Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Featured Article

'Language Gene' Has a Partner

Few genes have made the headlines as much as FOXP2. The first gene associated with language disorders , it was later implicated in the evolution of human speech. Girls make more of the FOXP2 protein, which may help explain their precociousness in learning to talk. Now, neuroscientists have figured out how one of its molecular partners helps Foxp2 exert its effects.

The findings may eventually lead to new therapies for inherited speech disorders, says Richard Huganir, the neurobiologist at Johns Hopkins University School of Medicine in Baltimore, Maryland, who led the work. Foxp2 controls the activity of a gene called Srpx2, he notes, which helps some of the brain's nerve cells beef up their connections to other nerve cells. By establishing what SRPX2 does, researchers can look for defective copies of it in people suffering from problems talking or learning to talk.

Until 2001, scientists were not sure how genes influenced language. Then Simon Fisher, a neurogeneticist now at the Max Planck Institute for Psycholinguistics in Nijmegen, the Netherlands, and his colleagues fingered FOXP2 as the culprit in a family with several members who had trouble with pronunciation, putting words together, and understanding speech. These people cannot move their tongue and lips precisely enough to talk clearly, so even family members often can?t figure out what they are saying. It “opened a molecular window on the neural basis of speech and language,” Fisher says.

Photo credit: Yoichi Araki, Ph.D.


Links 1 - 20 of 22383

By Meredith Wadman There have been few happy endings when it comes to spinal muscular atrophy (SMA), the most common genetic cause of death in childhood. The disease inexorably destroys the motor neurons of the spinal cord and brainstem that control movement, including swallowing and breathing. In its most severe form, SMA kills those afflicted at about age 2, most commonly by suffocating them. There are no Food and Drug Administration (FDA)–approved drugs for the disease. That is almost certainly about to change. An innovative drug that helps cells bypass the genetic flaw responsible for SMA may be approved as soon as this month, on the heels of strongly positive results from late-stage clinical trials. On 7 November, a trial of the drug, nusinersen, in wheelchair-bound children aged 2 to 12, was stopped on the grounds that it was unethical to deny the drug to children in the control arm, given the positive results in the treated children. In August, a similar trial in infants was stopped for the same reason, allowing the untreated infants in a control arm to begin receiving the drug. And today, a paper appearing in The Lancet provides compelling biological evidence that nusinersen is having its desired effect in the cells of the brain and spinal cord. “These [infant-onset] SMA kids are going to die. And not only are they now not dying, you are essentially on the path to a true cure of a degenerative [neurological] disease, which is unheard of,” says Jeffrey Rothstein, a neurologist at the Johns Hopkins School of Medicine in Baltimore, Maryland, who was not affiliated with the trials of the drug and is not connected with either of the two companies involved in its development: Ionis of Carlsbad, California, and Biogen of Cambridge, Massachusetts. © 2016 American Association for the Advancement of Science

Keyword: Movement Disorders; Development of the Brain
Link ID: 22967 - Posted: 12.08.2016

Laura Sanders Flickering light kicks off brain waves that clean a protein related to Alzheimer’s disease out of mice’s brains, a new study shows. The results, described online December 7 in Nature, suggest a fundamentally new approach to counteracting Alzheimer’s. Many potential therapies involve drugs that target amyloid-beta, the sticky protein that accumulates in the brains of Alzheimer’s patients. In contrast, the new method used on mice causes certain nerve cells to fire at a specific rhythm, generating brain waves that researchers believe may clear A-beta. “This is a very creative and innovative new approach to targeting brain amyloid load in Alzheimer’s,” says geriatric psychiatrist Paul Rosenberg of Johns Hopkins Medicine. But he cautions that the mouse results are preliminary. Neuroscientist Li-Huei Tsai of MIT and colleagues saw that mice engineered to produce lots of A-beta don’t produce as many gamma waves in the hippocampus, a brain structure important for memory. Using a method called optogenetics, the researchers genetically designed certain nerve cells in the hippocampus to fire off signals in response to light. In this way, the researchers induced gamma waves — rhythmic firings 40 times per second. After just an hour of forced gamma waves, the mice had less A-beta in the hippocampus, the researchers found. Further experiments revealed that gamma waves packed a double whammy — they lowered A-beta by both reducing production and enhancing the brain’s ability to clear it. © Society for Science & the Public 2000 - 2016

