Chapter 11. Emotions, Aggression, and Stress

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 2509

By Virginia Morell Rats and mice in pain make facial expressions similar to those in humans—so similar, in fact, that a few years ago researchers developed rodent “grimace scales,” which help them assess an animal’s level of pain simply by looking at its face. But scientists have questioned whether these expressions convey anything to other rodents, or if they are simply physiological reactions devoid of meaning. Now, researchers report that other rats do pay attention to the emotional expressions of their fellows, leaving an area when they see a rat that’s suffering. “It’s a finding we thought might be true, and are glad that someone figured out how to do an experiment that shows it,” says Jeffrey Mogil, a neuroscientist at McGill University in Montreal, Canada. Mogil’s lab developed pain grimace scales for rats and mice in 2006, and it discovered that mice experience pain when they see a familiar mouse suffering—a psychological phenomenon known as emotional contagion. According to Mogil, a rodent in pain expresses its anguish through narrowed eyes, flattened ears, and a swollen nose and cheeks. Because people can read these visual cues and gauge the intensity of the animal’s pain, Mogil has long thought that other rats could do so as well. In Japan, Satoshi Nakashima, a social cognition psychologist at NTT Communication Science Laboratories in Kanagawa, thought the same thing. And, knowing that other scientists had recently shown that mice can tell the difference between paintings by Picasso and Renoir, he decided to see if rodents could also discriminate between photographs of their fellows’ expressions. He designed the current experiments as part of his doctoral research. © 2015 American Association for the Advancement of Science

Keyword: Pain & Touch; Emotions
Link ID: 20745 - Posted: 04.01.2015

Mo Costandi During the 1960s, neuroscientists Ronald Melzack and Patrick Wall proposed an influential new theory of pain. At the time, researchers were struggling to explain the phenomenon. Some believed that specific nerve fibres carry pain signals up into the brain, while others argued that the pain signals are transmitted by intense firing of non-specific fibres. Neither idea was entirely satisfactory, because they could not explain why spinal surgery often fails to abolish pain, why gentle touch and other innocuous stimuli can sometimes cause excruciating pain, or why intensely painful stimuli are not always experienced as such. Melzack and Wall’s Gate Control Theory stated that inhibitory neurons in the spinal cord control the relay of pain signals into the brain. Despite having some holes in it, the theory provided a revolutionary new framework for understanding the neural basis of pain, and ushered in the modern era of pain research. Now, almost exactly 50 years after the publication of Melzack and Wall’s theory, European researchers provide direct evidence of gatekeeper cells that control the flow of pain and itch signals from the spinal cord to the brain. The experience that we call “pain” is an extremely complex one that often involves emotional aspects. Researchers therefore distinguish it from nociception, the process by which the nervous system detects noxious stimuli. Nociception is mediated by primary sensory neurons, whose cell bodies are clumped together in the dorsal root ganglia that run alongside the spinal cord. Each has a single fibre that splits in two not far from the cell body, sending one branch out to the skin surface and the other into the spinal cord. © 2015 Guardian News and Media Limited

Keyword: Pain & Touch; Emotions
Link ID: 20744 - Posted: 04.01.2015

By JENEEN INTERLANDI Nyiregyhaza (pronounced NEAR-re-cha-za) is a medium-size city tucked into the northeastern corner of Hungary, about 60 miles from the Ukrainian border. It has a world-class zoo, several museums and universities and a new Lego Factory. It also has two Roma settlements, or “Gypsy ghettos.” The larger of these settlements is Gusev, a crumbling 19th-century military barracks separated from the city proper by a railway station and a partly defunct industrial zone. Gusev is home to more than 1,000 Roma. Its chief amenities include a small grocery store and a playground equipped with a lone seesaw and a swingless swing set. There’s also a freshly painted elementary school, where approximately 60 students are currently enrolled. Almost all those students are Roma and almost all of them live in Gusev. Officially, most of the schools in Nyiregyhaza are integrated. Roma students have access to the same facilities as non-Roma students, and the ethnic balance of any given facility largely reflects the ethnic balance of the neighborhoods it serves. In practice, things are muddier. While many families in Gusev have been assigned to perfectly reputable schools, there is no busing program, and most schools are not within walking distance. For families living on just 60,000 forints ($205) a month, the schools are also too expensive to reach by public transit. “Everything is fine on paper,” Adel Kegye, an attorney with the Chance for Children Foundation (C.F.C.F.), told me when I visited Hungary this past fall. “But in reality, they make it very hard for the Roma to go anywhere but the settlement school.” ..... In the past two decades, with the advent of f.M.R.I. technology, neuroscientists also began to tackle such questions. Emile Bruneau, a cognitive neuroscientist at the Massachusetts Institute of Technology, has spent the past seven years studying intractable conflicts around the world. © 2015 The New York Times Company

