Chapter 1. An Introduction to Brain and Behavior

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1008

By Elahe Izadi It's referred to as the "brain-eating amoeba." Naegleria fowleri resides in warm freshwater, hot springs and poorly maintained swimming pools. When the single-celled organism enters a person's body through the nose, it can cause a deadly infection that leads to destruction of brain tissue. These infections are extremely rare; 138 people have been infected since 1962, according to the Centers for Disease Control and Prevention. But over the weekend, the amoeba claimed another victim when an 18-year-old died from a meningitis infection caused by N. fowleri, said health officials in North Carolina. Lauren Seitz of Westerville, Ohio, died from a suspected case of primary amebic meningoencephalitis (PAM), and officials are investigating whether she contracted the infection while whitewater rafting in Charlotte during a church trip, the Charlotte Observer reported. The N. fowleri infection "resulted in her developing a case of meningitis ... and inflaming of the brain and surrounding tissues, and unfortunately she died of this condition," Mecklenburg County Health Department director Marcus Plescia told reporters Wednesday. Plescia said that, while they were still gathering information from health officials in Ohio, they do know one of the stops Seitz's group made was to the U.S. National Whitewater Center.

Keyword: Miscellaneous
Link ID: 22355 - Posted: 06.24.2016

Agata Blaszczak-Boxe, People with higher levels of education may be more likely to develop certain types of brain tumors, a new study from Sweden suggests. Researchers found that women who completed at least three years of university courses were 23 percent more likely to develop a type of cancerous brain tumor called glioma, compared with women who only completed up to nine years of mandatory education and did not go to a university. And men who completed at least three years of university courses were 19 percent more likely to develop the same type of tumor, compared with men who did not go to a university. Though the reasons behind the link are not clear, "one possible explanation is that highly educated people may be more aware of symptoms and seek medical care earlier," and therefore are more likely to be diagnosed, said Amal Khanolkar, a research associate at the Institute of Child Health at the University College Londonand a co-author of the study. [Top 10 Cancer-Fighting Foods] In the study, the researchers looked at data on more than 4.3 million people in Sweden who were a part of the Swedish Total Population Register. The researchers tracked the people for 17 years, beginning in 1993, to see if they developed brain tumors during that time. They also collected information about the people's education levels, income, marital status and occupation. During the 17-year study, 5,735 men and 7,101 women developed brain tumors, according to the findings, published today (June 20) in the Journal of Epidemiology & Community Health. Copyright 2016 LiveScience,

Keyword: Intelligence; Development of the Brain
Link ID: 22346 - Posted: 06.22.2016

Gary Stix Unlike biochemistry and psychology, brain science did not exist as a separate academic field until the middle of the 20th century. In recent decades, neuroscience has emerged as a star among the biological disciplines. In 2014 a workshop organized by the National Academy of Medicine met to ponder the question of whether all bodes well for the scientists-to-be who are now getting their PhDs and laboring away at postdoctoral fellowships. Will the field be able to absorb this wealth of new talent—and is it preparing students with the quantitative skills needed to understand the workings of an organ with some 86 billion neurons and hundreds of trillions of connections among all of those cells? Steven Hyman of the Broad Institute of Harvard and MIT, who helped with the planning of the workshop and was recently president of the Society for Neuroscience (SfN), welcomed the flood of doctoral students choosing neuroscience, but warned: “Insofar as talented young people are discouraged from academic careers by funding levels so low that they produce debilitating levels of competition or simply foreclose opportunities, the U.S. and the world are losing an incredibly precious resource.” I got in touch with one member of the National Academy of Medicine panel, Huda Akil of the University of Michigan Medical School, the lead author on a paper in Neuron that summarized the workshop’s findings. Akil, also a former SfN president, is a noted researcher in the neurobiology of emotions. © 2016 Scientific American,

