Chapter 6. Evolution of the Brain and Behavior
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
By Michael Erard In many Western societies, parents eagerly await their children’s first words, then celebrate their arrival. There’s also a vast scientific and popular attention to early child language. Yet there is (and was) surprisingly little hullabaloo sparked by the first words and hand signs displayed by great apes. WHAT I LEFT OUT is a recurring feature in which book authors are invited to share anecdotes and narratives that, for whatever reason, did not make it into their final manuscripts. In this installment, author and linguist Michael Erard shares a story that didn’t make it into his recent book “Bye Bye I Love You: The Story of Our First and Last Words” (MIT Press, 344 pages.) As far back as 1916, scientists have been exploring the linguistic abilities of humans’ closest relatives by raising them in language-rich environments. But the first moments in which these animals did cross a communication threshold created relatively little fuss in both the scientific literature and the media. Why? Consider, for example, the first sign by Washoe, a young chimpanzee that was captured in the wild and transported in 1966 to a laboratory at the University of Nevada, where she was studied by two researchers, Allen Gardner and Beatrice Gardner. Washoe was taught American Sign Language in family-like settings that would be conducive to communicative situations. “Her human companions,” wrote the Gardners in 1969, “were to be friends and playmates as well as providers and protectors, and they were to introduce a great many games and activities that would be likely to result in maximum interaction.” When the Gardners wrote about the experiments, they did note her first uses of specific signs, such as “toothbrush,” that didn’t seem to echo a sign a human had just used. These moments weren’t ignored, yet you have to pay very close attention to their writings to find the slightest awe or enthusiasm. Fireworks it is not.
Keyword: Language; Evolution
Link ID: 29753 - Posted: 04.23.2025
By Gayoung Lee edited by Allison Parshall Crows sometimes have a bad rap: they’re said to be loud and disruptive, and myths surrounding the birds tend to link them to death or misfortune. But crows deserve more love and charity, says Andreas Nieder, a neurophysiologist at the University of Tübingen in Germany. They not only can be incredibly cute, cuddly and social but also are extremely smart—especially when it comes to geometry, as Nieder has found. In a paper published on Friday in Science Advances, Nieder and his colleagues report that crows display an impressive aptitude at distinguishing shapes by using geometric irregularities as a cognitive cue. These crows could even discern quite subtle differences. For the experiment, the crows perched in front of a digital screen that, almost like a video game, displayed progressively more complex combinations of shapes. First, the crows were taught to peck at a certain shape for a reward. Then they were presented with that same shape among five others—for example, one star shape placed among five moon shapes—and were rewarded if they correctly picked the "outlier." “Initially [the outlier] was very obvious,” Nieder says. But once the crows appeared to have familiarized themselves with how the “game” worked, Nieder and his team introduced more similar quadrilateral shapes to see if the crows would still be able to identify outliers. “And they could tell us, for instance, if they saw a figure that was just not a square, slightly skewed, among all the other squares,” Nieder says. “They really could do this spontaneously [and] discriminate the outlier shapes based on the geometric differences without us needing them to train them additionally.” Even when the researchers stopped rewarding them with treats, the crows continued to peck the outliers. © 2024 SCIENTIFIC AMERICAN,
Keyword: Evolution; Intelligence
Link ID: 29741 - Posted: 04.12.2025