Keyword: Emotions; Brain imaging
Link ID: 20707 - Posted: 03.21.2015

Christian Jarrett November 2013, I proudly launched the Brain Watch blog here at WIRED. This will be my final post. For seventeen months I’ve used the blog to report on new neuroscience findings, to reflect on how neuroscience is influencing the public and media, to investigate the claims of brain products, to explore neurological abnormality and death, and to debunk misconceptions about the brain. I loved reading your comments and I was thrilled when I found my ideas from here quoted in other publications. It’s been a lot of fun. Here’s some of what I learned: Brain myths die hard When the movie Lucy came out last year, it provided me an opportunity to challenge the 10% brain myth and explore its origins (the idea we only use 10% of our brains is a premise of the film). With such tired myths, it’s easy to wonder if anybody believes them anymore. Writing this blog, I learned not to underestimate their staying power! Consider the vitriol my 10% post attracted from a neuroscience grad student at Yale. In an email dripping with disdain she told me “You … should feel ashamed for releasing such a misinformed article. … There are misinformed and uneducated people all over the internet trying to disprove this 10% notion, but that is expected. This is certainly NOT something I expected from someone allegedly as well educated as yourself.” Brain science is confusing and complicated Hardly a revelation, you might say. But writing this blog brought home to me the messy reality of neuroscience. Consider how tabloid papers like dividing the world into those activities and technologies that cause brain shrinkage and those that cause brain growth – the implicit assumption always being that growth is good and shrinkage bad.

Keyword: Miscellaneous
Link ID: 20706 - Posted: 03.21.2015

Jon Hamilton Since his birth 33 years ago, Jonathan Keleher has been living without a cerebellum, a structure that usually contains about half the brain's neurons. This exceedingly rare condition has left Jonathan with a distinctive way of speaking and a walk that is slightly awkward. He also lacks the balance to ride a bicycle. But all that hasn't kept him from living on his own, holding down an office job and charming pretty much every person he meets. "I've always been more into people than anything else," Jonathan tells me when I meet him at his parents' house in Concord, Mass., a suburb of Boston. "Why read a book or why do anything when you can be social and talk to people?" Jonathan is also making an important contribution to neuroscience. By allowing scientists to study him and his brain, he is helping to change some long-held misconceptions about what the cerebellum does. And that, in turn, could help the hundreds of thousands of people whose cerebellums have been damaged by a stroke, infection or disease. For decades, the cerebellum has been the "Rodney Dangerfield of the brain," says Dr. Jeremy Schmahmann, a professor of neurology at Harvard and Massachusetts General Hospital. It gets no respect because most scientists only know about its role in balance and fine motor control. © 2015 NPR

Keyword: Emotions; Attention
Link ID: 20697 - Posted: 03.17.2015

Brian Owens Our choice between two moral options might be swayed by tracking our gaze, and asking for a decision at the right moment. People asked to choose between two written moral statements tend to glance more often towards the option they favour, experimental psychologists say. More surprisingly, the scientists also claim it’s possible to influence a moral choice: asking for an immediate decision as soon as someone happens to gaze at one statement primes them to choose that option. It’s well known that people tend to look more towards the option they are going to choose when they are choosing food from a menu, says Philip Pärnamets, a cognitive scientist from Lund University in Sweden. He wanted to see if that applied to moral reasoning as well. “Moral decisions have long been considered separately from general decision-making,” he says. “I wanted to integrate them.” In a paper published today in the Proceedings of the National Academy of Sciences1, Pärnamets and his colleagues explain how they presented volunteers with a series of moral statements, such as 'murder is sometimes justified,' 'masturbating with the aid of a willing animal is acceptable' and 'paying taxes is a good thing.' Then the psychologists tracked the volunteers’ gaze as two options appeared on a screen. Once the tracker had determined that a person had spent at least 750 milliseconds looking at one answer and 250 milliseconds at the other, the screen changed to prompt them to make a decision. Almost 60% of the time, they chose the most viewed option — indicating, says Pärnamets, that eye gaze tracks an unfolding moral decision. © 2015 Nature Publishing Group,

