fish. Some species use electrical pulses as signals, and some use bioluminescence, like that of the firefly. Some kinds of fish also release chemicals that can be sensed by smell or taste. In 2011, a scientist in New Zealand suggested that what might be called fish vocalization has a role, at least in some ocean fish. In the widely publicized work, done for his doctoral thesis at the University of Auckland, Shahriman Ghazali recorded reef fish in the wild and in captivity, and found two dominant vocalizations, the croak and the purr, in choruses that lasted up to three hours, as well as a previously undescribed popping sound. The sounds of one species recorded in captivity — the bigeye, or Pempheris adspersa — carried 100 feet or more, and the researcher suggested it could be used to keep a group of fish together during nocturnal foraging. Another species, the bluefin gurnard, or Chelidonichthys kumu, was also very noisy, he found. “Vocalization” is a bit of a misnomer, as the sounds these fish make are produced by contracting and vibrating the swim bladder, not by using the mouth. © 2015 The New York Times Company

Related chapters from BN: Chapter 9: Hearing, Balance, Taste, and Smell; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 15: Language and Lateralization
Link ID: 21697 - Posted: 12.14.2015

Susan Milius Electric eels are even more shocking than biologists thought. When prey fights back, eels just — curl their tails. Muscle has evolved “into a battery” independently in two groups of fishes, explains Kenneth Catania of Vanderbilt University in Nashville. Smaller species send out slight tingles of electric current that detect the fish’s surroundings in murky nighttime water. People can handle these small fishes and not feel even a tickle. But touching the bigger Electrophorus electricus (a member of a South American group of battery-included fishes)“is reminiscent of walking into an electric fence on a farm,” Catania says. (He knows, unintentionally, from experience.) The modified muscle that works as an electricity-generating organ in the eel has just on/off power. But eels have a unique way of intensifying the effect, Catania reports October 28 in Current Biology. Catania has tussled with eels using what he calls his electric eel chew toy — a dead fish on a stick with electrodes inside the carcass to measure current. When fighting difficult prey Iike the recalcitrant toy, eels curl their tails toward the fish struggling in their jaws. This bend puts the electrically negative tail-end of the long battery organ closer to the electrically positive front end, effectively concentrating the electric field on the prey. An eel’s tail curl can double the strength of the electric field convulsing the prey. © Society for Science & the Public 2000 - 2015.

Related chapters from BN: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 21581 - Posted: 10.29.2015

By JAMES GORMAN Among the deep and intriguing phenomena that attract intense scientific interest are the birth and death of the universe, the intricacies of the human brain and the way dogs look at humans. That gaze — interpreted as loving or slavish, inquisitive or dumb — can cause dog lovers to melt, cat lovers to snicker, and researchers in animal cognition to put sausage into containers and see what wolves and dogs will do to get at it. More than one experiment has made some things pretty clear. Dogs look at humans much more than wolves do. Wolves tend to put their nose to the Tupperware and keep at it. This evidence has led to the unsurprising conclusion that dogs are more socially connected to humans and wolves more self-reliant. Once you get beyond the basics, however, agreement is elusive. In order to assess the latest bit of research, published in Biology Letters Tuesday by Monique Udell at Oregon State University, some context can be drawn from an earlier experiment that got a lot of attention more than a decade ago. In a much publicized paper in 2003, Adam Miklosi, now director of the Family Dog Project, at Eotvos Lorand University in Budapest, described work in which dogs and wolves who were raised by humans learned to open a container to get food. Then they were presented with the same container, modified so that it could not be opened. Wolves persisted, trying to solve the unsolvable problem, while dogs looked back at nearby humans. At first glance it might seem to a dog lover that the dogs were brilliant, saying, in essence, “Can I get some help here? You closed it; you open it.” But Dr. Miklosi didn’t say that. He concluded that dogs have a genetic predisposition to look at humans, which could have been the basis for the intense but often imperfect communication that dogs and people engage in. © 2015 The New York Times Company

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 21416 - Posted: 09.16.2015

Christopher Joyce Ornithologist Arthur Allen of the Cornell Lab or Ornithology was a pioneer, hauling balky recording gear into the wilderness in the 1940s, and actually cutting acetate records of bird song on-site. Let's fast forward 45 years, and talk to Ted Parker, who inherited Allen's gift for recording birds and but added a twist. "Up here in the canopy, these are the hardest birds to detect," he told an NPR Radio Expeditions team in 1991 in the Bolivian rain forest. Parker was an ornithologist with Conservation International who spent months at a time in the tropics, lugging around a portable tape recorder. His skill in using his ears to investigate the world was legendary. "My parents bought me records of bird recordings that were made by people at Cornell," Parker tells the NPR team in 1991. "I spent hours moving the needle back and forth, and back and forth, and my mother would say, 'You are going to destroy the record player.' " Some called Parker the Mozart of ornithology. He'd memorized the sounds of more than 4,000 bird species. He used this knowledge and his tape recorder to quickly take an extensive and detailed census of birds in the tropics. "These birds spend all their time in that foliage that's 130 to 140 feet above the ground," Parker explains on the tape. "And if you don't know their voices, there's no way you could come to a place like this and come up with a good list of canopy species." © 2015 NPR

