Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Featured Article

'Language Gene' Has a Partner

Few genes have made the headlines as much as FOXP2. The first gene associated with language disorders , it was later implicated in the evolution of human speech. Girls make more of the FOXP2 protein, which may help explain their precociousness in learning to talk. Now, neuroscientists have figured out how one of its molecular partners helps Foxp2 exert its effects.

The findings may eventually lead to new therapies for inherited speech disorders, says Richard Huganir, the neurobiologist at Johns Hopkins University School of Medicine in Baltimore, Maryland, who led the work. Foxp2 controls the activity of a gene called Srpx2, he notes, which helps some of the brain's nerve cells beef up their connections to other nerve cells. By establishing what SRPX2 does, researchers can look for defective copies of it in people suffering from problems talking or learning to talk.

Until 2001, scientists were not sure how genes influenced language. Then Simon Fisher, a neurogeneticist now at the Max Planck Institute for Psycholinguistics in Nijmegen, the Netherlands, and his colleagues fingered FOXP2 as the culprit in a family with several members who had trouble with pronunciation, putting words together, and understanding speech. These people cannot move their tongue and lips precisely enough to talk clearly, so even family members often can?t figure out what they are saying. It “opened a molecular window on the neural basis of speech and language,” Fisher says.

Photo credit: Yoichi Araki, Ph.D.


Links 1 - 20 of 20149

Jon Hamilton A biotech company and two scientists hope to change that. On Wednesday, Avalanche Biotechnologies in Menlo Park and the University of Washington in Seattle announced a licensing agreement to develop the first treatment for colorblindness. The deal brings together a gene therapy technique developed by Avalanche with the expertise of vision researchers at the University of Washington. "Our goal is to be treating colorblindness in clinical trials in patients in the next one to two years," says Thomas Chalberg, the founder and CEO of Avalanche. Dalton the squirrel monkey during the color vision test. i Dalton the squirrel monkey during the color vision test. Courtesy of Neitz Laboratory The agreement has its roots in a scientific breakthrough that occurred six years ago. That's when two vision researchers at the University of Washington used gene therapy to cure a common form of colorblindness in squirrel monkeys. "This opened the possibility of ultimately getting this to cure colorblindness in humans," says Jay Neitz, who runs the Color Vision Lab at UW along with his wife, Maureen Neitz. The couple knew that transferring their success from monkey to man would be a challenge. But they were determined, says Maureen Neitz. "We've spent our entire careers writing NIH grants where we say our goal is to improve human health." © 2015 NPR

Keyword: Vision
Link ID: 20725 - Posted: 03.26.2015

Carl Zimmer Scientists in Iceland have produced an unprecedented snapshot of a nation’s genetic makeup, discovering a host of previously unknown gene mutations that may play roles in ailments as diverse as Alzheimer’s disease, heart disease and gallstones. “This is amazing work, there’s no question about it,” said Daniel G. MacArthur, a geneticist at Massachusetts General Hospital who was not involved in the research. “They’ve now managed to get more genetic data on a much larger chunk of the population than in any other country in the world.” In a series of papers published on Wednesday in the journal Nature Genetics, researchers at Decode, an Icelandic genetics firm owned by Amgen, described sequencing the genomes — the complete DNA — of 2,636 Icelanders, the largest collection ever analyzed in a single human population. With this trove of genetic information, the scientists were able to accurately infer the genomes of more than 100,000 other Icelanders, or almost a third of the entire country. “From the technical point of view, these papers are a tour-de-force,” said David Reich, a geneticist at Harvard Medical School who was not involved in the research. While some diseases, like cystic fibrosis, are caused by a single genetic mutation, the most common ones are not. Instead, mutations to a number of different genes can each raise the risk of getting, say, heart disease or breast cancer. Discovering these mutations can shed light on these diseases and point to potential treatments. But many of them are rare, making it necessary to search large groups of people to find them. The wealth of data created in Iceland may enable scientists to begin doing that. In their new study, the researchers at Decode present several such revealing mutations. For example, they found eight people in Iceland who shared a mutation on a gene called MYL4. Medical records showed that they also have early onset atrial fibrillation, a type of irregular heartbeat. © 2015 The New York Times Company