Keyword: Alzheimers
Link ID: 22966 - Posted: 12.08.2016

By Helen Briggs BBC News Humans may in part owe their big brains to a DNA "typo" in their genetic code, research suggests. The mutation was also present in our evolutionary "cousins" - the Neanderthals and Denisovans. However, it is not found in humans' closest living relatives, the chimpanzees. As early humans evolved, they developed larger and more complex brains, which can process and store a lot of information. Last year, scientists pinpointed a human gene that they think was behind the expansion of a key brain region known as the neocortex. They believe the gene arose about five or six million years ago, after the human line had split off from chimpanzees. Now, researchers have found a tiny DNA change - a point mutation - that appears to have changed the function of the gene, sparking the process of expansion of the neocortex. It may have paved the way for the brain's expansion by dramatically boosting the number of brain cells found in this region. Dr Wieland Huttner of the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, Germany, led the research. "A point mutation in a human-specific gene gave it a function that allows expansion of the relevant stem cells that make a brain big," he told BBC News. "This one, as it is fixed in the human genome - so all living humans have the gene - apparently gave a tremendous selection advantage, and that's why we believe it spread in the human population." Between two and six million years ago, the ancestors of modern humans began to walk upright and use simple tools.

Keyword: Evolution; Genes & Behavior
Link ID: 22965 - Posted: 12.08.2016

Children don’t usually have the words to communicate even the darkest of thoughts. As a result, some children aged 5 to 11 take their own lives. It’s a rare and often overlooked phenomenon—and one that scientists are only just beginning to understand. A study published today in the journal Pediatrics reveals that attention deficit disorder (A.D.D.), not depression, may be the most common mental health diagnosis among children who die by suicide. By contrast, the researchers found that two-thirds of the 606 early adolescents studied (aged 12 to 14) had suffered from depression. While the finding isn’t necessarily causal, it does suggest that impulsive behavior might contribute to incidences of child suicide. Alternatively, some of these cases could be attributed to early-onset bipolar disorder, misdiagnosed as A.D.D. or A.D.H.D. Here’s Catherine Saint Louis, reporting for The New York Times: Suicide prevention has focused on identifying children struggling with depression; the new study provides an early hint that this strategy may not help the youngest suicide victims. “Maybe in young children, we need to look at behavioral markers,” said Jeffrey Bridge, the paper’s senior author and an epidemiologist at the Research Institute at Nationwide Children’s Hospital in Columbus, Ohio. Jill Harkavy-Friedman, the vice president of research at the American Foundation for Suicide Prevention, agreed. “Not everybody who is at risk for suicide has depression,” even among adults, said Dr. Harkavy-Friedman, who was not involved in the new research. © 1996-2016 WGBH Educational Foundation

Keyword: ADHD; Depression
Link ID: 22964 - Posted: 12.08.2016

By MATT RICHTEL Soaring use of e-cigarettes among young people “is now a major public health concern,” according to a report being published Thursday from the United States Surgeon General. It is the first comprehensive look on the subject from the nation’s highest public-health authority, and it finds that e-cigarettes are now the most commonly used tobacco product among youths, surpassing tobacco cigarettes. E-cigarettes, which turn nicotine into inhalable vapor, can harm developing brains of teenagers who use them, and also can create harmful aerosol for people around the user, the equivalent of secondhand smoke, the report said, citing studies in animals. “Adolescent brains are particularly sensitive to nicotine’s effects,” and can experience “a constellation of nicotine-induced neural and behavioral alterations,” the report said. It urged stronger action to prevent young people from getting access to e-cigarettes. Some researchers have said that e-cigarette use among youth could act as a gateway to traditional smoking, but the report says the relationship is not yet fully established. Cigarette smoking among youth has fallen sharply in recent years but use of nicotine products over all remains essentially flat among young people. With its focus on youth, the report did not address adult use of e-cigarettes, and the most divisive issue of whether the technology is an effective tool to help smokers of traditional cigarettes quit their deadly habit. The report also did not break new scientific ground, but public health advocates said the voice of the surgeon general in the debate marked a milestone. “It’s the most comprehensive and objective answer to the question of whether e-cigarette use is a matter of serious concern that requires government action,” said Matthew Myers, President of the Campaign for Tobacco Free Kids. “The answer, based on the findings, is: yes.” © 2016 The New York Times Company