By Yasemin Saplakoglu Humans tend to put our own intelligence on a pedestal. Our brains can do math, employ logic, explore abstractions and think critically. But we can’t claim a monopoly on thought. Among a variety of nonhuman species known to display intelligent behavior, birds have been shown time and again to have advanced cognitive abilities. Ravens plan (opens a new tab) for the future, crows count and use tools (opens a new tab), cockatoos open and pillage (opens a new tab) booby-trapped garbage cans, and chickadees keep track (opens a new tab) of tens of thousands of seeds cached across a landscape. Notably, birds achieve such feats with brains that look completely different from ours: They’re smaller and lack the highly organized structures that scientists associate with mammalian intelligence. “A bird with a 10-gram brain is doing pretty much the same as a chimp with a 400-gram brain,” said Onur Güntürkün (opens a new tab), who studies brain structures at Ruhr University Bochum in Germany. “How is it possible?” Researchers have long debated about the relationship between avian and mammalian intelligences. One possibility is that intelligence in vertebrates — animals with backbones, including mammals and birds — evolved once. In that case, both groups would have inherited the complex neural pathways that support cognition from a common ancestor: a lizardlike creature that lived 320 million years ago, when Earth’s continents were squished into one landmass. The other possibility is that the kinds of neural circuits that support vertebrate intelligence evolved independently in birds and mammals. It’s hard to track down which path evolution took, given that any trace of the ancient ancestor’s actual brain vanished in a geological blink. So biologists have taken other approaches — such as comparing brain structures in adult and developing animals today — to piece together how this kind of neurobiological complexity might have emerged. © 2025 Simons Foundation
Keyword: Intelligence; Evolution
Link ID: 29738 - Posted: 04.09.2025
is a psychologist, writer and professor in the history and philosophy of science programme at the University of Melbourne. She is the author of Delusions of Gender: How Our Minds, Society, and Neurosexism Create Difference (2010), Testosterone Rex: Myths of Sex, Science, and Society (2017) and Patriarchy Inc.: What We Get Wrong About Gender Equality – and Why Men Still Win at Work (2025). She lives in Melbourne, Australia. Carole Hooven is a human evolutionary biologist with a focus on behavioural endocrinology. She is a nonresident senior fellow at the American Enterprise Institute, an associate in Harvard’s Department of Psychology, and the author of T: The Story of Testosterone, the Hormone That Dominates and Divides Us (2021). She lives in Cambridge, Massachusetts. Does biology determine destiny, or is society the dominant cause of masculine and feminine traits? In this spirited exchange, the psychologist Cordelia Fine and the evolutionary biologist Carole Hooven unpack the complex relationship between testosterone and human behaviour. Fine emphasises variability, flexibility and context – seeing gender as shaped by social forces as much as it is by hormones. By contrast, Hooven stresses consistent patterns; while acknowledging the influence of culture and the differences between individuals, she maintains that biology explains why certain sex-linked behaviours persist across cultures. © Aeon Media Group Ltd. 2012-2025.
Keyword: Sexual Behavior; Evolution
Link ID: 29733 - Posted: 04.09.2025
By Carl Zimmer After listening to hundreds of hours of ape calls, a team of scientists say they have detected a hallmark of human language: the ability to put together strings of sounds to create new meanings. The provocative finding, published Thursday in the journal Science, drew praise from some scholars and skepticism from others. Federica Amici, a primatologist at the University of Leipzig in Germany, said that the study helped place the roots of language even further back in time, to millions of years before the emergence of our species. “Differences between humans and other primates, including in communication, are far less distinct and well-defined than we have long assumed,” Dr. Amici said. But other researchers said that the study, which had been conducted on bonobos, close relatives of chimpanzees, had little to reveal about how we use words. “The present findings don’t tell us anything about the evolution of language,” said Johan Bolhuis, a neurobiologist at Utrecht University in the Netherlands. Many species can communicate with sounds. But when an animal makes a sound, it typically means just one thing. Monkeys, for instance, can make one warning call in reference to a leopard and a different one for an incoming eagle flying. In contrast, we humans can string words together in ways that combine their individual meanings into something new. Suppose I say, “I am a bad dancer.” When I combine the words “bad” and “dancer,” I no longer mean them independently; I’m not saying, “I am a bad person who also happens to dance.” Instead, I mean that I don’t dance well. Linguists call this compositionality, and have long considered it an essential ingredient of language. “It’s the force behind language’s creativity and productivity,” said Simon Townsend, a comparative psychologist at the University of Zurich in Switzerland. “Theoretically, you can come up with any phrase that has never been uttered before.” © 2025 The New York Times Company
