Chapter 15. Brain Asymmetry, Spatial Cognition, and Language

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 2171

Carl Zimmer Primates are unquestionably clever: Monkeys can learn how to use money, and chimpanzees have a knack for game theory. But no one has ever taught a nonhuman primate to say “hello.” Scientists have long been intrigued by the failure of primates to talk like us. Understanding the reasons may offer clues to how our own ancestors evolved full-blown speech, one of our most powerful adaptations. On Friday, a team of researchers reported that monkeys have a vocal tract capable of human speech. They argue that other primates can’t talk because they lack the right wiring in their brains. “A monkey’s vocal tract would be perfectly adequate to produce hundreds, thousands of words,” said W. Tecumseh Fitch, a cognitive scientist at the University of Vienna and a co-author of the new study. Human speech results from a complicated choreography of flowing air and contracting muscles. To make a particular sound, we have to give the vocal tract a particular shape. The vocal tracts of other primates contain the same elements as ours — from vocal cords to tongues to lips — but their geometry is different. That difference long ago set scientists to debating whether primates could make speechlike sounds. In the 1960s, Philip H. Lieberman, now a professor emeritus of Brown University, and his colleagues went so far as to pack a dead monkey’s vocal tract with plaster to get a three-dimensional rendering. © 2016 The New York Times Company

Keyword: Language; Evolution
Link ID: 22975 - Posted: 12.10.2016

By Michael Price The famed parrot Alex had a vocabulary of more than 100 words. Kosik the elephant learned to “speak” a bit of Korean by using the tip of his trunk the way people whistle with their fingers. So it’s puzzling that our closest primate cousins are limited to hoots, coos, and grunts. For decades, monkeys’ and apes’ vocal anatomy has been blamed for their inability to reproduce human speech sounds, but a new study suggests macaque monkeys—and by extension, other primates—could indeed talk if they only possessed the brain wiring to do so. The findings might provide new clues to anthropologists and language researchers looking to pin down when humans learned to speak. “This certainly shows that the macaque vocal tract is capable of a lot more than has previously been assumed,” says John Esling, a linguist and phonetics expert at the University of Victoria in Canada, who was not involved with the work. The study’s lead author, William Tecumseh Sherman Fitch III, an evolutionary biologist and cognitive scientist at the University of Vienna, says the question of why monkeys and apes can’t speak goes back to Darwin. (Yes, Fitch is the great-great-great-grandson of U.S. Civil War General William Tecumseh Sherman.) Darwin thought nonhuman primates couldn’t talk because they didn’t have the brains, he says. But over time, anthropologists instead embraced the idea that the primates’ vocal tracts were holding them back: They simply lacked the flexibility to produce the wide range of vowels present in human speech. That remains the “textbook answer” today, Fitch says. © 2016 American Association for the Advancement of Science.

Keyword: Language; Evolution
Link ID: 22974 - Posted: 12.10.2016

Men and women who suffered traumatic brain injuries had more than twice the risk of winding up in a federal prison in Canada as their uninjured peers, a new study shows. That doesn't surprise Dr. Geoffrey Manley, a neurosurgeon who runs a trauma centre. He knows all too well the long-term struggles of survivors of traumatic brain injuries. "Because there's no system of care for these individuals, they fall into the cracks and get themselves in trouble. And we really as a society are not doing a good job of taking care of people with traumatic brain injuries," Manley, who was not involved in the study, said in a phone interview. For 13 years, researchers followed more than 1.4 million people who were eligible for health care in Ontario and were between the ages of 18 and 28 in 1997. As reported in CMAJ Open, the open-access journal of the Canadian Medical Association, the research team linked subjects' health records to correctional records, adjusted for a variety of factors like age and substance abuse, and found that men with traumatic brain injuries were 2.5 times more likely to serve time in a Canadian federal prison than men without head injuries. Female prisoners were even more likely to have survived traumatic brain injuries. For women with these injuries, the risk of winding up in a Canadian federal prison was 2.76 times higher than it was for uninjured women, although the authors caution that the pool of incarcerated females was small, accounting for only 210 of the more than 700,000 women studied. ©2016 CBC/Radio-Canada.