Keyword: Attention; Emotions
Link ID: 20694 - Posted: 03.17.2015

When it comes to fight or flight for brawling crickets, a chemical in the brain is in charge. Being roughed up in a skirmish can trigger nerve cells in Mediterranean field crickets (Gryllus bimaculatus) to release nitric oxide, making the losing cricket run away, scientists report online March 13 in Science Advances. Watch in this video as two crickets face off. When the loser hits its limit, it flees the fight. In a second bout, the loser then tries to avoid the winner. Nitric oxide prompts this continued submissive behavior, which lasts several hours before a cricket’s will to fight returns. “If you block nitric oxide they recover quickly, and if you give them nitric oxide they don’t,” says Paul Stevenson, a coauthor of the new research and behavioral neurobiologist at Leipzig University in Germany. “It’s a very simple algorithm for controlling a very complicated social situation.” P. Stevenson and J. Rillich. Adding up the odds—Nitric oxide signaling underlies the decision to flee and post-conflict depression of aggression. Science Advances. Published online March 13, 2015.doi: 10.1126/sciadv.1500060. © Society for Science & the Public 2000 - 2015.

Keyword: Aggression
Link ID: 20686 - Posted: 03.14.2015

By Nicholas Bakalar People sometimes take Valium or Ativan to relieve anxiety before surgery, but a new study suggests that these benzodiazepine drugs have little beneficial effect and may even delay recovery. Researchers studied 1,062 patients admitted to French hospitals for surgery requiring general anesthesia. A third took 2.5 milligrams of lorazepam (brand name Ativan), a third received a placebo, and a third were given no premedication. Patients completed questionnaires assessing anxiety, pain levels and quality of sleep before and a day after their operations, while researchers recorded their time to having ventilation tubes removed and to recovering full wakefulness. The study was published in JAMA. Lorazepam was associated with more postsurgery amnesia and a longer time to recover cognitive abilities. Quality of sleep was impaired in the lorazepam group, but not in the others. And ventilation tubes were kept in significantly longer in the lorazepam group. Pain scores did not differ between the lorazepam and the no-medication groups, but there was more pain in the group given the placebo. The lead author, Dr. Axel Maurice-Szamburski, an anesthesiologist at Timone Hospital in Marseille, cited recent surveys showing that benzodiazepines are widely prescribed before surgery. “But until now,” he added, “sedatives have not been evaluated from the patient’s point of view. It’s the patient who should be happy, not the doctor.” © 2015 The New York Times Company

Keyword: Emotions
Link ID: 20676 - Posted: 03.10.2015

By TIMOTHY WILLIAMS In January 1972, Cecil Clayton was cutting wood at his family’s sawmill in southeastern Missouri when a piece of lumber flew off the circular saw blade and struck him in the forehead. The impact caved in part of Mr. Clayton’s skull, driving bone fragments into his brain. Doctors saved his life, but in doing so had to remove 20 percent of his frontal lobe, which psychiatrists say led Mr. Clayton to be tormented for years by violent impulses, schizophrenia and extreme paranoia. In 1996, his lawyers say, those impulses drove Mr. Clayton to kill a law enforcement officer. Today, as Mr. Clayton, 74, sits on death row, his lawyers have returned to that 1972 sawmill accident in a last-ditch effort to save his life, arguing that Missouri’s death penalty law prohibits the execution of severely brain-damaged people. Lawyers for Mr. Clayton, who has an I.Q. of 71, say he should be spared because his injury has made it impossible for him to grasp the significance of his death sentence, scheduled for March 17. “There was a profound change in him that he doesn’t understand, and neither did his family,” said Elizabeth Unger Carlyle, one of Mr. Clayton’s lawyers. While several rulings by the United States Supreme Court in recent years have narrowed the criteria for executing people who have a mental illness, states continue to hold wide sway in establishing who is mentally ill. The debate surrounding Mr. Clayton involves just how profoundly his impairment has affected his ability to understand what is happening to him. Mr. Clayton is missing about 7.7 percent of his brain. © 2015 The New York Times Company