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 9: Hearing, Balance, Taste, and Smell
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 21380 - Posted: 09.03.2015

Christopher Joyce Male treehoppers make their abdomens thrum like tuning forks to transmit very particular vibrating signals that travel down their legs and along leaf stems to other bugs — male and female. Male treehoppers make their abdomens thrum like tuning forks to transmit very particular vibrating signals that travel down their legs and along leaf stems to other bugs — male and female. Courtesy of Robert Oelman Animals, including humans, feel sound as well as hear it, and some of the most meaningful audio communication happens at frequencies that people can't hear. Elephants, for example, use these low-frequency rumbles to, among other things, find family or a mate across long distances. Whales do it, too. But you don't have to weigh a ton to rumble. In fact, you don't have to be bigger than a pea. Consider, for example, the treehopper, a curious little sap-sucking insect that lives on the stems of leaves. Or the tree cricket, which communicates by rubbing together tooth-like structures on its wings, the way you might draw your thumb across the teeth of a comb. University of Missouri biologist Rex Cocroft has spent much of his career listening closely to treehoppers. In 1999, a team from NPR's Radio Expeditions program rendezvoused with Cocroft at a locust tree in a backyard in Virginia. Soft-spoken and bespectacled, he was pressing a phonograph needle up against the stem of a leaf. © 2015 NPR

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 9: Hearing, Balance, Taste, and Smell
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 21346 - Posted: 08.27.2015

By Virginia Morell When we listen to someone talking, we hear some sounds that combine to make words and other sounds that convey such things as the speaker’s emotions and gender. The left hemisphere of our brain manages the first task, while the right hemisphere specializes in the second. Dogs also have this kind of hemispheric bias when listening to the sounds of other dogs. But do they have it with human sounds? To find out, two scientists had dogs sit facing two speakers. The researchers then played a recorded short sentence—“Come on, then”—and watched which way the dogs turned. When the animals heard recordings in which individual words were strongly emphasized, they turned to the right—indicating that their left hemispheres were engaged. But when they listened to recordings that had exaggerated intonations, they turned to the left—a sign that the right hemisphere was responding. Thus, dogs seem to process the elements of speech very similarly to the way humans do, the scientists report online today in Current Biology. According to the researchers, the findings support the idea that our canine pals are indeed paying close attention not only to who we are and how we say things, but also to what we say. © 2014 American Association for the Advancement of Science.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 20366 - Posted: 11.29.2014

by Catherine Brahic Once described as the finest sound in nature, the song of the North American hermit thrush has long captivated the human ear. For centuries, birdwatchers have compared it to human music – and it turns out they were on to something. The bird's song is beautifully described by the same maths that underlies human harmonies. To our ears, two notes usually sound harmonious together if they follow a set mathematical relationship. An octave is a doubling of frequencies. Tripling the frequency of sound produces a perfect fifth, quadrupling is yet another octave, and quintupling produces a perfect third. These relationships define the most common major chords – the ones that, across human cultures, we tend to find most pleasant to listen to. Early studies sought to determine whether these mathematical relationships also governed the notes in bird song. Studies in the white-throated sparrow and the northern nightingale-wren failed to find the same musical intervals as those used in human music, and deemed birdsong to be something different entirely. Making tweet music The song of the hermit thrush challenges that conclusion. Tecumseh Fitch of the University of Vienna in Austria and colleagues analysed recordings taken in the wild of 70 full songs from this species. They isolated the frequencies corresponding to each note, and calculated the relationships between pitches appearing in each song. Lo and behold, the vast majority of songs used notes that fitted the same simple mathematical ratios as human harmony. What's more, Fitch says the thrush can produce other notes - meaning it must choose to use these harmonic chords. © Copyright Reed Business Information Ltd.