Keyword: Genes & Behavior; Alzheimers
Link ID: 20724 - Posted: 03.26.2015

Hannah Devlin, science correspondent Scientists have raised the alert about an antibiotic routinely prescribed for chest infections, after linking it to an increased risk of epilepsy and cerebral palsy in children whose mothers took the drug during pregnancy. Children of mothers who had taken macrolide antibiotics were found to be almost twice as likely to be affected by the conditions, prompting scientists to call for a review of their use during pregnancy. The study authors urged pregnant women not to stop taking prescribed antibiotics, however. The potential adverse effects are rare and, as yet, unproven, while infections during pregnancy are a well-established cause of health problems in babies. Professor Ruth Gilbert, a clinical epidemiologist who led the research at University College London, said: “The main message is for medicines regulators and whether they need to issue a warning about these drugs. For women, if you’ve got a bacterial infection, it’s more important to get on and treat it.” The study tracked the children of nearly 65,000 women who had been prescribed a variety of antibiotics for illnesses during pregnancy, including chest and throat infections and cystitis. There was no evidence that most antibiotics (including penicillin, which made up 67% of prescriptions), led to an increased risk of the baby developing cerebral palsy or epilepsy. However, when the antibiotics were compared head-to-head, the potential adverse effect of macrolide drugs emerged. Around 10 in 1,000 children whose mothers were given the drug had developed the conditions by the age of seven, compared to 6 in 1,000 children, for those who had other types of antibiotic. © 2015 Guardian News and Media Limited

Keyword: Development of the Brain; Epilepsy
Link ID: 20723 - Posted: 03.26.2015

By BONNIE ROCHMAN Reasons Why I Shouldn’t Have to Go Tonight: If I wanted to talk about it, I would. / It’s my body. / It’s a waste of time. / It’s a waste of money. / I know what I need to know. / It sounds pretty stupid to me. PLEASE DON’T MAKE ME GO. I DON’T WANT TO GO. The plea came from Leah Likin, a fifth grader. It was addressed to her mother, who had registered both of them for a two-part course on puberty called “For Girls Only.” The missive, which included additional objections, failed: Mother took daughter anyway. But Leah had plenty of company, peers who shared her resistance, their arms crossed, their eyes downcast. Last year, the course, which is split into sessions for preteen boys and girls and held mostly in and around Seattle, and also in the Bay Area, pulled in 14,000 attendees. They heard about it from their pediatricians, or through word of mouth. The creator of the course, Julie Metzger, has been trying for nearly three decades to turn what’s so often at best a blush-inducing experience — the “facts of life” talk — into a candid dialogue between parents and children. In the mid-1980s, she was a graduate student at the University of Washington School of Nursing when she reviewed survey data on how women had learned about menarche, or the onset of menstruation, for her master’s thesis. Most reported getting information from gym class or their mothers. “You can picture those conversations lasting from 10 seconds to 10 hours,” Metzger says. “And I thought, Wouldn’t it be interesting if you actually had a class where you sit with your parents and hear these things from someone? What if that class were fun and funny and interactive?” Metzger, who is 56 and vigorous, with flushed cheeks and blue eyes, says she has always been comfortable talking about sexuality; her father was a urologist, her mother a nurse. “Hand me a microphone,” she says. “I get so into this topic that I can make myself cry in front of the class, and it’s real.” © 2015 The New York Times Company

Keyword: Sexual Behavior
Link ID: 20722 - Posted: 03.26.2015

Jon Hamilton Doctors are much more likely to level with patients who have cancer than patients who have Alzheimer's, according to a report released this week by the Alzheimer's Association. The report found that just 45 percent of Medicare patients who'd been diagnosed with Alzheimer's said they were informed of the diagnosis by their doctor. By contrast, more than 90 percent of Medicare patients with cancer said they were told by their doctor. "What we found is really shocking," says Beth Kallmyer, vice president of constituent services for the Alzheimer's Association. "This is reminiscent of what happened in the 1960s and 1970s with cancer," she says. "But that's changed now, and it really needs to change for Alzheimer's as well." For years, the association's help line has been receiving complaints from family members who say that doctors are reluctant to reveal an Alzheimer's diagnosis, Kallmyer says. So the association decided to investigate by studying medical records and survey results from Medicare recipients. To make sure that Alzheimer's patients hadn't simply forgotten what a doctor said, the group also looked at Medicare survey responses from family members and other caregivers. The result wasn't much better: Just 53 percent said a doctor told them of the patient's diagnosis. © 2015 NPR