Keyword: Language; Evolution
Link ID: 29730 - Posted: 04.05.2025
By Nathan H. Lents For generations, anthropologists have argued whether humans are evolved for monogamy or some other mating system, such as polygyny, polyandry, or promiscuity. But any exploration of monogamy must begin with a bifurcation of the concept into two completely different phenomena: social monogamy and sexual monogamy. WHAT I LEFT OUT is a recurring feature in which book authors are invited to share anecdotes and narratives that, for whatever reason, did not make it into their final manuscripts. In this installment, author Nathan H. Lents, professor of biology at John Jay College, shares a story that didn’t make it into his recent book “The Sexual Evolution: How 500 Million Years of Sex, Gender, and Mating Shape Modern Relationships” (Mariner Books). Sexual monogamy is just what it sounds like: The restriction of sexual intercourse to within a bonded pair. Social monogamy, also known as economic monogamy, describes the bonding itself, a strong, neurohormone-driven attachment between two adults that facilitates food and territory sharing, to the exclusion of others, for at least one breeding season, and generally purposed towards raising offspring. Because these two aspects of monogamy are so often enjoined among humans, they are considered two sides of the same coin. But, as it turns out, they are entirely separable among animals. In fact, social monogamy is extremely common in birds and somewhat common in mammals, while sexual monogamy is vanishingly rare among any species. Because of the unique way their embryos develop — externally but with constant warmth required — birds are the real stars of monogamy and have thus borne the brunt of its misconceptions. The marriage (if you’ll pardon the pun) of two very different behaviors into one concept is — and always was — unsupported by evidence from the natural world. Monogamy, as it is commonly understood, was the invention of anthropomorphic bias. Naturalists in the 19th and 20th centuries documented how pairs of various bird species dutifully toiled together building a nest, protecting the eggs, mutually feeding each other and their offspring, before eventually flying off into the sunset together. These prim and proper Victorians didn’t have to squint very hard to see a perfect model in nature of what they valued most in human society — lifelong and sexually exclusive marriage.
Keyword: Sexual Behavior; Evolution
Link ID: 29728 - Posted: 04.05.2025
By Adam Nossiter Ralph Holloway, an anthropologist who pioneered the idea that changes in brain structure, and not just size, were critical in the evolution of humans, died on March 12 at his home in Manhattan. He was 90. His death was announced by Columbia University’s anthropology department, where he taught for nearly 50 years. Mr. Holloway’s contrarian idea was that it wasn’t necessarily the big brains of humans that distinguished them from apes or primitive ancestors. Rather, it was the way human brains were organized. Brains from several million years ago don’t exist. But Dr. Holloway’s singular focus on casts of the interiors of skull fossils, which he usually made out of latex, allowed him to override this hurdle. He “compulsively collected” information from these casts, he wrote in a 2008 paper. Crucially, they offered a representation of the brain’s exterior edges, which allowed scientists to get a sense of the brain’s structure. Using a so-called endocast, Dr. Holloway was able to establish conclusively, for instance, that a famous and controversial two-million-year-old hominid fossil skull from a South Africa limestone quarry, known as the Taung child, belonged to one of mankind’s distant ancestors. The Taung child’s brain was small, leading many to doubt the conclusion of Raymond Dart, the anatomist who discovered it in the 1920s, that it was a human ancestor. In 1969, Dr. Holloway took his family to South Africa to meet the elderly Dr. Dart, to examine the natural limestone endocast that the Taung child’s positioning in the quarry had created and to make an endocast of his own. “I became convinced that the Taung endocast needed independent study,” he wrote in 2008, in order to “find an objective method(s) for deciding whether the cortex was reorganized as Dart had previously claimed,” so many years before. Dr. Holloway focused on a crescent-shaped furrow, called the lunate sulcus, at the back of the endocast. In his view, it was positioned like a human’s, which suggested to him that Dr. Dart had been right all along. © 2025 The New York Times Company