Keyword: Drug Abuse; Development of the Brain
Link ID: 22963 - Posted: 12.08.2016

Betsy Mason With virtual reality finally hitting the consumer market this year, VR headsets are bound to make their way onto a lot of holiday shopping lists. But new research suggests these gifts could also give some of their recipients motion sickness — especially if they’re women. In a test of people playing one virtual reality game using an Oculus Rift headset, more than half felt sick within 15 minutes, a team of scientists at the University of Minnesota in Minneapolis reports online December 3 in Experimental Brain Research. Among women, nearly four out of five felt sick. So-called VR sickness, also known as simulator sickness or cybersickness, has been recognized since the 1980s, when the U.S. military noticed that flight simulators were nauseating its pilots. In recent years, anecdotal reports began trickling in about the new generation of head-mounted virtual reality displays making people sick. Now, with VR making its way into people’s homes, there’s a steady stream of claims of VR sickness. “It's a high rate of people that you put in [VR headsets] that are going to experience some level of symptoms,” says Eric Muth, an experimental psychologist at Clemson University in South Carolina with expertise in motion sickness. “It’s going to mute the ‘Wheee!’ factor.” Oculus, which Facebook bought for $2 billion in 2014, released its Rift headset in March. The company declined to comment on the new research but says it has made progress in making the virtual reality experience comfortable for most people, and that developers are getting better at creating VR content. All approved games and apps get a comfort rating based on things like the type of movements involved, and Oculus recommends starting slow and taking breaks. But still some users report getting sick. © Society for Science & the Public 2000 - 2016.

Keyword: Vision
Link ID: 22962 - Posted: 12.07.2016

By Karinna Hurley Autonomy, peer relationships, and parental conflict — these are the universal themes that made the popular 1990s comic Zits identifiable for anyone who has, or has been, a teenager. In one strip, hands in pockets and making a sullen sideways glance, Jeremy slouches next to his father. His t-shirt reads, “question authority.” Next to him, his equally chagrined father sports the t-shirt: “do not question my authority.” While his parents work to steer the 16-year-old in the right direction on his path to adulthood, Jeremy is equally determined to forge his own way. For the most part, their suggestions, pleas, and cajoles, don’t make it past his headphones. Figuring out how to effectively appeal to adolescents was the first challenge facing researchers in a fascinating new study published in the Proceedings of the National Academy of Sciences. Their goal was to induce teens to change one critically important behavior — food choice — in a completely novel way. The researchers set-up a scenario where healthy eating itself became an avenue for fighting authority. While such a unique value-based intervention also has the potential to be applicable to other groups and values, it’s hard to find a better place to start in today’s society than healthy eating. One of the major initiatives developed and championed by outgoing First Lady Michelle Obama was aimed at reducing childhood obesity. Because, despite the consequences — heart disease, stroke, diabetes — about one in three American adults and nearly one in five children are obese. Carrying extra weight is harmful to individuals and also costly to society. But changing eating habits, one factor in being overweight, is just plain hard. It is not enough to know the consequences of eating junk food: In movie theaters, on best-seller lists and billboards, the warnings are all around us. Yet, even widespread public health messages and access to kitchen gardens, like on the South Lawn of the White House, have not yet curbed rising obesity levels. © 2016 Scientific American

Keyword: Obesity
Link ID: 22961 - Posted: 12.07.2016

Sometimes the biggest gifts arrive in the most surprising ways. A couple in Singapore, Tianqiao Chen and Chrissy Luo, were watching the news and saw a Caltech scientist help a quadriplegic use his thoughts to control a robotic arm so that — for the first time in more than 10 years — he could sip a drink unaided. Inspired, Chen and Luo flew to Pasadena to meet the scientist, Richard Andersen, in person. Now they’ve given Caltech $115 million to shake up the way scientists study the brain in a new research complex. Construction of the Tianqiao and Chrissy Chen Institute for Neuroscience at Caltech will begin as early as 2018 and bring together biology, engineering, chemistry, physics, computer science and the social sciences to tackle brain function in an integrated, comprehensive way, university officials announced Tuesday. The goal of connecting these traditionally separate departments is to make “transformational advances” that will lead to new scientific tools and medical treatments, the university said. Research in shared labs will include looking more deeply into fundamentals of the brain and exploring the complexities of sensation, perception, cognition and human behavior. Neuroscience research has advanced greatly in recent years, Caltech President Thomas Rosenbaum said. The field now has the tools to look at individual neurons, for example, as well as the computer power to analyze massive data sets and an entire system of neurons. Collaborating across traditional academic boundaries takes it to the next level, he said. “The tools are at a time and place where we think that the field is ready for that sort of combination.”