Keyword: Miscellaneous
Link ID: 22338 - Posted: 06.20.2016

By NICHOLAS ST. FLEUR Nine scientists have won this year’s Kavli Prizes for work that detected the echoes of colliding black holes, revealed how adaptable the nervous system is, and created a technique for sculpting structures on the nanoscale. The announcement was made on Thursday by the Norwegian Academy of Science Letters in Oslo, and was live-streamed to a watching party in New York as a part of the World Science Festival. The three prizes, each worth $1 million and split among the recipients, are awarded in astrophysics, nanoscience and neuroscience every two years. They are named for Fred Kavli, a Norwegian-American inventor, businessman and philanthropist who started the awards in 2008 and died in 2013. Eve Marder of Brandeis University, Michael M. Merzenich of the University of California, San Francisco, and Carla J. Shatz of Stanford won the neuroscience prize. Dr. Marder illuminated the flexibility and stability of the nervous system through her work studying crabs and lobsters and the neurons that control their digestion. Dr. Merzenich was a pioneer in the study of neural plasticity, demonstrating that parts of the adult brain, like those of children, can be reorganized by experience. Dr. Shatz showed that “neurons that fire together wire together,” by investigating how patterns of activity sculpt the synapses in the developing brain. The winners will receive their prizes in September at a ceremony in Oslo. © 2016 The New York Times Company

Keyword: Development of the Brain
Link ID: 22279 - Posted: 06.04.2016

By Amina Zafar, Tragically Hip frontman ​Gord Downie's resilience and openness about his terminal glioblastoma and his plans to tour could help to reduce stigma and improve awareness, some cancer experts say. Tuesday's news revealed that the singer has an aggressive form of cancer that originated in his brain. An MRI scan last week showed the tumour has responded well to surgery, radiation and chemotherapy, doctors said. "I was quickly impressed by Gord's resilience and courage," Downie's neuro-oncologist, Dr. James Perry of Sunnybrook Health Sciences Centre, told a news conference. Perry said it's daunting for many of his patients to reveal the diagnosis to their family, children and co-workers. "The news today, while sad, also creates for us in brain tumour research an unprecedented opportunity to create awareness and to create an opportunity for fundraising for research that's desperately needed to improve the odds for all people with this disease," Perry said. Dr. James Perry, head of neurology at Toronto's Sunnybrook Health Sciences Centre, calls Gord Downie's sad news an unprecedented opportunity to fundraise for brain tumour research. (Aaron Vincent Elkaim/Canadian Press) "Gord's courage in coming forward with his diagnosis will be a beacon for all patients with glioblastoma in Canada. They will see a survivor continuing with his craft despite its many challenges." ©2016 CBC/Radio-Canada.

Keyword: Glia
Link ID: 22251 - Posted: 05.26.2016

Scott O. Lilienfeld1*, Katheryn C. Sauvigné2, Steven Jay Lynn3, Robin L. Cautin4, Robert D. Latzman2 and Irwin D. Waldman1 The goal of this article is to promote clear thinking and clear writing among students and teachers of psychological science by curbing terminological misinformation and confusion. To this end, we present a provisional list of 50 commonly used terms in psychology, psychiatry, and allied fields that should be avoided, or at most used sparingly and with explicit caveats. We provide corrective information for students, instructors, and researchers regarding these terms, which we organize for expository purposes into five categories: inaccurate or misleading terms, frequently misused terms, ambiguous terms, oxymorons, and pleonasms. For each term, we (a) explain why it is problematic, (b) delineate one or more examples of its misuse, and (c) when pertinent, offer recommendations for preferable terms. By being more judicious in their use of terminology, psychologists and psychiatrists can foster clearer thinking in their students and the field at large regarding mental phenomena. Scientific thinking necessitates clarity, including clarity in writing (Pinker, 2014). In turn, clarity hinges on accuracy in the use of specialized terminology. Clarity is especially critical in such disciplines as psychology and psychiatry, where most phenomena, such as emotions, personality traits, and mental disorders, are “open concepts.” Open concepts are characterized by fuzzy boundaries, an indefinitely extendable indicator list, and an unclear inner essence (Pap, 1958; Meehl, 1986). © 2007 - 2015 Frontiers Media S.A