Keyword: Evolution
Link ID: 29727 - Posted: 04.05.2025
Nicola Davis Science correspondent Which songs birds sing can – as with human music – be influenced by age, social interactions and migration, researchers have found. Not all birds learn songs, but among those that do, individuals, neighbourhoods and populations can produce different collections of tunes, akin to different music albums. Now researchers have found that changes in the makeup of a group of birds can influence factors including which songs they learn, how similar those songs are to each other and how quickly songs are replaced. Dr Nilo Merino Recalde, the first author of the study, from the University of Oxford, said: “This is very interesting, I think, partly because it shows that there are all these kind of common elements at play when it comes to shaping learned traits, [similar to] what happens with human languages and human music.” But he said the parallels had their limits. “The function and the role of human music and language is very, very different to the function of birdsong,” he said. “Birdsong is used to repel rivals, to protect territories, to entice mates, this kind of thing. And that also shapes songs.” Writing in the journal Current Biology, Recalde and colleagues describe how they used physical tracking as well as artificial intelligence to match recorded songs to individual male great tits living in Wytham Woods in Oxford. In total, the study encompassed 20,000 hours of sound recordings and more than 100,000 songs, captured over three years. The researchers used their AI models to analyse the repertoires of individual birds, those within neighbourhoods and across the entire population to explore how similar the various songs were. As a result, the team were able to unpick how population turnover, immigration and age structure influenced the songs. © 2025 Guardian News & Media Limited
Keyword: Animal Communication; Language
Link ID: 29695 - Posted: 03.08.2025
By Donna L. Maney It’s springtime in your backyard. You watch a pair of little brown songbirds flit about, their white throats flashing in the sun. One of the birds has striking black and white stripes on its crown and occasionally belts out its song, “Old Sam Peabody, Peabody, Peabody.” Its partner is more drab, with tan and gray stripes on its head and brown streaks through its white throat. Knowing the conventional wisdom about songbirds—that the males are flashy show-offs and the females more camouflaged and quiet—you decide to name the singer with bright plumage Romeo and the subtler one Juliet. But later that day you notice Juliet teed up on the fence, belting out a song. Juliet’s song is even louder and showier than Romeo’s. You wonder, Do female birds sing? Then you see Romeo bringing a twig to the pair’s nest, hidden under a shrub. Your field guide says that in this species the female builds the nest by herself. What is going on? Turns out, when you named Romeo and Juliet, you made the same mistake 19th-century artist and naturalist John Audubon did when, in his watercolor of this species, he labeled the bright member of the pair “male” and the drab one “female.” Romeo might look male, even to a bird expert such as Audubon, but will build a nest and lay eggs in it. Juliet, who might look female, has testes and will defend the pair’s territory by singing both alone and alongside Romeo, who also sings. Juliet and Romeo are White-throated Sparrows (Zonotrichia albicollis). At first glance, members of this species of songbird might look rather ordinary. For example, like many other songbirds, one member of each breeding pair of these sparrows has more striking plumage—that is, its appearance is what we would traditionally consider malelike for songbirds. The other bird in the pair is more femalelike, with drabber plumage. © 2024 SCIENTIFIC AMERICAN
Keyword: Sexual Behavior; Evolution
Link ID: 29686 - Posted: 02.26.2025