Keyword: Brain Injury/Concussion; Aggression
Link ID: 22970 - Posted: 12.09.2016

Gabrielle Emanuel Megan Lordos, a middle school teacher, says she was not allowed to use the word "dyslexia." She's not alone. Parents and teachers across the country have raised concerns about some schools hesitating, or completely refusing, to say the word. As the most common learning disability in the U.S., dyslexia affects somewhere between 5 and 17 percent of the population. That means millions of school children around the country struggle with it. Under the Individuals with Disabilities Education Act (IDEA), schools are required to provide special services to help these students — things like reading tutors and books on tape. But those special services can be expensive, and many schools don't have the resources to provide these accommodations. That has led some parents and advocates to worry that some schools are making a careful calculation: If they don't acknowledge the issue — or don't use the word "dyslexia" — then they are not obligated to provide services. Last year, when Lordos was teaching English at a public school in Arlington, Va., she recalls a parent-teacher meeting in the conference room. Things started smoothly. Lordos says two parents had come in to talk with teachers and administrators about their son – Lordos' student, an eighth-grader – who was struggling to read. Partway through the meeting, Lordos says she suggested that the student might have orthographic dyslexia. Two of Lordos' own children have dyslexia and, she says, she noticed her student had similar challenges to the ones she'd seen at home. © 2016 npr

Keyword: Dyslexia
Link ID: 22949 - Posted: 12.05.2016

By Alice Klein It’s something all whale-watchers yearn to see. The sight of whales breaking the surface and slapping their fins on the water is a true spectacle – but the animals don’t do it just for show. Instead, it appears that all that splashing is about messaging other whales, and the big splashes are for long-distance calls. Ailbhe Kavanagh at the University of Queensland in Gatton, Australia, and her colleagues studied 94 different groups of humpback whales migrating south along the Queensland coast in 2010 and 2011. Humpback whales regularly leap out of the water and twist on to their backs – an action known as breaching – and slap their tails and fins in a repetitive fashion. The resulting sounds travel underwater and could possibly communicate messages to other whales. Drowning in sound: The sad case of the baby beluga whales The team found evidence for this idea. The animals were significantly more likely to breach when the nearest other whale group was more than 4 kilometres away, suggesting that the body-slapping sound of breaching was used to signal to distant groups. In contrast, repetitive tail and pectoral-fin slapping appeared to be for close-range communication. There was a sudden increase in this behaviour just before new whales joined or the group split up. © Copyright Reed Business Information Ltd.

Keyword: Animal Communication; Language
Link ID: 22948 - Posted: 12.05.2016

Anya Kamenetz Brains, brains, brains. One thing we've learned at NPR Ed is that people are fascinated by brain research. And yet it can be hard to point to places where our education system is really making use of the latest neuroscience findings. But there is one happy nexus where research is meeting practice: bilingual education. "In the last 20 years or so, there's been a virtual explosion of research on bilingualism," says Judith Kroll, a professor at the University of California, Riverside. Again and again, researchers have found, "bilingualism is an experience that shapes our brain for a lifetime," in the words of Gigi Luk, an associate professor at Harvard's Graduate School of Education. At the same time, one of the hottest trends in public schooling is what's often called dual-language or two-way immersion programs. Traditional programs for English-language learners, or ELLs, focus on assimilating students into English as quickly as possible. Dual-language classrooms, by contrast, provide instruction across subjects to both English natives and English learners, in both English and in a target language. The goal is functional bilingualism and biliteracy for all students by middle school. New York City, North Carolina, Delaware, Utah, Oregon and Washington state are among the places expanding dual-language classrooms. © 2016 npr