Keyword: Miscellaneous
Link ID: 22096 - Posted: 04.12.2016

By Neuroskeptic Do you want to be more successful? Happier? More intelligent? Don’t despair. The answer, we’re told, is right in front of your nose—or rather, right behind it. It’s your own brain. Thanks to neuroscience, you can hack your gray matter. According to the sales pitch, almost anything is possible, if you can master your brain—and if you can afford to buy the products that promise to help you do that. But how many of these neuroproducts are neurobullshit? And what makes neuroscience so attractive to people with something to sell? I’m a neuroscientist who has been blogging about the brain for the past eight years. Over this time I’ve noticed a steady increase in the number of neuroscience-themed commercial products. There are brain pills to optimize your mental focus. There are futuristic-looking headbands that promise to measure or stimulate your neural activity in order to make you smarter, or help you sleep better, or even meditate better. There is no end of “brain training” apps and neuroscience-themed self-help books. These products tend to have names based around “Neuro” or “Brain.” And they will come advertised as being “created by neuroscientists,” “based on the latest brain research,” or at least endorsed by some leading brain expert. Once you look beyond the “neuro” gloss, however, you’ll see that many of these products aren’t new at all, but just old products in new packaging. A recent, and notorious, example of this was “Fifth Quarter Fresh,” a brand of chocolate milk.

Keyword: Miscellaneous
Link ID: 22090 - Posted: 04.11.2016

Bianca Nogrady Nicholas Price works to understand the brain's fundamental functions, with a view towards developing a bionic eye. The neuroscientist uses marmosets and macaques in his experiments at Monash University’s Biomedicine Discovery Institute in Melbourne. In late January, he was shocked to discover a bill before the Australian Parliament that calls for a ban on the import of non-human primates for medical research. Australia’s three main breeding colonies of research primates consist of several hundred macaques, marmosets and baboons. Regular imports of the animals are vital to maintain the genetic diversity of these colonies, says Price. Senator Lee Rhiannon, a member of the Greens party, introduced the bill on 17 September last year as an amendment to Australia’s federal Environment Protection and Biodiversity Conservation Act. But because the Senate committee that deals with this piece of legislation is not usually of interest to those in the medical research community, the amendment almost slipped under the community's radar, says Price. By the time he heard about the proposed ban, from another researcher, the window for public comment was days away from closing, though it was later extended. As soon as they found out, Price and his Monash colleagues James Bourne and Marcello Rosa began e-mailing researchers around the world. Several institutions rushed to submit statements opposing the bill, including the Federation of European Neuroscience Societies (FENS), the Society for Neuroscience, headquartered in Washington DC, and the Basel Declaration Society, which promotes the open, transparent and ethical use of animals in research. Australia’s National Health and Medical Research Council and the Australasian Neuroscience Society also sent statements of opposition to the Senate committee. © 2016 Nature Publishing Group

Keyword: Animal Rights
Link ID: 21924 - Posted: 02.23.2016

Sara Reardon In July 2015, the major antibody provider Santa Cruz Biotechnology owned 2,471 rabbits and 3,202 goats. Now the animals have vanished, according to a recent federal inspection report from the US Department of Agriculture (USDA). The company, which is headquartered in Dallas, Texas, is one of the world’s largest providers of antibodies — extracting them from animals such as goats and rabbits by injecting the animals with proteins to stimulate antibody production. Biomedical researchers can then use these antibodies to detect and label the same protein in cell or tissue samples. But Santa Cruz Biotech is also the subject of three animal-welfare complaints filed by the USDA after its inspectors found evidence that the firm mistreated goats at its facility in California. Santa Cruz Biotech has contested the complaints, prompting a hearing in August before a USDA administrative law judge in Washington DC. Four days into the hearing, both parties asked to suspend the proceedings in order to negotiate a settlement. But those negotiations fell through in September. The USDA hearing is set to resume on 5 April. If Santa Cruz Biotech is found to have violated the US Animal Welfare Act, it could be fined or lose its licence to keep animals for commercial use. The USDA says that the company could face a maximum fine of US$10,000 per violation for each day that a given violation persists. The agency has reported 31 alleged violations by the company. © 2016 Nature Publishing Group