Keyword: Aggression; Attention
Link ID: 20669 - Posted: 03.09.2015

By RICHARD A. FRIEDMAN CHANCES are that everyone on this planet has experienced anxiety, that distinct sense of unease and foreboding. Most of us probably assume that anxiety always has a psychological trigger. Yet clinicians have long known that there are plenty of people who experience anxiety in the absence of any danger or stress and haven’t a clue why they feel distressed. Despite years of psychotherapy, many experience little or no relief. It’s as if they suffer from a mental state that has no psychological origin or meaning, a notion that would seem heretical to many therapists, particularly psychoanalysts. Recent neuroscience research explains why, in part, this may be the case. For the first time, scientists have demonstrated that a genetic variation in the brain makes some people inherently less anxious, and more able to forget fearful and unpleasant experiences. This lucky genetic mutation produces higher levels of anandamide — the so-called bliss molecule and our own natural marijuana — in our brains. In short, some people are prone to be less anxious simply because they won the genetic sweepstakes and randomly got a genetic mutation that has nothing at all to do with strength of character. About 20 percent of adult Americans have this mutation. Those who do may also be less likely to become addicted to marijuana and, possibly, other drugs — presumably because they don’t need the calming effects that marijuana provides. One patient of mine, a man in his late 40s, came to see me because he was depressed and lethargic. He told me at our first meeting that he had been using cannabis almost daily for at least the past 15 years. “It became a way of life,” he explained. “Things are more interesting, and I can tolerate disappointments without getting too upset.” © 2015 The New York Times Company

Keyword: Drug Abuse; Stress
Link ID: 20666 - Posted: 03.09.2015

By Will Boggs MD NEW YORK (Reuters Health) - Adolescents with a history of childhood trauma show different neural responses to subjective anxiety and craving, researchers report. "I think the finding of increased activation of insula, anterior cingulate, and prefrontal cortex in response to stress cues in the high- relative to low-trauma group, while arguably not necessarily unexpected, is important as it suggests that youth exposed to higher levels of trauma may experience different brain responses to similar stressors," Dr. Marc N. Potenza from Yale University, New Haven, Connecticut told Reuters Health by email. Childhood trauma has been associated with anxiety and depression, as well as obesity, risky sexual behavior, and substance use. Previous imaging studies have not investigated neural responses to personalized stimuli, Dr. Potenza and his colleagues write in Neuropsychopharmacology, online January 8. The team used functional MRI to assess regional brain activations to personalized appetitive (favorite food), aversive (stress), and neutral/relaxing cues in 64 adolescents, including 33 in the low-trauma group and 31 in the high-trauma group. Two-thirds of the adolescents had been exposed to cocaine prenatally, with prenatal cocaine exposure being significantly over-represented in the high-trauma group. Compared with the low-trauma group, the high-trauma group showed increased responsivity in several cortical regions in response to stress, as well as decreased activation in the cerebellar vermis and right cerebellum in response to neutral/relaxing cues. But the two groups did not differ significantly in their responses to favorite-food cues, the researchers found. © 2015 Scientific American

Keyword: Stress; Development of the Brain
Link ID: 20652 - Posted: 03.05.2015

By Nicholas Bakalar Gout, a form of arthritis, is extremely painful and associated with an increased risk for cardiovascular problems. But there is a bright side: It may be linked to a reduced risk for Alzheimer’s disease. Researchers compared 59,204 British men and women with gout to 238,805 without the ailment, with an average age of 65. Patients were matched for sex, B.M.I., smoking, alcohol consumption and other characteristics. The study, in The Annals of the Rheumatic Diseases, followed the patients for five years. They found 309 cases of Alzheimer’s among those with gout and 1,942 among those without. Those with gout, whether they were being treated for the condition or not, had a 24 percent lower risk of Alzheimer’s disease. The reason for the connection is unclear. But gout is caused by excessive levels of uric acid in the blood, and previous studies have suggested that uric acid protects against oxidative stress. This may play a role in limiting neuron degeneration. “This is a dilemma, because uric acid is thought to be bad, associated with heart disease and stroke,” said the senior author, Dr. Hyon K. Choi, a professor of medicine at Harvard. “This is the first piece of data suggesting that uric acid isn’t all bad. Maybe there is some benefit. It has to be confirmed in randomized trials, but that’s the interesting twist in this story.” © 2015 The New York Times Company