Keyword: Alzheimers
Link ID: 20721 - Posted: 03.25.2015

By Rachel Feltman I'm not usually one for heartstring-tugging ads, but this collaboration between Valspar Paint and EnChroma, a company that makes color-boosting sunglasses for the color-blind, is pretty cool. And the coolest thing about the glasses in the above video is that they weren't designed to help the color-blind at all. Smithsonian Magazine reports that EnChroma Labs founder Don McPherson (a materials scientist) had originally engineered the glasses with surgeons in mind. The lenses contained rare earth iron and absorbed a ton of light to protect surgeons performing laser eye surgery. The boosted absorption also made colors pop more vibrantly, allowing them to more easily distinguish among different tissues during surgery. But the stellar eye protection and vibrant colors meant that many surgeons wanted to wear them outside the operating room. McPherson himself started using them as regular sunglasses. And when a color-blind friend tried them on, he was amazed: He could distinguish orange traffic cones from the grass and pavement around them. He was perceiving color in a way he never had before. Now EnChroma sells the glasses (which have been specifically tailored for color blindness since the accidental discovery) for a few hundred bucks a pop. McPherson explains that all people have three photopigments in the eye, also known as cones, which are sensitive to blue, green and red. Blue operates fairly independently, while the red and green cones, in most humans, overlap, affecting the perception of certain colors. For example, if 10 photons landed on the red cone and 100 landed on the green cone, the object viewed would appear more green. Whereas if an equal number of photons landed on the red and green cones, the color perceived would be yellow.

Keyword: Vision
Link ID: 20720 - Posted: 03.25.2015

Alice Park We start to talk before we can read, so hearing words, and getting familiar with their sounds, is obviously a critical part of learning a language. But in order to read, and especially in order to read quickly, our brains have to “see” words as well. At least that’s what Maximilian Riesenhuber, a neuroscientist at Georgetown University Medical Center, and his colleagues found in an intriguing brain-mapping study published in the Journal of Neuroscience. The scientists recruited a small group of college students to learn a set of 150 nonsense words, and they imaged their brains before and after the training. Before they learned the words, their brains registered them as a jumble of symbols. But after they were trained to give them a meaning, the words looked more like familiar words they used every day, like car, cat or apple. The difference in way the brain treated the words involved “seeing” them rather than sounding them out. The closest analogy would be for adults learning a foreign language based on a completely different alphabet system. Students would have to first learn the new alphabet, assigning sounds to each symbol, and in order to read, they would have to sound out each letter to put words together. In a person’s native language, such reading occurs in an entirely different way.

Keyword: Language
Link ID: 20719 - Posted: 03.25.2015

By Harriet Brown If you’re one of the 45 million Americans who plan to go on a diet this year, I’ve got one word of advice for you: Don’t. You’ll likely lose weight in the short term, but your chance of keeping if off for five years or more is about the same as your chance of surviving metastatic lung cancer: 5 percent. And when you do gain back the weight, everyone will blame you. Including you. This isn’t breaking news; doctors know the holy trinity of obesity treatments—diet, exercise, and medication—don’t work. They know yo-yo dieting is linked to heart disease, insulin resistance, higher blood pressure, inflammation, and, ironically, long-term weight gain. Still, they push the same ineffective treatments, insisting they’ll make you not just thinner but healthier. In reality, 97 percent of dieters regain everything they lost and then some within three years. Obesity research fails to reflect this truth because it rarely follows people for more than 18 months. This makes most weight-loss studies disingenuous at best and downright deceptive at worst. One of the principles driving the $61 billion weight-loss industries is the notion that fat is inherently unhealthy and that it’s better, health-wise, to be thin, no matter what you have to do to get there. But a growing body of research is beginning to question this paradigm. Does obesity cause ill health, result from it, both, or neither? Does weight loss lead to a longer, healthier life for most people? Studies from the Centers for Disease Control and Prevention repeatedly find the lowest mortality rates among people whose body mass index puts them in the “overweight” and “mildly obese” categories.