Keyword: Animal Rights
Link ID: 21916 - Posted: 02.20.2016

Fergus Walsh Medical correspondent When I picked up the human brain in my hands, several things ran through my mind. My immediate concern was I might drop it or that it would fall apart in my hands - fortunately neither happened. Second, I was struck by how light the human brain is. I should say this was half a brain - the right hemisphere - the left had already been sent for dissection. The intact human brain weighs only around 3lbs (1.5kg) - just 2% of body-weight, and yet it consumes 20% of its energy. The brain I was holding had been steeped in formalin, a preserving fluid, for about three weeks and is one of several hundred brains donated every year for medical research. It was only after I'd got used to the feel of the brain in my hands that I could then start to wonder about how such a simple-looking structure could be capable of so much. This brain had experienced, processed, interpreted an entire human life - the thoughts, emotions, language, memory, emotion, cognition, awareness, and consciousness - all the things that make us human and each of us unique. You may think yuck, but I'm with the scientists and surgeon who declare: "Brains are beautiful". The pathology team at the Bristol Brain Bank had kindly allowed us to film as part of the BBC "In the Mind" season, looking at many aspects of mental health. My brief was to examine some of the latest advances in neuroscience. There is a genuine sense of excitement among researchers about the direction and progress being made in our knowledge of the brain. © 2016 BBC.

Keyword: Miscellaneous
Link ID: 21904 - Posted: 02.17.2016

Sara Reardon Mice are sensitive to minor changes in food, bedding and light exposure. It’s no secret that therapies that look promising in mice rarely work in people. But too often, experimental treatments that succeed in one mouse population do not even work in other mice, suggesting that many rodent studies may be flawed from the start. “We say mice are simpler, but I think the problem is deeper than that,” says Caroline Zeiss, a veterinary neuropathologist at Yale University in New Haven, Connecticut. Researchers rarely report on subtle environmental factors such as their mice’s food, bedding or exposure to light; as a result, conditions vary widely across labs despite an enormous body of research showing that these factors can significantly affect the animals’ biology. “It’s sort of surprising how many people are surprised by the extent of the variation” between mice that receive different care, says Cory Brayton, a pathologist at Johns Hopkins University in Baltimore, Maryland. At a meeting on mouse models at the Wellcome Genome Campus in Hinxton, UK, on 9–11 February, she and others explored the many biological factors that prevent mouse studies from being reproduced. Christopher Colwell, a neuroscientist at the University of California, Los Angeles, has first-hand experience with these issues. He and a colleague studied autism in the same genetically modified mouse line, but obtained different results on the same behaviour tests. Eventually they worked out why: Colwell, who studies circadian rhythms, keeps his mice dark in the daytime to trick their body clocks into thinking day is night, so that the nocturnal animals are more alert when tested during the day. His colleague does not. © 2016 Nature Publishing Group