Keyword: Robotics
Link ID: 22960 - Posted: 12.07.2016

Scientists have developed a mind-controlled robotic hand that allows people with certain types of spinal injuries to perform everyday tasks such as using a fork or drinking from a cup. The low-cost device was tested in Spain on six people with quadriplegia affecting their ability to grasp or manipulate objects. By wearing a cap that measures electric brain activity and eye movement the users were able to send signals to a tablet computer that controlled the glove-like device attached to their hand. Participants in the small-scale study were able to perform daily activities better with the robotic hand than without, according to results published Tuesday in the journal Science Robotics. The principle of using brain-controlled robotic aids to assist people with quadriplegia isn't new. But many existing systems require implants, which can cause health problems, or use wet gel to transmit signals from the scalp to the electrodes. The gel needs to be washed out of the user's hair afterward, making it impractical in daily life. "The participants, who had previously expressed difficulty in performing everyday tasks without assistance, rated the system as reliable and practical, and did not indicate any discomfort during or after use," the researchers said. It took participants just 10 minutes to learn how to use the system before they were able to carry out tasks such as picking up potato chips or signing a document. ©2016 CBC/Radio-Canada.

Keyword: Robotics
Link ID: 22959 - Posted: 12.07.2016

By MARC SANTORA At least four babies have been born in New York City with Zika-related brain developmental symptoms since July, the city’s health department said on Wednesday, bringing the total number of such births to five. The numbers were announced in an alert the Department of Health and Mental Hygiene sent to doctors, urging them to remain vigilant and to continue to warn pregnant women and sexually active women of reproductive age not using a reliable form of birth control against traveling to places where the virus is spreading. It was a reminder that while the threat of the virus may have eased in many places around the world, it still poses a danger and its consequences are likely to be felt for some time. Zika is primarily transmitted by mosquitoes but can also be passed on through sex. In most cases, the virus causes only mild illness, but the danger to women pregnant or trying to become pregnant is much greater, because of the impact the disease can have on fetal development. A small percentage of women with the virus have given birth to infants with a abnormally small heads and stunted brain growth — a condition known as microcephaly. As of Friday, about 8,000 New Yorkers have been tested for Zika and 962 have tested positive, including 325 pregnant women, according to the health department. All the cases were associated with travel; six involved sexual transmission by a partner who had been to the areas hit hardest by the Zika epidemic. © 2016 The New York Times Company

Keyword: Development of the Brain
Link ID: 22958 - Posted: 12.07.2016

A graduate student has been charged with murder in the fatal stabbing of beloved USC neuroscience professor, Bosco Tjan on campus Friday. David Jonathan Brown, 28, of Los Angeles is expected to be arraigned Tuesday in downtown Los Angeles, according to the L.A. County district attorney’s office. If he is convicted, Brown faces up to 26 years to life in prison. Prosecutors allege that Brown used a knife when he attacked and stabbed Tjan in the chest at 4:30 p.m. Friday in his office in the Seeley G. Mudd Building on campus. Brown was immediately taken into custody. It was the last day of classes. Tjan, who joined the faculty in 2001, was a professor of psychology at the USC Dornsife College of Letters, Arts and Sciences and a vision loss expert. As co-director of the Dornsife Cognitive Neuroimaging Center, Tjan ran a laboratory devoted to studying human sight. Brown was a doctoral student in Tjan’s lab, according to a USC website. The district attorney’s announcement comes a day after hundreds of students, staff and faculty gathered to honor the slain professor. “Bosco died doing what he loved, doing what he believed in — serving his students and building up a new generation of scholars,” USC President C.L. Max Nikias said. “His achievements are real, his influence enduring.” Tjan led a number of research projects and conducted a lab course on functional imaging. He was also a member of the Society for Neuroscience and Vision Sciences Society.