Keyword: Language; Learning & Memory
Link ID: 22934 - Posted: 11.30.2016

By NICHOLAS BAKALAR Stroke rates have been declining in older people over the past 20 years — but have sharply increased in those under 55. Researchers at Rutgers University used data from the New Jersey Department of Health on more than 227,000 hospitalizations for stroke from 1995 through 2014, calculating incidence by age over five-year periods. The findings appeared in the Journal of the American Heart Association. Compared with the 1995-99 period, the rate of stroke in 2010-14 increased by 147 percent in people 35 to 39, by 101 percent in people 40 to 44, by 68 percent in those 45 to 49, and by 23 percent in the 50 to 54 group. Stroke is still far more common in older people. But the rate decreased by 11 percent in those 55 to 59, by 22 percent in the 60 to 64 group, and by 18 percent in people 65 to 69. The reasons are unclear, but the lead author, Joel N. Swerdel, now an epidemiologist with Janssen Pharmaceuticals, said that increasing obesity and diabetes in younger people are probably involved. “For a person 30 to 50, the good news is you ain’t dead yet,” he said. “With behavioral changes, changing diet, increasing exercise, there’s still hope for you. Behavioral change is hard, but this study is an early warning sign.” © 2016 The New York Times Company

Keyword: Stroke
Link ID: 22929 - Posted: 11.30.2016

By John Horgan Asked for a comment on the language-acquisition theory of Noam Chomsky (in photo above), psychologist Steven Pinker says: “Chomsky has been a piñata, where anyone who finds some evidence that some aspect of language is learned (and there are plenty), or some grammatical phenomenon varies from language to language, claims to have slain the king. It has not been a scientifically productive debate, unfortunately.” Credit: Ministerio de Cultura de la Nación Argentina Flickr (CC BY-SA 2.0) Noam Chomsky’s political views attract so much attention that it’s easy to forget he’s a scientist, one of the most influential who ever lived. Beginning in the 1950s, Chomsky contended that all humans possess an innate capacity for language, activated in infancy by minimal environmental stimuli. He has elaborated and revised his theory of language acquisition ever since. Chomsky’s ideas have profoundly affected linguistics and mind-science in general. Critics attacked his theories from the get-go and are still attacking, paradoxically demonstrating his enduring dominance. Some attacks are silly. For example, in his new book A Kingdom of Speech Tom Wolfe asserts that both Darwin and “Noam Charisma” were wrong. (See journalist Charles Mann’s evisceration of Wolfe.) © 2016 Scientific American

Keyword: Language
Link ID: 22927 - Posted: 11.29.2016

By Smitha Mundasad Health reporter About 9,000 stroke patients a year are missing out on a treatment that can prevent disability following a stroke, say UK experts. Clot retrieval can restore blood flow to the brain, preventing some lasting damage, but currently only 600 patients a year get this therapy, they estimate. A national stroke audit reveals part of the problem is a lack of skilled staff to do the procedure. NHS England says stroke patients are receiving high quality care. During a stroke, the blood supplying vital parts of the brain is interrupted. The most common reason is a clot blocking a major blood vessel in the head, although some strokes are caused by a bleed. The longer a part of the brain is starved of blood, the more likely lasting damage - such as paralysis and speech problems - will occur. Expanding mesh While many people with a stroke caused by a clot currently get drugs to help dissolve the blockage, this does not always work completely. Thrombectomy - or clot retrieval - is another method, which aims to remove the clot mechanically. It is a highly skilled operation, and stroke services need to be set up to be able to deliver the treatment. A thin metal wire housing a mesh is inserted into a major artery in the leg and, under X-ray guidance, it is directed to the site of the problem in the brain. The mesh is then expanded, like a miniature fishing net, to trap and remove the clot. 'Once the clot was out, the damage stopped' © 2016 BBC