Vicki Hird Does a worm feel pain if it gets trodden on? Does a fly ache when its wings are pulled off? Is an ant happy when it finds a food source? If so, they may be sentient beings, which means they can “feel”, a bit or a lot, like we do. Invertebrate sentience is becoming an ever livelier topic of debate and with new science we are getting new insights. But Dr Andrew Crump at the Royal Veterinary College, who helped ensure that new UK laws recognising animal sentience were amended to include large cephalopod molluscs and decapod crustaceans – octopuses, lobsters, crabs to you and me – says this is not at all straightforward. Nervous systems are hugely complex, and identifying consciousness and sentience – and not just automatic pain reflexes – is hard. Are responses or reactions you see from an animal – be it a wolf or a wolf ant – feelings or just automatic reflexes? Crump and his colleagues found that bees, for example, were not simple stimulus-response robots, but reacted to stimuli in sophisticated, context-dependent ways. They were found to learn colour cues for their decisions on feeding – choosing painful overheated sugars they previously avoided when non-heated options had a low sugar concentration. So they made trade-offs by processing in the brain then modifying their behaviour. In fact, new research has shown that many responses in the larger invertebrates were complex, long-lasting, and pretty consistent with criteria for pain that had been produced initially for vertebrates such as rats. Octopuses, for example, can perform amazing feats of learning to avoid painful environments and choose painkilling environments. All this establishes and quantifies “feelings” in beings that are very different from us. The work of Crump and other scientists meant that the Animal Welfare (Sentience) Act 2022 recognised for the first time in UK law (vertebrate sentience was previously covered by EU regulation) that certain invertebrates can “feel”, requiring modifications to their treatment in areas such as farming and research. © 2025 Guardian News & Media Limited
Keyword: Pain & Touch; Evolution
Link ID: 29684 - Posted: 02.26.2025
Nell Greenfieldboyce Putting the uniquely human version of a certain gene into mice changed the way that those animals vocalized to each other, suggesting that this gene may play a role in speech and language. Mice make a lot of calls in the ultrasonic range that humans can't hear, and the high-frequency vocalizations made by the genetically altered mice were more complex and showed more variation than those made by normal mice, according to a new study in the journal Nature Communications. The fact that the genetic change produced differences in vocal behavior was "really exciting," says Erich Jarvis, a scientist at Rockefeller University in New York who worked on this research. Still, he cautioned, "I don't think that one gene is going to be responsible — poof! — and you've got spoken language." For years, scientists have been trying to find the different genes that may have been involved in the evolution of speech, as language is one of the key features that sets humans apart from the rest of the animal kingdom. "There are other genes implicated in language that have not been human-specific," says Robert Darnell, a neuroscientist and physician at Rockefeller University, noting that one gene called FOXP2 has been linked to speech disorders. He was interested in a different gene called NOVA1, which he has studied for over two decades. NOVA1 is active in the brain, where it produces a protein that can affect the activity of other genes. NOVA1 is found in living creatures from mammals to birds, but humans have a unique variant. Yoko Tajima, a postdoctoral associate in Darnell's lab, led an effort to put this variant into mice, to see what effect it would have. © 2025 npr
Keyword: Language; Genes & Behavior
Link ID: 29678 - Posted: 02.19.2025
By Jason Bittel Elaborate poses, tufts of feathers, flamboyant shuffles along an immaculate forest floor — male birds-of-paradise have many ways to woo a potential mate. But now, by examining prepared specimens at the American Museum of Natural History in New York, scientists have discovered what could be yet another tool in the kit of the tropical birds — a visual effect known as photoluminescence. Sometimes called biofluorescence in living things, this phenomenon occurs when an object absorbs high-energy wavelengths of light and re-emits them as lower energy wavelengths. Biofluorescence has already been found in various species of fishes, amphibians and even mammals, from bats to wombats. Interestingly, birds remain woefully understudied when it comes to the optical extras. Until now, no one had looked for the glowing property in birds-of-paradise, which are native to Australia, Indonesia and New Guinea and are famous for their elaborate mating displays. In a study published on Tuesday in the journal Royal Society Open Science, researchers examined prepared specimens housed at the American Museum of Natural History and found evidence of biofluorescence in 37 of 45 birds-of-paradise species. “What they’re doing is taking this UV color, which they can’t see, and re-emitting it at a wavelength that is actually visible to their eyes,” said Rene Martin, the lead author of the study and a biologist at the University of Nebraska-Lincoln. “In their case, it’s kind of a bright green and green-yellow color.” In short, biofluorescence supercharges a bright color to make it even brighter. © 2025 The New York Times Company