Keyword: Miscellaneous
Link ID: 22957 - Posted: 12.07.2016

By Michael Price The titular detective of the BBC television series Sherlock possesses a “mind palace”—a highly organized mental catalog of nearly every memory he’s ever had. We mere mortals can’t match Holmes’s remarkable recollection, but when we store and recall memories, our brain activity probably looks a lot like his, according to a new study. The findings might help us find early warning signs of memory loss in diseases like Alzheimer’s. Previous research has found that when people perceive an event for the first time and when they are asked to remember it later, the same brain regions are activated. But whether different people encode the same memory in the same way has been a topic of debate. So scientists turned to Sherlock Holmes for answers. A group led by Janice Chen, a postdoc in the psychology department at Princeton University, and Yuan Chang Leong, a graduate student studying psychology at Stanford University in Palo Alto, California, strapped 22 study participants into a functional magnetic resonance imaging (fMRI) machine, which traces blood flow in the brain to measure brain activity. The scientists then showed them a 48-minute segment of BBC’s Sherlock. (Roughly the first half of the series’s first episode, “A Study in Pink,” for the curious superfans.) Immediately afterward, Chen asked the volunteers to tell her as much about the episode as they could. © 2016 American Association for the Advancement of Science.

Keyword: Learning & Memory
Link ID: 22956 - Posted: 12.06.2016

By CHRISTOPHER MELE Have you called your daughter by your wife’s name or your son by his brother’s name? Have you misplaced your car keys or forgotten where you parked at the mall? If you worry these might be signs of significant memory loss or the early stages of Alzheimer’s disease, which causes a slow deterioration in memory and reasoning skills, fear not, experts said. By the age of 45, the average person experiences a decline in memory, Dr. Gary W. Small, a professor of psychiatry and biobehavioral sciences at the David Geffen School of Medicine at the University of California, Los Angeles, said in an email. Forgetting facts or events over time, absent-mindedness and incorrectly recalling a detail are among six “normal” memory problems that should not cause concern, according to the Center for Brain-Mind Medicine at Brigham and Women’s Hospital in Boston. When people do experience normal memory decline related to aging, 85 percent of their complaints involve recalling people’s names, Dr. Small said. You can blame multitasking for overloading your mind. Think about the ways we are driven to distraction with smartphones and social media, for instance. “Whenever our brains are taxed by multiple demands, cognitive ‘slips’ or errors are more likely to occur due to a concept called memory ‘interference,’ ” Carrington Wendell, a neuropsychology specialist at the Anne Arundel Medical Group in Annapolis, Md., said in an email. Name mix-ups are also more likely to occur when the two names share the same beginning, middle or ending, such as Bob and Ben or Dave and Jake, and are the same sex and similar age, she added. © 2016 The New York Times Company

Keyword: Learning & Memory; Alzheimers
Link ID: 22955 - Posted: 12.06.2016

People who consistently smoked an average of less than one cigarette per day over their lifetime had a 64 percent higher risk of earlier death than never smokers, and those who smoked between one and 10 cigarettes a day had an 87 percent higher risk of earlier death than never smokers, according to a new study from researchers at the National Cancer Institute (NCI). Risks were lower among former low-intensity smokers compared to those who were still smokers, and risk fell with earlier age at quitting. The results of the study were reported Dec. 5, 2016, in JAMA Internal Medicine. NCI is part of the National Institutes of Health. When researchers looked at specific causes of death among study participants, a particularly strong association was observed for lung cancer mortality. Those who consistently averaged less than one cigarette per day over their lifetime had nine times the risk of dying from lung cancer than never smokers. Among people who smoked between one and 10 cigarettes per day, the risk of dying from lung cancer was nearly 12 times higher than that of never smokers. The researchers looked at risk of death from respiratory disease, such as emphysema, as well as the risk of death from cardiovascular disease. People who smoked between one and 10 cigarettes a day had over six times the risk of dying from respiratory diseases than never smokers and about one and half times the risk of dying of cardiovascular disease than never smokers. Smoking has many harmful effects on health, which have been detailed in numerous studies since the U.S. Surgeon General’s 1964 report linking smoking to lung cancer. The health effects of consistent low-intensity smoking, however, have not been well studied and many smokers believe that low-intensity smoking does not affect their health.