Keyword: Obesity
Link ID: 20718 - Posted: 03.25.2015

Mo Costandi Two teams of scientists have developed new ways of stimulating neurons with nanoparticles, allowing them to activate brain cells remotely using light or magnetic fields. The new methods are quicker and far less invasive than other hi-tech methods available, so could be more suitable for potential new treatments for human diseases. Researchers have various methods for manipulating brain cell activity, arguably the most powerful being optogenetics, which enables them to switch specific brain cells on or off with unprecedented precision, and simultaneously record their behaviour, using pulses of light. This is very useful for probing neural circuits and behaviour, but involves first creating genetically engineered mice with light-sensitive neurons, and then inserting the optical fibres that deliver light into the brain, so there are major technical and ethical barriers to its use in humans. Nanomedicine could get around this. Francisco Bezanilla of the University of Chicago and his colleagues knew that gold nanoparticles can absorb light and convert it into heat, and several years ago they discovered that infrared light can make neurons fire nervous impulses by heating up their cell membranes. They therefore attached gold nanorods to three different molecules that recognise and bind to proteins in the cell membranes – the scorpion toxin Ts1, which binds to a sodium channel involved in producing nervous impulses, and antibodies that bind the P2X3 and the TRPV1 channels, both found in dorsal root ganglion (DRG) neurons, which transmit touch and pain information up the spinal cord and into the brain. © 2015 Guardian News and Media Limited

Keyword: Brain imaging
Link ID: 20717 - Posted: 03.25.2015

By Kate Baggaley Mutations on a gene necessary for keeping cells clean can cause Lou Gehrig’s disease, scientists report online March 24 in Nature Neuroscience. The gene is one of many that have been connected to the condition. In amyotrophic lateral sclerosis, also known as Lou Gehrig’s disease, nerve cells that control voluntary movement die, leading to paralysis. Scientists have previously identified mutations in 29 genes that are linked with ALS, but these genes account for less than one-third of all cases. To track down more genes, a team of European researchers looked at the protein-coding DNA of 252 ALS patients with a family history of the disease, as well as of 827 healthy people. The team discovered eight mutations on a gene called TBK1 that were associated with ALS. TBK1 normally codes for a protein that controls inflammation and cleans out damaged proteins from cells. “We do not know which of these two principle functions of TBK1 is the more relevant one” to ALS, says coauthor Jochen Weishaupt, a neurologist at Ulm University in Germany. In cells with one of the eight TBK1 mutations, the protein either is missing or lacks components that it needs to interact with other proteins, the researchers found. TBK1 mutations may explain 2 percent of ALS cases that run in families, which make up about 10 percent of all incidences of the disease, Weishaupt says. © Society for Science & the Public 2000 - 2015

Keyword: ALS-Lou Gehrig's Disease ; Genes & Behavior
Link ID: 20716 - Posted: 03.25.2015

By NICHOLAS BAKALAR Concussions are not as common in Major League Baseball as they are in professional football, but they happen often enough, with players getting hit by pitches, running into walls or catching a knee in the head sliding into a base. Catchers are particularly at risk — a foul tip off the mask will snap the neck back and give the brain a solid rattle. Collisions at the plate take a toll, too. Now, a study published in the American Journal of Sports Medicine suggests that position players in the majors who sustain concussions do not hit as effectively in their first weeks back after their injury. Under Major League Baseball rules, players can return after a concussion if they pass the concussion protocol — a series of interviews and tests of physical and mental functioning. But the new study found that even after passing the tests and having no apparent symptoms, hitters showed an initial decline when they returned to action. The study identified 66 position players who had concussions between 2007 and 2013, including some who never went on the disabled list. The study then compared their performance in the weeks before and after the injury. The gap was noticeable. In the two weeks before their injuries, the players hit .249 with a .315 on base percentage and a .393 slugging average. For the two weeks after the injury, their line was .227/.287/.347. Baseball instituted a seven-day disabled list in 2011, specifically to let players recover from concussions while allowing the team to maintain a full roster. But there is no set time that a player must stay out after a concussion. If he passes the protocol, he is cleared to play. © 2015 The New York Times Company

Keyword: Brain Injury/Concussion
Link ID: 20715 - Posted: 03.24.2015

By Gary Stix One of the most intriguing new areas of research in neuroscience has to do with the discovery that proteins involved with Alzheimer’s, Parkinson’s and other neurodegenerative illnesses can contort into the wrong shape. The misshapen molecules can spread throughout the brain in a manner akin to prion diseases—the most notorious of which is variant Creutzfeldt-Jakob disease, better known as Mad Cow. Misfolded proteins can lead to a buildup of cellular gunk that then causes damage inside or outside cells. If the process of misfolding observed in Alzheimer’s and Parkinson’s is similar to the one in Mad Cow, the next question is whether these misshapen proteins are transmissible from one organism to another. Last month, an article appeared in Acta Neuropathologica Communications from researchers at the Centre for Biological Threats and Special Pathogens at the Robert Koch-Institut in Berlin that raised questions about whether medical instruments need to be decontaminated if they come into contact with post-mortem brain tissue from Alzheimer’s or Parkinson’s patients. The case for putting in place such prophylaxis is rooted in lab studies that show that injecting deposits of these proteins into an animal brain can initiate a “seeding” process in which one protein causes another to misfold. “Whether those harmful effects can be also caused by transmitted protein particles in humans who express mutated or normal alpha-synuclein, A-beta or tau is still unknown,” the article says. But then it goes on: “…the ability to decontaminate medical instruments from aggregated A-beta, tau and alpha-synuclein may potentially add to patient safety.” © 2015 Scientific American