Keyword: Animal Rights; Miscellaneous
Link ID: 21892 - Posted: 02.13.2016

Tash Reith-Banks I discovered Rob Newman’s comedy when I was 16. His shows were relentless: packed full of quotes, arguments, anger, history, philosophy and, above all, bladder-ruining laughs. Oil, urban angst, war, climate change and capitalism – Newman tore into all of these subject and more with verve, wit, and what must have been a well-used library card. Twenty years on his latest piece, The Brain Show, finds Newman on good form. He’s less angry young man, more genial, worried uncle. The laughs are still very much there, perhaps a shade gentler. One thing is still guaranteed: you’ll leave with a brain significantly fuller than before and a long reading list. The show itself majors on a sceptical look at neuroscience, especially what Newman sees as attempts to reduce the human brain to the status of a “wet computer”. He pours particular scorn on two experiments aimed at portioning the brain into neat, discrete emotional zones; he feels similarly about geneticists who think they can identify a homelessness gene, or one for low-voter turnout. Brian Cox gets a special mention for being a figurehead for lazily generalised science, with a wicked impression of Cox walking an audience through the growing and evolving human brain. Robert Newman: The Brain Show review – chewy neuro-comedy Dissing bad science, capitalists and Brian Cox, Robert Newman’s low-octane cabinet of neuroscientific curiosities has nonconformist bite As Newman later pointed out to me, citing Stephen Jay Gould: “the world we make, makes us. Cro-Magnon had the same brain as us, possibly slightly larger. Everything we’ve done since then has been the product of evolution on a brain of unvarying capacity.” © 2016 Guardian News and Media Limited

Keyword: Brain imaging; Miscellaneous
Link ID: 21819 - Posted: 01.25.2016

By Emily Underwood In 2008, in El Cajon, California, 30-year-old John Nicholas Gunther bludgeoned his mother to death with a metal pipe, and then stole $1378 in cash, her credit cards, a DVD/VCR player, and some prescription painkillers. At trial, Gunther admitted to the killing, but argued that his conviction should be reduced to second-degree murder because he had not acted with premeditation. A clinical psychologist and neuropsychologist testified that two previous head traumas—one the result of an assault, the other from a drug overdose—had damaged his brain’s frontal lobes, potentially reducing Gunther’s ability to plan the murder, and causing him to act impulsively. The jury didn’t buy Gunther’s defense, however; based on other evidence, such as the fact that Gunther had previously talked about killing his mother with friends, the court concluded that he was guilty of first-degree murder, and gave him a 25-years-to-life prison sentence. Gunther’s case represents a growing trend, a new analysis suggests. Between 2005 and 2012, more than 1585 U.S. published judicial opinions describe the use of neurobiological evidence by criminal defendants to shore up their defense, according to a study published last week in the Journal of Law and the Biosciences by legal scholar Nita Farahany of Duke University in Durham, North Carolina, and colleagues. In 2012 alone, for example, more than 250 opinions cited defendants’ arguments that their “brains made them do it”—more than double the number of similar claims made in 2007. © 2016 American Association for the Advancement of Science

Keyword: Drug Abuse
Link ID: 21816 - Posted: 01.23.2016

By Brian Owens Guy Rouleau, the director of McGill University’s Montreal Neurological Institute (MNI) and Hospital in Canada, is frustrated with how slowly neuroscience research translates into treatments. “We’re doing a really shitty job,” he says. “It’s not because we’re not trying; it has to do with the complexity of the problem.” So he and his colleagues at the renowned institute decided to try a radical solution. Starting this year, any work done there will conform to the principles of the “open-
science” movement—all results and data will be made freely available at the time of publication, for example, and the institute will not pursue patents on any of its discoveries. Although some large-scale initiatives like the government-funded Human Genome Project have made all data completely open, MNI will be the first scientific institute to follow that path, Rouleau says. “It’s an experiment; no one has ever done this before,” he says. The intent is that neuroscience research will become more efficient if duplication is reduced and data are shared more widely and earlier. Opening access to the tissue samples in MNI’s biobank and to its extensive databank of brain scans and other data will have a major impact, Rouleau hopes. “We think that it is a way to accelerate discovery and the application of neuroscience.” After a year of consultations among the institute’s staff, pretty much everyone—about 70 principal investigators and 600 other scientific faculty and staff—has agreed to take part, Rouleau says. Over the next 6 months, individual units will hash out the details of how each will ensure that its work lives up to guiding principles for openness that the institute has developed. They include freely providing all results, data, software, and algorithms; and requiring collaborators from other institutions to also follow the open principles. © 2016 American Association for the Advancement of Science.