Keyword: Stroke
Link ID: 22923 - Posted: 11.29.2016

Gabrielle Emanuel "It's frustrating that you can't read the simplest word in the world." Thomas Lester grabs a book and opens to a random page. He points to a word: galloping. "Goll—. G—. Gaa—. Gaa—. G—. " He keeps trying. It is as if the rest ­­of the word is in him somewhere, but he can't sound it out. "I don't ... I quit." He tosses the book and it skids along the table. Despite stumbling over the simplest words, Thomas – a 4th grader – is a bright kid. In fact, that's an often-misunderstood part of dyslexia: It's not about lacking comprehension, having a low IQ or being deprived of a good education. It's about having a really hard time reading. Dyslexia is the most common learning disability in the United States. It touches the lives of millions of people, including me and Thomas. Just like Thomas, I spent much of my childhood sitting in a little chair across from a reading tutor. Today, Thomas is working with his tutor in an office building on the northwest side of Washington, D.C. The suite they're in is an oasis of white couches and overstuffed pillows. In the waiting area, a kid is curled up sucking her thumb, and a mom reads a magazine quietly. In the back of the suite — a Lindamood Bell Reading Center — Thomas fidgets with everything in arm's reach. "Alright, I am going to give you some air-writing words," the tutor says to Thomas, speaking rapidly as if daring Thomas to keep pace. She spells the first one out loud: "C-O-R-T." With his index finger, Thomas writes the letters sloppily in the air. Then, his tutor asks a question: What sound do the two middle letters make? "Eer? Aar?" Thomas squints at whatever visual memory he can retain from the letters he's just scribbled in the air. Then, with a burst of enthusiasm, he stumbles on the answer: "Or!" © 2016 npr

Keyword: Dyslexia
Link ID: 22918 - Posted: 11.28.2016

By NICHOLAS BAKALAR Having one or two alcoholic drinks a day is associated with a lower risk of stroke, a review of studies has found. But drinking more than that increases the risk. The analysis, in BMC Medicine, used data from 27 studies. Compared with nondrinkers or occasional drinkers, people who had one or two drinks a day had an 8 percent reduced risk of ischemic stroke. Ischemic strokes, caused by blockage of an artery supplying blood to the brain, account for about 87 percent of all strokes. Heavier drinking, however, increased stroke risk. Having up to four daily drinks led to an 8 percent increased risk of ischemic stroke, and at more than four drinks, the risk increased by 14 percent. Drinking more than four drinks a day also increased the risk of hemorrhagic stroke, the result of a burst or leaking blood vessel in or near the brain, by up to 82 percent. More moderate drinking did not raise hemorrhagic stroke risk. The lead author, Susanna C. Larsson, an associate professor of epidemiology at the Karolinska Institutet in Sweden, warned that alcohol is not health food. “Nondrinkers should not start to drink as a health measure,” she said. “And I wouldn’t recommend that a person who has a drink or two on the weekend increase his consumption.” © 2016 The New York Times Company

Keyword: Stroke; Drug Abuse
Link ID: 22913 - Posted: 11.26.2016

By Usha Lee McFarling, There’s something wrong with the brain banks created to study the dangers of repeated trauma to the head: Almost all the brains donated so far belonged to men. It’s just one example of how the study of brain trauma in women lags behind—even though women get concussions at higher rates than men in many sports and may suffer more severe and persistent symptoms. “If concussion is the invisible injury, then females are the invisible population within that injury,” said Katherine Snedaker, a licensed clinical social worker from Norwalk, Conn., who founded the nonprofit PINK Concussions in 2013 to focus attention on the issue. Evidence is building that the response to traumatic injury is different enough in females that they might benefit from gender-specific treatment, as they do with cardiac disease. But the data to create such guidelines simply aren’t there. “It’s an incredible gap in our knowledge,” said Angela Colantonio, director of the Rehabilitation Science Institute at the University of Toronto. “It’s just not acceptable.” When Colantonio examined 200 studies on prognosis after mild traumatic brain injury, she found only 7 percent separated out women. And if female athletes are overlooked, other groups vulnerable to concussion—aging women, women in prison, and domestic abuse survivors—have been nearly entirely ignored. © 2016 Scientific American