Keyword: Prions; Alzheimers
Link ID: 20714 - Posted: 03.24.2015

Claudia Dreifus Twenty-three states and the District of Columbia have legalized medical marijuana, but scientific research into its appropriate uses has lagged. Dr. Mark Ware would like to change that. Dr. Ware, 50, is the director of the Canadian Consortium for the Investigation of Cannabinoids and the director of clinical research of the Alan Edwards Pain Management Unit of McGill University Health Center. Medical marijuana has been legal in Canada for 16 years, and Dr. Ware, a practicing physician, studies how his patients take the drug and under what conditions it is effective. We spoke for two hours at the recent meeting of the American Association for the Advancement of Science and later by telephone. Our interviews have been condensed and edited for space. Q. How did you become interested in the medical possibilities of cannabis? A. In the late 1990s, I was working in Kingston, Jamaica, at a clinic treating people with sickle cell anemia. My British father and Guyanese mother had raised me in Jamaica, and I’d attended medical school there. One day, an elderly Rastafarian came for his annual checkup. I asked him, “What are your choices of medicines?” He leaned over the table and said, “You must study the herb.” That night, I went back to my office and looked up “cannabis and pain.” What I found were countless anecdotes from patients who’d obtained marijuana either legally or not and who claimed good effect with a variety of pain-related conditions. There were also the eye-opening studies showing that the nervous system had specific receptors for cannabinoids and that these receptors were located in areas related to pain. Everything ended with, “More studies are needed.” So I thought, “This is what I should be doing; let’s go!” © 2015 The New York Times Company

Keyword: Drug Abuse; Pain & Touch
Link ID: 20713 - Posted: 03.24.2015

By Brian Handwerk In the U.S., legal hurdles have long hampered research into marijuana. But as more states approve medical and even recreational marijuana, scientific inquiries have spiked, especially studies aimed at finding out what exactly is in today's weed—and what it does to our bodies. In Colorado, which made marijuana legal in November 2012, the latest results show that the pot lining store shelves is much more potent than the weed of 30 years ago. But the boost in power comes at a cost—modern marijuana mostly lacks the components touted as beneficial by medical marijuana advocates, and it is often contaminated with fungi, pesticides and heavy metals. “There's a stereotype, a hippy kind of mentality, that leads people to assume that growers are using natural cultivation methods and growing organically," says Andy LaFrate, founder of Charas Scientific, one of eight Colorado labs certified to test cannabis. "That's not necessarily the case at all." LaFrate presented his results this week at a meeting of the American Chemical Society (ACS) in Denver. LaFrate says he's been surprised at just how strong most of today's marijuana has become. His group has tested more than 600 strains of marijuana from dozens of producers. Potency tests, the only ones Colorado currently requires, looked at tetrahydrocannabinol (THC), the psychoactive compound that produces the plant's famous high. They found that modern weed contains THC levels of 18 to 30 percent—double to triple the levels that were common in buds from the 1980s. That's because growers have cross-bred plants over the years to create more powerful strains, which today tout colorful names like Bruce Banner, Skunkberry and Blue Cookies.