Keyword: Sexual Behavior; Evolution
Link ID: 29666 - Posted: 02.12.2025
By Laura Sanders Ancient ear-wiggling muscles kick on when people strain to hear. That auricular activity, described January 30 in Frontiers in Neuroscience, probably doesn’t do much, if anything. But these small muscles are at least present, and more active than anyone knew. You’ve probably seen a cat or dog swing their ears toward a sound, like satellite dishes orienting to a signal. We can’t move our relatively rigid human ears this dramatically. And yet, humans still possess ear-moving muscles, as those of us who can wiggle our ears on demand know. Neuroscientist Andreas Schröer and colleagues asked 20 people with normal hearing to listen to a recorded voice while distracting podcasts played in the background. All the while, electrodes around the ears recorded muscle activity. An ear muscle called the superior auricular muscle, which sits just above the ear and lifts it up, fired up when the listening conditions were difficult, the researchers found. Millions of years ago, these muscles may have helped human ancestors collect sounds. Today, it’s doubtful that this tiny wisp of muscle activity helps a person hear better, though scientists haven’t tested that. “It does its best, but it probably doesn’t work,” says Schröer, of Saarland University in Saarbrücken, Germany. These vestigial muscles may not help us hear, but their activity could provide a measurement of a person’s hearing efforts. That information may be useful to hearing aid technology, telling the device to change its behavior when a person is struggling, for instance. © Society for Science & the Public 2000–2025.
Keyword: Hearing; Evolution
Link ID: 29665 - Posted: 02.12.2025
By Emily Anthes The English language is full of wonderful words, from “anemone” and “aurora” to “zenith” and “zodiac.” But these are special occasion words, sprinkled sparingly into writing and conversation. The words in heaviest rotation are short and mundane. And they follow a remarkable statistical rule, which is universal across human languages: The most common word, which in English is “the,” is used about twice as frequently as the second most common word (“of,” in English), three times as frequently as the third most common word (“and”), continuing in that pattern. Now, an international, interdisciplinary team of scientists has found that the intricate songs of humpback whales, which can spread rapidly from one population to another, follow the same rule, which is known as Zipf’s law. The scientists are careful to note that whale song is not equivalent to human language. But the findings, they argue, suggest that forms of vocal communication that are complex and culturally transmitted may have shared structural properties. “We expect them to evolve to be easy to learn,” said Simon Kirby, an expert on language evolution at the University of Edinburgh and an author of the new study. The results were published on Thursday in the journal Science. “We think of language as this culturally evolving system that has to essentially be passed on by its hosts, which are humans,” Dr. Kirby added. “What’s so gratifying for me is to see that same logic seems to also potentially apply to whale song.” Zipf’s law, which was named for the linguist George Kingsley Zipf, holds that in any given language the frequency of a word is inversely proportional to its rank. There is still considerable debate over why this pattern exists and how meaningful it is. But some research suggests that this kind of skewed word distribution can make language easier to learn. © 2025 The New York Times Company
Keyword: Language; Evolution
Link ID: 29662 - Posted: 02.08.2025