Keyword: Brain Injury/Concussion; Sexual Behavior
Link ID: 22897 - Posted: 11.22.2016

Laura Beil NEW ORLEANS — Popular heartburn drugs — already under investigation for possible links to dementia, kidney and heart problems (SN: 6/11/16, p. 8) — have a new health concern to add to the list. An analysis of almost 250,000 medical records in Denmark has found an association with stroke. Researchers from the Danish Heart Foundation in Copenhagen studied patients undergoing gastric endoscopy from 1997 to 2012. About 9,500 of all patients studied suffered from ischemic strokes, which occur when a blood clot blocks a blood vessel in the brain. Overall, the risk of stroke was 21 percent higher in patients taking a proton pump inhibitor, a drug that relieves heartburn, the researchers reported November 15 during the American Heart Association’s annual meeting. While those patients also tended to be older and sicker to start with, the level of risk was associated with dose, the researchers found. People taking the lowest drug doses (between 10 and 20 milligrams a day, depending on the drug) did not have a higher risk. At the highest doses, though, Prevacid (more than 60 mg/day) carried a 30 percent higher risk and Protonix (more than 80 mg/day) a 94 percent higher risk. For Prilosec and Nexium, stroke risk fell within that range. Introduced in the 1980s, proton pump inhibitors are available in both prescription and over-the-counter forms. While they are valuable drugs, “their use has been increasing rapidly,” says lead author Thomas Sehested, adding that people often take them for too long, or without a clear reason. Before taking them, he says, “patients need a conversation with their doctor to see if they really need these drugs.” |© Society for Science & the Public 2000 - 2016

Keyword: Stroke
Link ID: 22877 - Posted: 11.17.2016

By Felicity Muth Kirsty Graham is a PhD student at the University of St Andrews, Scotland, who works on gestural communication of chimpanzees and bonobos in Uganda and DRCongo. I recently asked her some questions about the work that she does and some exciting recent findings of hers about how these animals communicate. How did you become interested in communication, and specifically gestures? Languages are fascinating – the diversity, the culture, the learning – and during undergrad, I became interested in the origins of our language ability. I went to Quest University Canada (a small liberal arts university) and learned that I could combine my love of languages and animals and being outdoors! Other great apes don’t have language in the way that humans do, but studying different aspects of communication, such as gestures, may reveal how language evolved. Although my interest really started from an interest in languages, once you get so deep into studying other species you become excited about their behaviour for its own sake. In the long run, it would be nice to piece together how language evolved, but for now I’m starting with a very small piece of the puzzle – bonobo gestures. How do you study gestures in non-human primates? There are a few different approaches to studying gestures: in the wild or in captivity; through observation or with experiments; studying one gesture in detail or looking at the whole repertoire. I chose to observe wild bonobos and look at their whole repertoire. Since not much is known about bonobo gestural communication, this seemed like a good starting point. During my PhD, I spent 12 months at Wamba (Kyoto University’s research site) in the DRCongo. I filmed the bonobos, anticipating the beginning of social interactions so that I could record the gestures that they use. Then I spent a long time watching the videos, finding gestures, and coding information about the gestures. © 2016 Scientific American