Keyword: Miscellaneous
Link ID: 21813 - Posted: 01.23.2016

By Christof Koch While “size does not matter” is a universally preached dictum among the politically correct, everyday experience tells us that this can't be the whole story—under many conditions, it clearly does. Consider the size of Woody Allen's second favorite organ, the brain. Adjectives such as “highbrow” and “lowbrow” have their origin in the belief, much expounded by 19th-century phrenologists, of a close correspondence between a high forehead—that is, a big brain—and intelligence. Is this true? Does a bigger brain make you necessarily smarter or wiser? And is there any simple connection between the size of a nervous system, however measured, and the mental powers of the owner of this nervous system? While the answer to the former question is a conditional “yes, somewhat,” the lack of any accepted answer to the second one reveals our ignorance of how intelligent behavior comes about. The human brain continues to grow until it reaches its peak size in the third to fourth decade of life. An MRI study of 46 adults of mainly European descent found that the average male had a brain volume of 1,274 cubic centimeters (cm3) and that the average female brain measured 1,131 cm3. Given that a quart of milk equals 946 cm3, you could pour a bit more than that into a skull without any of it spilling out. Of course, there is considerable variability in brain volume, ranging from 1,053 to 1,499 cm3 in men and between 975 and 1,398 cm3 in women. As the density of brain matter is just a little bit above that of water plus some salts, the average male brain weighs about 1,325 grams, close to the proverbial three pounds often cited in U.S. texts. © 2016 Scientific American

Keyword: Intelligence; Evolution
Link ID: 21768 - Posted: 01.09.2016

By Emily Underwood Lumos Labs, the company that produces the popular “brain-training” program Lumosity, yesterday agreed to pay a $2 million settlement to the Federal Trade Commission (FTC) for running deceptive advertisements. Lumos had claimed that its online games can help users perform better at work and in school and stave off cognitive deficits associated with serious diseases such as Alzheimer’s, traumatic brain injury, and post-traumatic stress. The $2 million settlement will be used to compensate Lumosity consumers who were misled by false advertising, says Michelle Rusk, a spokesperson with FTC in Washington, D.C. The company will also be required to provide an easy way to cancel autorenewal billing for the service, which includes online and mobile app subscriptions, with payments ranging from $14.95 monthly to lifetime memberships for $299.95. Before consumers can access the games, a pop-up screen will alert them to FTC’s order and allow them to avoid future billing, Rusk says. The action is part of a larger crackdown on companies selling products that purportedly enhance memory or provide some other cognitive benefit, Rusk says. For some time now, FTC has been “concerned about some of the claims we’re seeing out there,” particularly those from companies like Lumos that suggest their games can reduce the effects of conditions such as dementia, she says. After evaluating the literature on Lumos's products, and the broader research on the benefits of brain-training games, “our assessment was they didn’t have adequate science for the claims that they’re making,” she says. © 2016 American Association for the Advancement of Science

Keyword: Learning & Memory; Intelligence
Link ID: 21759 - Posted: 01.07.2016

by Helen Thompson Earth’s magnetic field guides shark movement in the open ocean, but scientists had always suspected that sharks might also get their directions from an array of other factors, including smell. To sniff out smell’s role, biologists clogged the noses of leopard sharks (Triakis semifasciata), a Pacific coastal species that makes foraging trips out to deeper waters. Researchers released the sharks out at sea and tracked their path back to the California coast over four hours. Sharks with an impaired sense of smell only made it 37.2 percent of the way back to shore, while unimpaired sharks made it 62.6 percent of the way back to shore. The study provides the first experimental evidence that smell influences a shark’s sense of direction, the team writes January 6 in PLOS ONE. The animals may be picking up on chemical gradients produced by food sources that live on the coast. © Society for Science & the Public 2000 - 2015.