By Avery Schuyler Nunn Migratory songbirds may talk to one another more than we thought as they wing through the night. Each fall, hundreds of millions of birds from dozens of species co-migrate, some of them making dangerous journeys across continents. Come spring, they return home. Scientists have long believed that these songbirds rely on instinct and experience alone to make the trek. But new research from a team of ornithologists at the University of Illinois suggests they may help one another out—even across species—through their nocturnal calls. “They broadcast vocal pings into the sky, potentially sharing information about who they are and what lies ahead,” says ornithologist Benjamin Van Doren of the University of Illinois, Urbana-Champaign and a co-author of the study, published in Current Biology. Using ground-based microphones across 26 sites in eastern North America, Van Doren and his team recorded over 18,300 hours of nocturnal flight calls from 27 different species of birds—brief, high-pitched vocalizations that some warblers, thrushes, and sparrows emit while flying. To process the enormous dataset of calls, they used machine-learning tools, including a customized version of Merlin, the Cornell Lab of Ornithology’s bird-call identification app. The analysis revealed that birds of different species were flying in close proximity and calling to one another in repeated patterns that suggested a kind of code. Flight proximity was closest between migrating songbirds species that made similar calls in pitch and rhythm, traveled at similar speeds, and had similar wing shapes. © 2025 NautilusNext Inc.,
Keyword: Language; Evolution
Link ID: 29661 - Posted: 02.08.2025
Nell Greenfieldboyce People are constantly looking at the behavior of others and coming up with ideas about what might be going on in their heads. Now, a new study of bonobos adds to evidence that they might do the same thing. Specifically, some bonobos were more likely to point to the location of a treat when they knew that a human companion was not aware of where it had been hidden, according to a study which appears in the Proceedings of the National Academy of Sciences. The findings add to a long-running debate about whether humans have a unique ability to imagine and understand the mental states of others. Some researchers say this kind of "theory of mind" may be practiced more widely in the animal kingdom, and potentially watching it in action was quite the experience. "It's quite surreal. I mean, I've worked with primates for quite some years now and you never get used to it," says Luke Townrow, a PhD student at Johns Hopkins University. "We found evidence that they are tailoring their communication based on what I know." Hmmm, where is the grape? To see what bonobos might know about what humans around them know, Townrow worked with Chris Krupenye of Johns Hopkins University to devise a simple experiment. "It's always a challenge for us, that animals don't speak, so we can't just ask them what they're thinking. We have to come up with creative, experimental designs that allow them to express their knowledge," says Krupenye. © 2025 npr
Keyword: Attention; Consciousness
Link ID: 29658 - Posted: 02.05.2025
By Bethany Brookshire Self-awareness may be beyond primates in the wild. Chimps, organutans and other species faced with a mirror react to a dot on their face in the lab, a widely used measure of self-awareness. But while baboons in Namibia exposed to mirrors find the reflective glass fascinating, they don’t respond to dots placed on their faces, researchers report in the January Proceedings of the Royal Society B: Biological Sciences. The result could indicate that lab responses to mirrors are a result of training — and that self-awareness might exist on a spectrum. Support Science Today. Thank you for being a subscriber to Science News! Interested in more ways to support STEM? Consider making a gift to our nonprofit publisher, the Society for Science, an organization dedicated to expanding scientific literacy and ensuring that every young person can strive to become an engineer or scientist. Donate Now “Psychological self-awareness is this idea that you as an individual can become an object of your own attention,” says Alecia Carter, an evolutionary anthropologist at University College London. It’s a hard concept to measure in other species, in part, she notes, because “it’s also difficult to imagine not having that kind of self-awareness.” One measure of self-awareness is the mark test. An animal sits in front of a mirror, and a mark is placed somewhere they normally cannot see, such as on the face. If the animal recognizes themselves in the mirror, and the mark as out of place, the animal will respond to the mark. Chimps, orangutans and bonobos have “passed” the mark test in the lab, while primates that are not great apes, such as rhesus macaques, have mastered it only after training. Other species, such as Asian elephants, dolphins and even a fish called the cleaner wrasse, have also responded to the mark test. © Society for Science & the Public 2000–2025.