Keyword: Drug Abuse
Link ID: 20712 - Posted: 03.24.2015

By Siri Carpenter “I don’t look like I have a disability, do I?” Jonas Moore asks me. I shake my head. No, I say — he does not. Bundled up in a puffy green coat, Moore, 35 and sandy-haired, doesn’t stand out in the crowd seeking refuge from the winter cold in a drafty Starbucks. His handshake is firm and his blue eyes meet mine as we talk. He comes across as intelligent and thoughtful, if perhaps a bit reserved. His disability — a form of autism — is invisible. That’s part of the problem, Moore says. Like most people with an autism spectrum disorder, he finds relationships challenging. In the past, he has been quick to anger and has had what he calls meltdowns. Those who don’t know he has autism can easily misinterpret his actions. “People think that when I do misbehave I’m somehow intentionally trying to be a jerk,” Moore says. “That’s just not the case.” His difficulty managing emotions has gotten him into some trouble, and he has had a hard time holding onto jobs — an outcome he might have avoided, he says, if his co-workers and bosses had better understood his intentions. Over time, things have gotten better. Moore has held the same job for five years, vacuuming commercial buildings on a night cleaning crew. He attributes his success to getting the right amount of medication and therapy, to time’s maturing him and to the fact that he works mostly alone. Moore is fortunate. His parents help support him financially. He has access to good mental health care where he lives in Wisconsin. And he has found a job that suits him. Many adults with autism are not so lucky.

Keyword: Autism
Link ID: 20711 - Posted: 03.24.2015

|By Susana Martinez-Conde and Stephen L. Macknik All visual art is illusory in that it involves a departure from reality, a filtering through the mind of the artist. This subjectivity applies not only to abstract works but also to representational art, in which the artist translates his or her perception into a physical object capable of inducing a similar perception in the viewer. Painters render the three-dimensional world on a flat surface. These representations are enough to suspend our visual system's disbelief and trigger barrages of neuronal firing that become visions of bathers, bridges and water lilies. It is never about reality but about how the artist sees and wants to portray it. This artistic vision is a mishmash of expectations, memories, assumptions, imagination and intent. It is also, in a sense, a reflection of neural shortcuts and basic visual processes. The picture becomes even more complicated when painters suffer from pathologies of the eyes or brain that force them to see their surroundings in ways that diverge from standard experience. The artwork produced by such artists allows us to participate in their perception—and misperception—of the world. For example, failing vision can translate into an eerie loss of precision and detail in paintings. The pictures of American artist Georgia O'Keeffe became flatter and less intricate as she developed bilateral age-related macular degeneration, a retinal disease that affects central, high-resolution vision. The later works of American painter Mary Cassatt similarly show an uncharacteristic absence of delicacy in faces as she developed cataracts. French impressionist Claude Monet also had cataracts, which rendered his paintings imprecise and muted in color. After he underwent successful cataract surgery, his paintings regained definition and vibrancy. As the examples in this column attest, the effects of vision or brain diseases can sometimes be traced in great works of art. © 2015 Scientific American

Keyword: Vision
Link ID: 20710 - Posted: 03.24.2015

By ANDREW POLLACK An experimental drug for Alzheimer’s disease sharply slowed the decline in mental function in a small clinical trial, researchers reported Friday, reviving hopes for an approach to therapy that until now has experienced repeated failures. The drug, being developed by Biogen Idec, could achieve sales of billions of dollars a year if the results from the small trial are replicated in larger trials that Biogen said it hoped to begin this year. Experts say that there are no really good drugs now to treat Alzheimer’s. Biogen’s stock has risen about 50 percent since early December, when the company first announced that the drug had slowed cognitive decline in the trial, without saying by how much. Analysts and investors had been eagerly awaiting the detailed results, some of them flying to France to hear Biogen researchers present them at a neurology meeting on Friday. The drug, called aducanumab, met and in some cases greatly exceeded Wall Street expectations in terms of how much the highest dose slowed cognitive decline. However, there was a high incidence of a particular side effect that might make it difficult to use the highest dose. Still, the net impression was positive. “Out-of-the-ballpark efficacy, acceptable safety,” Ravi Mehrotra, an analyst at Credit Suisse, wrote on Friday. Shares of Biogen rose $42.33, or 10 percent, to $475.98. Alzheimer’s specialists were impressed, but they cautioned that it was difficult to read much from a small early-stage, or Phase 1, trial that was designed to look at safety, not the effect on cognition. Also, other Alzheimer’s drugs that had looked promising in early studies ended up not working in larger trials. “It’s certainly encouraging,” said Dr. Samuel Gandy, director of the Center for Cognitive Health at Mount Sinai Hospital in New York, who was not involved in the study. He said the effect of the highest dose was “pretty impressive.” © 2015 The New York Times Company