Keyword: Language; Evolution
Link ID: 22840 - Posted: 11.07.2016

By GRETCHEN REYNOLDS A single concussion experienced by a child or teenager may have lasting repercussions on mental health and intellectual and physical functioning throughout adulthood, and multiple head injuries increase the risks of later problems, according to one of the largest, most elaborate studies to date of the impacts of head trauma on the young. You cannot be an athlete, parent of an athlete, sports fan or reader of this newspaper and not be aware that concussions appear to be both more common — and more dangerous — than most of us once thought. According to a report released last week by the health insurer Blue Cross Blue Shield, based on data from medical claims nationwide, the incidence of diagnosed concussions among people under the age of 20 climbed 71 percent between 2010 and 2015. The rates rose most steeply among girls, with the incidence soaring by 119 percent during that time, although almost twice as many concussions over all were diagnosed in boys. The report acknowledges that the startling increase may partly reflect a growing awareness of the injury among parents, sports officials and physicians, which has led to more diagnoses. But the sheer numbers also suggest that more young people, particularly young athletes, are experiencing head injuries than in the past. Similar increases have been noted among young people in other nations. But the consequences, if any, for their health during adulthood have largely remained unknown. So for the new study, which was funded primarily by the Wellcome Trust and published in August in PLOS Medicine, scientists from Oxford University, Indiana University, the Karolinska Institute in Stockholm and other universities turned to an extensive trove of data about the health of people in Sweden. © 2016 The New York Times Company

Keyword: Brain Injury/Concussion; Development of the Brain
Link ID: 22728 - Posted: 10.05.2016

By Allison Bond, Although neurologist Amie Hsia was hundreds of miles away from the emergency room team caring for her ailing aunt last February, she knew her symptoms and imaging pointed to a severe stroke. Hsia’s aunt needed treatment fast with a clot-busting medicine and a procedure known as an endovascular thrombectomy, which removes the clot and restores blood flow to oxygen-starved patches of the brain. The hospital caring for her wasn’t equipped to perform the surgery, however, so Hsia insisted she be transferred to a nearby hospital, where the clot was removed from her brain. Hsia’s aunt survived and is able to live independently, despite some remaining symptoms from the stroke. Still, the travel to another hospital cost her valuable time—and could have hurt her in the long run. That’s the implication of a study published Monday in the Journal of the American Medical Association that found that the sooner patients with severe strokes receive a thrombectomy, the less disabled they tend to be three months later. The research indicates that the brain-saving benefits of thrombectomy are most pronounced within the first few hours after signs of a stroke begin, and that these effects decline with each passing hour. To some experts, the study is a call to rejigger the current method of determining where ambulances ought to take stroke patients, which is based solely on proximity. Instead, they say, patients with apparent severe strokes should be rushed to hospitals that perform thrombectomies. © 2016 Scientific America

Keyword: Stroke
Link ID: 22703 - Posted: 09.28.2016

By Abdul-Kareem Ahmed In the world of recreational and professional sports, many athletes—particularly in contact sports—suffer concussions. These mild traumatic brain injuries cause headaches, memory problems and confusion, but usually resolve on their own with rest. Some players, however, especially after repeated concussions, continue to experience symptoms for many months—a phenomenon termed post-concussion syndrome. A few of these players will eventually develop chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disease that causes dementia symptoms similar to Alzheimer’s disease. CTE can lead to personality changes, movement problems and, sometimes, mortality. CTE is diagnosed after death because it requires postmortem examination of a player’s brain. Post-concussion syndrome, in contrast, is diagnosed based on patient symptoms. To date, doctors do not have any objective tests to determine syndrome severity or relate it to the risk of developing CTE. Now, a group of researchers from Sweden and the U.K. say they have developed such a test, reporting their findings last week in JAMA Neurology. The test measures biomarkers in the cerebrospinal fluid—the colorless liquid that supports and suspends the brain and spinal cord—that appear to provide a measure of concussion severity and CTE risk. The researchers collected cerebrospinal fluid via spinal taps from 16 professional Swedish ice hockey players and a similar number of healthy individuals. The hockey players had all experienced post-concussion syndrome, causing nine of them to retire from the game. © 2016 Scientific American,