Keyword: Chemical Senses (Smell & Taste); Animal Migration
Link ID: 21753 - Posted: 01.07.2016

By R. Douglas Fields We all heard the warning as kids: “That TV will rot your brain!” You may even find yourself repeating the threat when you see young eyes glued to the tube instead of exploring the real world. The parental scolding dates back to the black-and-white days of I Love Lucy, and today concern is growing amid a flood of video streaming on portable devices. But are young minds really being harmed? With brain imaging, the effects of regular TV viewing on a child's neural circuits are plain to see. Studies suggest watching television for prolonged periods changes the anatomical structure of a child's brain and lowers verbal abilities. Behaviorally, even more detrimental effects may exist: although a cause-and-effect relation is hard to prove, higher rates of antisocial behavior, obesity and mental health problems correlate with hours in front of the set. Now a new study hits the pause button on this line of thinking. The researchers conclude that the entire body of research up to now has overlooked an important confounding variable, heredity, that could call into question the conventional wisdom that TV is bad for the brain. Further study will be needed to evaluate this claim, but the combined evidence suggests we need a more nuanced attitude toward our viewing habits. To understand the argument against television, we should rewind to 2013, when a team ofresearchers at Tohoku University in Japan, led by neuroscientist Hikaru Takeuchi, first published findings from a study in which the brains of 290 children between the ages of five and 18 were imaged. The kids' TV viewing habits, ranging from zero to four hours each day, were also taken into account. © 2016 Scientific American

Keyword: Intelligence; Learning & Memory
Link ID: 21743 - Posted: 01.02.2016

By Elahe Izadi Tiny cameras attached to wild New Caledonian crows capture, for the first time, video footage of these elusive birds fashioning hooked stick tools, according to researchers. These South Pacific birds build tools out of twigs and leaves that they use to root out food, and they're the only non-humans that make hooked tools in the wild, write the authors of a study published Wednesday in the journal Biology Letters. Humans have previously seen the crows making the tools in artificial situations, in which scientists baited feeding sites and provided the raw tools; but researchers say the New Caledonian crows have never been filmed doing this in a completely natural setting. "New Caledonian crows are renowned for their unusually sophisticated tool behavior," the study authors write. "Despite decades of fieldwork, however, very little is known about how they make and use their foraging tools in the wild, which is largely owing to the difficulties in observing these shy forest birds." Study author Jolyon Troscianko of the University of Exeter in England described the tropical birds as "notoriously difficult to observe" because of the terrain of their habitat and their sensitivity to disturbance, he said in a press release. "By documenting their fascinating behavior with this new camera technology, we obtained valuable insights into the importance of tools in their daily search for food," he added.

Keyword: Evolution; Intelligence
Link ID: 21719 - Posted: 12.24.2015

Tim Radford British scientists believe they have made a huge step forward in the understanding of the mechanisms of human intelligence. That genetic inheritance must play some part has never been disputed. Despite occasional claims later dismissed, no-one has yet produced a single gene that controls intelligence. But Michael Johnson of Imperial College London, a consultant neurologist and colleagues report in Nature Neuroscience that they may have discovered a very different answer: two networks of genes, perhaps controlled by some master regulatory system, lie behind the human gift for lateral thinking, mental arithmetic, pub quizzes, strategic planning, cryptic crosswords and the ability to laugh at limericks. As usual, such research raises potentially politically-loaded questions about the nature of intelligence. “Intelligence is a composite measure of different cognitive abilities and how they are distributed in a population. It doesn’t measure any one thing. But it is measurable,” Dr Johnson said. About 40% of the variation in intelligence is explained by inheritance. The other factors are not yet certain. But the scientists raise the distant possibility that armed with the new information they may be able to devise ways to modify human intelligence. “The idea of ultimately using drugs to affect cognitive performance is not in any way new. We all drink coffee to improve our cognitive performance,” Dr Johnson said. “It’s about understanding the pathways that are related to cognitive ability both in health and disease, especially disease so one day we could help people with learning disabilities fulfill their potential. That is very important.” © 2015 Guardian News and Media Limited

Keyword: Intelligence; Genes & Behavior
Link ID: 21718 - Posted: 12.22.2015