Keyword: Drug Abuse
Link ID: 22954 - Posted: 12.06.2016

By CATHERINE SAINT LOUIS These days, even 3-year-olds wear headphones, and as the holidays approach, retailers are well stocked with brands that claim to be “safe for young ears” or to deliver “100 percent safe listening.” The devices limit the volume at which sound can be played; parents rely on them to prevent children from blasting, say, Rihanna at hazardous levels that could lead to hearing loss. But a new analysis by The Wirecutter, a product recommendations website owned by The New York Times, has found that half of 30 sets of children’s headphones tested did not restrict volume to the promised limit. The worst headphones produced sound so loud that it could be hazardous to ears in minutes. “These are terribly important findings,” said Cory Portnuff, a pediatric audiologist at the University of Colorado Hospital, who was not involved in the analysis. “Manufacturers are making claims that aren’t accurate.” The new analysis should be a wake-up call to parents who thought volume-limiting technology offered adequate protection, said Dr. Blake Papsin, the chief otolaryngologist at the Hospital for Sick Children in Toronto. “Headphone manufacturers aren’t interested in the health of your child’s ears,” he said. “They are interested in selling products, and some of them are not good for you.” Half of 8- to 12-year-olds listen to music daily, and nearly two-thirds of teenagers do, according to a 2015 report with more than 2,600 participants. Safe listening is a function of both volume and duration: The louder a sound, the less time you should listen to it. It’s not a linear relationship. Eighty decibels is twice as loud as 70 decibels, and 90 decibels is four times louder. Exposure to 100 decibels, about the volume of noise caused by a power lawn mower, is safe for just 15 minutes; noise at 108 decibels, however, is safe for less than three minutes. © 2016 The New York Times Company

Keyword: Hearing
Link ID: 22953 - Posted: 12.06.2016

Emily Conover A bird in laser goggles has helped scientists discover a new phenomenon in the physics of flight. Swirling vortices appear in the flow of air that follows a bird’s wingbeat. But for slowly flying birds, these vortices were unexpectedly short-lived, researchers from Stanford University report December 6 in Bioinspiration and Biomimetics. The results could help scientists better understand how animals fly, and could be important for designing flying robots (SN: 2/7/15, p. 18). To study the complex air currents produced by birds’ flapping wings, the researchers trained a Pacific parrotlet, a small species of parrot, to fly through laser light — with the appropriate eye protection, of course. Study coauthor Eric Gutierrez, who recently graduated from Stanford, built tiny, 3-D‒printed laser goggles for the bird, named Obi. Gutierrez and colleagues tracked the air currents left in Obi’s wake by spraying a fine liquid mist in the air, and illuminating it with a laser spread out into a two-dimensional sheet. High-speed cameras recorded the action at 1,000 frames per second. The vortex produced by the bird “explosively breaks up,” says mechanical engineer David Lentink, a coauthor of the study. “The flow becomes very complex, much more turbulent.” Comparing three standard methods for calculating the lift produced by flapping wings showed that predictions didn’t match reality, thanks to the unexpected vortex breakup. |© Society for Science & the Public 2000 - 20

Keyword: Miscellaneous
Link ID: 22952 - Posted: 12.06.2016

By PETER GODFREY-SMITH Around 2008, while snorkeling and scuba diving in my free time, I began watching the unusual group of animals known as cephalopods, the group that includes octopuses, cuttlefish and squid. The first ones I encountered were giant cuttlefish, large animals whose skin changes color so quickly and completely that swimming after them can be like following an aquatic, multi-armed television. Then I began watching octopuses. Despite being mollusks, like clams and oysters, these animals have very large brains and exhibit a curious, enigmatic intelligence. I followed them through the sea, and also began reading about them, and one of the first things I learned came as a shock: They have extremely short lives — just one or two years. I was already puzzled by the evolution of large brains in cephalopods, and this discovery made the questions more acute. What is the point of building a complex brain like that if your life is over in a year or two? Why invest in a process of learning about the world if there is no time to put that information to use? An octopus’s or cuttlefish’s life is rich in experience, but it is incredibly compressed. The particular puzzle of octopus life span opens up a more general one. Why do animals age? And why do they age so differently? A scruffy-looking fish that inhabits the same patch of sea as my cephalopods has relatives who live to 200 years of age. This seems extraordinarily unfair: A dull-looking fish lives for centuries while the cuttlefish, in their chromatic splendor, and the octopuses, in their inquisitive intelligence, are dead before they are 2? There are monkeys the size of a mouse that can live for 15 years, and hummingbirds that can live for over 10. Nautiluses (who are also cephalopods) can live for 20 years. A recent Nature paper reported that despite continuing medical advances, humans appear to have reached a rough plateau at around 115 years, though a few people will edge beyond it. The life spans of animals seem to lack all rhyme or reason. © 2016 The New York Times Company