Keyword: Chemical Senses (Smell & Taste); Evolution
Link ID: 29654 - Posted: 02.01.2025
Nicola Davis Science correspondent Wiggling your ears might be more of a pub party piece than a survival skill, but humans still try to prick up their ears when listening hard, researchers have found. Ear movement is crucial in many animals, not least in helping them focus their attention on particular noises and work out which direction they are coming from. But while the human ear is far more static, traces of our ancestors’ ear-orienting system remain in what has been called a “neural fossil”. “It is believed that our ancestors lost their ability to move their ears about 25m years ago. Why, exactly, is difficult to say,” said Andreas Schröer, the lead author of the research from Saarland University in Germany. “However, we have been able to demonstrate that the neural circuits still seem to be present in some state, [that is] our brain retained some of the structures to move the ears, even though they apparently are not useful any more.” The team previously found the movement of these muscles in humans is related to the direction of the sounds they are paying attention to. Now, they have found that some of these muscles become activated when humans listen hard to a sound. Writing in the journal Frontiers in Neuroscience, the team reported how they asked 20 adults without hearing problems to listen to an audiobook played through a speaker at the same time as a podcast was played from the same location. The team created three different scenarios: in the “easiest” scenario the podcast was quieter than the audiobook, with a large difference in pitch between the voices. In the “hardest” scenario, two podcasts were played which, taken together, were louder than the audiobook, with one of the podcasts spoken at a similar pitch to the audiobook. © 2025 Guardian News & Media Limited
Keyword: Hearing; Evolution
Link ID: 29649 - Posted: 02.01.2025
By Tina Hesman Saey After nearly 350 years, a depiction of a bee’s brain is getting some buzz. A manuscript created in the mid-1670s contains the oldest known depiction of an insect’s brain, historian of science Andrea Strazzoni of the University of Turin in Italy reports January 29 in Royal Society Notes and Records. Handwritten by Dutch biologist and microscopist Johannes Swammerdam, the manuscript contains a detailed description and drawing of a honeybee drone’s brain. The illustration, based on his own dissections, was just one of Swammerdam’s firsts. In 1658, he was also the first to see and describe red blood cells. Since no one had previously reported dissecting a bee brain, Swammerdam based his descriptions on what was known about the brain anatomy of humans and other mammals. “He knew what to expect from or to imagine in his observations: in particular, the pineal gland and the cerebellum,” Strazzoni writes. Bees have neither of those parts but have brain structures that the 17th century scientist mistook for them. But Swammerdam deserves some slack, Strazzoni suggests. He was working with single-lens microscopes and developing new techniques for dissecting and observing insects’ internal organs. Even with those crude instruments, he was able to identify some nerves and describe how parts of the brain connected. © Society for Science & the Public 2000–2025.
Keyword: Brain imaging; Evolution
Link ID: 29644 - Posted: 01.29.2025
By Shaena Montanari For evolutionary neuroanatomists who compare diverse animal brains, access to a gold mine of 500,000 histological sections and whole mounts is now only a mouse-click away. The R. Glenn Northcutt Collection of Comparative Vertebrate Neuroanatomy and Embryology at Harvard University—which comprises 33,000 slides of tissue samples from more than 240 vertebrate genera—is one of the world’s largest and most diverse collections of its kind. Northcutt, a prolific comparative vertebrate neuroanatomist and emeritus professor of neurosciences at the University of California, San Diego, amassed the collection over the course of five decades. Since 2021, James Hanken, research professor of biology at Harvard University and curator at the Museum of Comparative Zoology, has led an effort to digitize it. The scanning process is still ongoing and may take another two years to complete, Hanken says, but more than 8,000 slides are already publicly available in two online data repositories: MCZBase and MorphoSource. A comprehensive inventory of the entire collection appears in a paper Hanken and his colleagues published last week in the Bulletin of the Museum of Comparative Zoology. It provides researchers with an in-depth guide for using the collection, Hanken says. Few other resources of this type are available online to researchers interested in evolutionary biology and brain anatomy, says Andrew Iwaniuk, professor of neuroscience at the University of Lethbridge. For example, neither the Welker Comparative Anatomy Collection nor the Starr Collection, both housed at the U.S. National Museum of Health and Medicine in Silver Spring, Maryland, are available online. To access slide collections such as these, scientists have had to travel to see them in person, which can be difficult for those outside the United States, Iwaniuk adds. © 2025 Simons Foundation
Keyword: Brain imaging; Evolution
Link ID: 29642 - Posted: 01.25.2025