Keyword: Brain Injury/Concussion; Alzheimers
Link ID: 22700 - Posted: 09.27.2016

By KEN BELSON One of the frustrations of researchers who study chronic traumatic encephalopathy, the degenerative brain disease linked to repeated head hits, is that it can be detected only in autopsies, and not in the living. Researchers, though, have been trying to solve this problem in two primary ways: by identifying biomarkers linked to the disease that show up on imaging tests in certain locations in the brain, and by trying to locate in the blood the protein that is the hallmark of the disease. On Monday, two groups of researchers said they had made what they considered small steps in developing both methods. The announcements are small parts of much larger studies that will take years to bear fruit, if they ever do. Both methods have been questioned by detractors, some of whom say the hype is getting ahead of the science. Scientists, these critics note, have spent decades trying to find ways to accurately diagnose Alzheimer’s disease, which has some of the same characteristics as C.T.E. Still, at a medical conference in Boston on Monday, Robert Stern, a professor of neurology at Boston University, said technology developed by the company Quanterix (paid for in part with a grant from the N.F.L.) had identified elevated levels of tau proteins in blood samples of 96 former football players between 40 and 69 years old, compared with only 25 people of the same age in a control group. The results, which are part of a seven-year study and are under review for publication, are preliminary because they identify only the total amount of tau in the blood, not the amount of the specific tau linked to C.T.E. Additional tests are being done in Sweden to determine the amount of the C.T.E.-related tau in the blood samples, Stern said. Even so, Stern said, the blood samples from the 96 former players suggest that absorbing repeated head hits earlier in life can lead to higher concentrations of tau in the blood later. © 2016 The New York Times Company

Keyword: Brain Injury/Concussion; Alzheimers
Link ID: 22699 - Posted: 09.27.2016

Jon Hamilton There's growing evidence that a physical injury to the brain can make people susceptible to post-traumatic stress disorder. Studies of troops deployed to Iraq and Afghanistan have found that service members who suffer a concussion or mild traumatic brain injury are far more likely to develop PTSD, a condition that can cause flashbacks, nightmares and severe anxiety for years after a traumatic event. And research on both people and animals suggest the reason is that a brain injury can disrupt circuits that normally dampen the response to a frightening event. The result is like "driving a car and the brake's not fully functioning," says Minxiong Huang, a biomedical physicist at the University of California, San Diego. Scientists have suspected a link between traumatic brain injury (TBI) and PTSD for many years. But the evidence was murky until researchers began studying troops returning from Iraq and Afghanistan. What they found was a lot of service members like Charles Mayer, an Army sniper from San Diego who developed PTSD after finishing a deployment in Iraq. In 2010, Mayer was on patrol in an Army Humvee near Baghdad when a roadside bomb went off. "I was unconscious for several minutes," he says. So he found out what happened from the people who dragged him out. The blast fractured Mayer's spine. It also affected his memory and thinking. That became painfully clear when Mayer got out of the Army in 2012. © 2016 npr

Keyword: Brain Injury/Concussion; Stress
Link ID: 22695 - Posted: 09.26.2016

By Virginia Morell There will never be a horse like Mr. Ed, the talking equine TV star. But scientists have discovered that the animals can learn to use another human tool for communicating: pointing to symbols. They join a short list of other species, including some primates, dolphins, and pigeons, with this talent. Scientists taught 23 riding horses of various breeds to look at a display board with three icons, representing wearing or not wearing a blanket. Horses could choose between a “no change” symbol or symbols for “blanket on” or “blanket off.” Previously, their owners made this decision for them. Horses are adept at learning and following signals people give them, and it took these equines an average of 10 days to learn to approach and touch the board and to understand the meaning of the symbols. All 23 horses learned the entire task within 14 days. They were then tested in various weather conditions to see whether they could use the board to tell their trainers about their blanket preferences. The scientists report online in Applied Animal Behaviour Science that the horses did not touch the symbols randomly, but made their choices based on the weather. If it was wet, cold, and windy, they touched the "blanket on" icon; horses that were already wearing a blanket nosed the “no change” image. But when the weather was sunny, the animals touched the "blanket off" symbol; those that weren’t blanketed pressed the “no change” icon. The study’s strong results show that the horses understood the consequences of their choices, say the scientists, who hope that other researchers will use their method to ask horses more questions. © 2016 American Association for the Advancement of Science.

Keyword: Language; Evolution
Link ID: 22684 - Posted: 09.23.2016