Related chapters from BN: Chapter 9: Hearing, Balance, Taste, and Smell; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 8: Hormones and Sex
Link ID: 20274 - Posted: 11.04.2014

GrrlScientist Since today is caturday, that wonderful day when the blogosphere takes a breather from hell-raising to celebrate pets, I thought some of my favourite animals: corvids. I ran across this lovely video created by Cornell University’s Laboratory of Ornithology (more fondly referred to as the “Lab of O”) that discusses the differences between and potential meanings of the sounds made by crows and ravens. If you watch birds, even casually, you might be confused by trying to distinguish these two large black corvid species. However, both species are quite chatty, and these birds’ sounds provide important identifying information. In this video, narrated by Kevin McGowan, an ornithologist at the Cornell Lab of O, you’ll learn how to distinguish crows and ravens on the basis of their voices alone. Both crows and ravens make loud raspy signature calls, described as “caw” and “kraa” respectively, but American crows and common ravens have large repertoires of sounds in addition to these calls. They also can learn to imitate the calls of other birds. As you’ll learn in this video, crows often make a “rattle” sound along with their territorial “caw”. They also communicate using a wide variety of other sounds including clicks and bell-like notes. Ravens, on the other hand, produce deep, throaty kraa calls.

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 20255 - Posted: 10.29.2014

With the passing away of Professor Allison Doupe on Friday, October 24, of cancer, UCSF and biomedical science have lost a scholar of extraordinary intelligence and erudition and a campus leader. Allison Doupe was a psychiatrist and systems neuroscientist who became a leader of her field, the study of sensorimotor learning and its neural control. Allison was recruited to the Departments of Psychiatry and Physiology and the Neuroscience Graduate Program in 1993, rising to Professor in 2000. Her academic career has been outstanding at every stage, including First Class Honors at McGill, an MD and PhD in Neurobiology from Harvard, and a prestigious Junior Fellowship from the Harvard University Society of Fellows. Her PhD work with Professor Paul Patterson definitively established the role of particular environmental factors in the development of autonomic neurons and was important in the molecular and cellular investigations of the roles of hormones and growth factors in that system. After internship at the Massachusetts General Hospital and residency in psychiatry at UCLA, she chose to pursue a postdoctoral fellowship at Caltech, studying song learning in birds with Professor Mark Konishi as a way of combining her clinical interests in behavior and development with research in cognitive neuroscience. The development of birdsong is in many important respects similar to language development in humans. The pioneering work of Peter Marler, on song sparrows in Golden Gate Park, showed that each baby songbird learns its father’s dialect but could readily learn the dialect of any singing bird of the same species placed in the role of tutor. Many birds, including the ones studied by Allison Doupe, learn their song by listening to their father sing during a period of life in which they are not themselves singing, and they later practice and perfect their own song by comparison with their memory of the father’s (or tutor’s) song.

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 20248 - Posted: 10.28.2014

By Jia You Fish larvae emit sound—much to the surprise of biologists. A common coral reef fish in Florida, the gray snapper—Lutjanus griseus (pictured above)—hatches in the open ocean and spends its juvenile years in food-rich seagrass beds hiding from predators before settling in the reefs as an adult. To study how larval snappers orient themselves in the dark, marine biologists deployed transparent acrylic chambers equipped with light and sound sensors under the water to capture the swimming schools as they travel to the seagrass beds on new-moon nights. The larval snappers make a short “knock” sound that adults also make, as well as a long “growl” sound, the team reports online today in Biology Letters. The researchers suspect that the larvae use the acoustic signals to communicate with one another and stay together in schools. If so, human noise pollution could be interrupting their communications—even adult fish have been found to “yell” to be heard above boat noises. © 2014 American Association for the Advancement of Science.

Related chapters from BN: Chapter 9: Hearing, Balance, Taste, and Smell; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 20139 - Posted: 10.01.2014

By Lesley Evans Ogden Humans are noisy creatures, our cacophony of jet engines and jackhammering drowning out the communications of other species. In response, a number of animals, including marmosets and whales, turn up their own volume to be heard above the din, a phenomenon called the Lombard effect. A new study reveals that even fish “shout.” Researchers took a close look at the blacktail shiner (Cyprinella venusta), which is common to freshwater streams of the southeastern United States and whose short-distance acoustic signals are often exposed to boat and road noise. Only male shiners make sounds; popping sounds called knocks are used aggressively toward other males, while staticky-sounding “growls” are used for courtship, both heard in the above video. When the scientists brought the fish back to the lab and cranked up white noise from an underwater amplifier, they found that shiner males emitted fewer, shorter pulses, and cranked up the volume of their acoustic signals to be heard above background noise. Published in Behavioral Ecology, it’s the first study documenting the Lombard effect in fish, suggesting that freshwater fish are another group potentially impacted by our ever-increasing hubbub. © 2014 American Association for the Advancement of Science

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 9: Hearing, Balance, Taste, and Smell
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 20059 - Posted: 09.11.2014