Keyword: Intelligence; Development of the Brain
Link ID: 22951 - Posted: 12.05.2016

By Israel Robledo As has often been said, with great power comes great responsibility. As we saw in the recent election, social media is a great example of a powerful medium that can change minds and change lives but can also give credibility to false or misguiding information. As someone diagnosed with Parkinson’s disease (PD) nine years ago, I’ve thrilled at seeing social media’s growing power as an agent for good. As our advocacy community has grown, social media has allowed for more information to be circulated in the PD community than ever before, and has become a vital link through which we share experiences, raise awareness about quality of life issues, point people to clinical trials, spread knowledge about cutting-edge research—and importantly, raise critical dollars to fund it. Connecting our community more tightly together has underscored the important role each of us can play in finding an eventual cure. A downside to the awesome power of this platform comes from not knowing or perhaps not caring about the source of information shared on social media. Just as “fake news” has flourished in an environment where speed, rather than accuracy, is what counts, patients—who are understandably vulnerable to hopeful reports about their disease—must recognize that not everything they read is equally credible. In my years of advocating for PD-related causes, hundreds of so-called “miracles” have been announced, all of which have proven to have disappointing results. © 2016 Scientific American

Keyword: Parkinsons
Link ID: 22950 - Posted: 12.05.2016

Gabrielle Emanuel Megan Lordos, a middle school teacher, says she was not allowed to use the word "dyslexia." She's not alone. Parents and teachers across the country have raised concerns about some schools hesitating, or completely refusing, to say the word. As the most common learning disability in the U.S., dyslexia affects somewhere between 5 and 17 percent of the population. That means millions of school children around the country struggle with it. Under the Individuals with Disabilities Education Act (IDEA), schools are required to provide special services to help these students — things like reading tutors and books on tape. But those special services can be expensive, and many schools don't have the resources to provide these accommodations. That has led some parents and advocates to worry that some schools are making a careful calculation: If they don't acknowledge the issue — or don't use the word "dyslexia" — then they are not obligated to provide services. Last year, when Lordos was teaching English at a public school in Arlington, Va., she recalls a parent-teacher meeting in the conference room. Things started smoothly. Lordos says two parents had come in to talk with teachers and administrators about their son – Lordos' student, an eighth-grader – who was struggling to read. Partway through the meeting, Lordos says she suggested that the student might have orthographic dyslexia. Two of Lordos' own children have dyslexia and, she says, she noticed her student had similar challenges to the ones she'd seen at home. © 2016 npr

Keyword: Dyslexia
Link ID: 22949 - Posted: 12.05.2016

By Alice Klein It’s something all whale-watchers yearn to see. The sight of whales breaking the surface and slapping their fins on the water is a true spectacle – but the animals don’t do it just for show. Instead, it appears that all that splashing is about messaging other whales, and the big splashes are for long-distance calls. Ailbhe Kavanagh at the University of Queensland in Gatton, Australia, and her colleagues studied 94 different groups of humpback whales migrating south along the Queensland coast in 2010 and 2011. Humpback whales regularly leap out of the water and twist on to their backs – an action known as breaching – and slap their tails and fins in a repetitive fashion. The resulting sounds travel underwater and could possibly communicate messages to other whales. Drowning in sound: The sad case of the baby beluga whales The team found evidence for this idea. The animals were significantly more likely to breach when the nearest other whale group was more than 4 kilometres away, suggesting that the body-slapping sound of breaching was used to signal to distant groups. In contrast, repetitive tail and pectoral-fin slapping appeared to be for close-range communication. There was a sudden increase in this behaviour just before new whales joined or the group split up. © Copyright Reed Business Information Ltd.

Keyword: Animal Communication; Language
Link ID: 22948 - Posted: 12.05.2016