Keyword: Alzheimers
Link ID: 20709 - Posted: 03.21.2015

by Emiko Jozuka Touch, says David J. Linden, is something we take for granted. "It's very hard to imagine it gone," he tells WIRED.co.uk. "You can imagine what it's like to be blind or deaf, or have no sense of smell, but there's no way to turn off touch". Touch might not be an obvious starting point for Linden, who is a professor of neuroscience at the John Hopkins University, studying learning and memory. But according to the professor, "the story of the neuroscience underlying touch has yet to be told". Pointing to the advances made in touch research over the last 20 years, Linden tells us that his own interest in the topic was sparked over lunch by colleagues working in the School of Medicine. Making the complex links between the brain and our sense of touch accessible to a wider audience is no easy feat. Yet in his recent book entitled, Touch: The Science of Hand, Heart, and Mind, Linden offers anecdotal and factual ways in to exploring different aspects of touch, whether that be in the form of pain, itches, hot and cold sensations or caresses. "We think of touch as being a one sense modality, but it's many different sensors in the skin acting in parallel," says Linden. He explains how the information in the form of, for example, an itch, pain or caress relays to the brain, dividing them into either discriminative or emotional forms of touch. The discriminative touch allows a person to understand where the body is being touched, or to understand if an object is textured, smooth or 3D. While emotional touch is what makes pain feel emotionally negative, or an orgasm feel positive, says Linden.

Keyword: Pain & Touch
Link ID: 20708 - Posted: 03.21.2015

By JENEEN INTERLANDI Nyiregyhaza (pronounced NEAR-re-cha-za) is a medium-size city tucked into the northeastern corner of Hungary, about 60 miles from the Ukrainian border. It has a world-class zoo, several museums and universities and a new Lego Factory. It also has two Roma settlements, or “Gypsy ghettos.” The larger of these settlements is Gusev, a crumbling 19th-century military barracks separated from the city proper by a railway station and a partly defunct industrial zone. Gusev is home to more than 1,000 Roma. Its chief amenities include a small grocery store and a playground equipped with a lone seesaw and a swingless swing set. There’s also a freshly painted elementary school, where approximately 60 students are currently enrolled. Almost all those students are Roma and almost all of them live in Gusev. Officially, most of the schools in Nyiregyhaza are integrated. Roma students have access to the same facilities as non-Roma students, and the ethnic balance of any given facility largely reflects the ethnic balance of the neighborhoods it serves. In practice, things are muddier. While many families in Gusev have been assigned to perfectly reputable schools, there is no busing program, and most schools are not within walking distance. For families living on just 60,000 forints ($205) a month, the schools are also too expensive to reach by public transit. “Everything is fine on paper,” Adel Kegye, an attorney with the Chance for Children Foundation (C.F.C.F.), told me when I visited Hungary this past fall. “But in reality, they make it very hard for the Roma to go anywhere but the settlement school.” ..... In the past two decades, with the advent of f.M.R.I. technology, neuroscientists also began to tackle such questions. Emile Bruneau, a cognitive neuroscientist at the Massachusetts Institute of Technology, has spent the past seven years studying intractable conflicts around the world. © 2015 The New York Times Company

Keyword: Emotions; Brain imaging
Link ID: 20707 - Posted: 03.21.2015

Christian Jarrett November 2013, I proudly launched the Brain Watch blog here at WIRED. This will be my final post. For seventeen months I’ve used the blog to report on new neuroscience findings, to reflect on how neuroscience is influencing the public and media, to investigate the claims of brain products, to explore neurological abnormality and death, and to debunk misconceptions about the brain. I loved reading your comments and I was thrilled when I found my ideas from here quoted in other publications. It’s been a lot of fun. Here’s some of what I learned: Brain myths die hard When the movie Lucy came out last year, it provided me an opportunity to challenge the 10% brain myth and explore its origins (the idea we only use 10% of our brains is a premise of the film). With such tired myths, it’s easy to wonder if anybody believes them anymore. Writing this blog, I learned not to underestimate their staying power! Consider the vitriol my 10% post attracted from a neuroscience grad student at Yale. In an email dripping with disdain she told me “You … should feel ashamed for releasing such a misinformed article. … There are misinformed and uneducated people all over the internet trying to disprove this 10% notion, but that is expected. This is certainly NOT something I expected from someone allegedly as well educated as yourself.” Brain science is confusing and complicated Hardly a revelation, you might say. But writing this blog brought home to me the messy reality of neuroscience. Consider how tabloid papers like dividing the world into those activities and technologies that cause brain shrinkage and those that cause brain growth – the implicit assumption always being that growth is good and shrinkage bad.

Keyword: Miscellaneous
Link ID: 20706 - Posted: 03.21.2015