Keyword: Alzheimers; Neuroimmunology
Link ID: 20648 - Posted: 03.04.2015

|By Charles Schmidt The notion that the state of our gut governs our state of mind dates back more than 100 years. Many 19th- and early 20th-century scientists believed that accumulating wastes in the colon triggered a state of “auto-intoxication,” whereby poisons emanating from the gut produced infections that were in turn linked with depression, anxiety and psychosis. Patients were treated with colonic purges and even bowel surgeries until these practices were dismissed as quackery. The ongoing exploration of the human microbiome promises to bring the link between the gut and the brain into clearer focus. Scientists are increasingly convinced that the vast assemblage of microfauna in our intestines may have a major impact on our state of mind. The gut-brain axis seems to be bidirectional—the brain acts on gastrointestinal and immune functions that help to shape the gut's microbial makeup, and gut microbes make neuroactive compounds, including neurotransmitters and metabolites that also act on the brain. These interactions could occur in various ways: microbial compounds communicate via the vagus nerve, which connects the brain and the digestive tract, and microbially derived metabolites interact with the immune system, which maintains its own communication with the brain. Sven Pettersson, a microbiologist at the Karolinska Institute in Stockholm, has recently shown that gut microbes help to control leakage through both the intestinal lining and the blood-brain barrier, which ordinarily protects the brain from potentially harmful agents. Microbes may have their own evolutionary reasons for communicating with the brain. They need us to be social, says John Cryan, a neuroscientist at University College Cork in Ireland, so that they can spread through the human population. © 2015 Scientific American

Keyword: Obesity; Neuroimmunology
Link ID: 20644 - Posted: 03.03.2015

By JULIE HOLLAND WOMEN are moody. By evolutionary design, we are hard-wired to be sensitive to our environments, empathic to our children’s needs and intuitive of our partners’ intentions. This is basic to our survival and that of our offspring. Some research suggests that women are often better at articulating their feelings than men because as the female brain develops, more capacity is reserved for language, memory, hearing and observing emotions in others. These are observations rooted in biology, not intended to mesh with any kind of pro- or anti-feminist ideology. But they do have social implications. Women’s emotionality is a sign of health, not disease; it is a source of power. But we are under constant pressure to restrain our emotional lives. We have been taught to apologize for our tears, to suppress our anger and to fear being called hysterical. The pharmaceutical industry plays on that fear, targeting women in a barrage of advertising on daytime talk shows and in magazines. More Americans are on psychiatric medications than ever before, and in my experience they are staying on them far longer than was ever intended. Sales of antidepressants and antianxiety meds have been booming in the past two decades, and they’ve recently been outpaced by an antipsychotic, Abilify, that is the No. 1 seller among all drugs in the United States, not just psychiatric ones. As a psychiatrist practicing for 20 years, I must tell you, this is insane. At least one in four women in America now takes a psychiatric medication, compared with one in seven men. Women are nearly twice as likely to receive a diagnosis of depression or anxiety disorder than men are. For many women, these drugs greatly improve their lives. But for others they aren’t necessary. The increase in prescriptions for psychiatric medications, often by doctors in other specialties, is creating a new normal, encouraging more women to seek chemical assistance. Whether a woman needs these drugs should be a medical decision, not a response to peer pressure and consumerism. © 2015 The New York Times Company

Keyword: Emotions; Sexual Behavior
Link ID: 20639 - Posted: 03.02.2015

Distinct changes in the immune systems of patients with ME or chronic fatigue syndrome have been found, say scientists. Increased levels of immune molecules called cytokines were found in people during the early stages of the disease, a Columbia University study reported. It said the findings could help improve diagnosis and treatments. UK experts said further refined research was now needed to confirm the results. People with ME (myalgic encephalopathy) or CFS (chronic fatigue syndrome) suffer from exhaustion that affects everyday life and does not go away with sleep or rest. They can also have muscle pain and difficulty concentrating. ME can also cause long-term illness and disability, although many people improve over time. It is estimated that around 250,000 people in the UK have the disease. Disease pattern The US research team, who published their findings in the journal Science Advances, tested blood samples from nearly 300 ME patients and around 350 healthy people. They found specific patterns of immune molecules in patients who had the disease for up to three years. These patients had higher levels of of cytokines, particularly one called interferon gamma, which has been linked to the fatigue that follows many viral infections. Healthy patients and those who had the disease for longer than three years did not show the same pattern. Lead author Dr Mady Hornig said this was down to the way viral infections could disrupt the immune system. "It appears that ME/CFS patients are flush with cytokines until around the three-year mark, at which point the immune system shows evidence of exhaustion and cytokine levels drop."

Keyword: Depression; Stress
Link ID: 20631 - Posted: 02.28.2015

|By Matthew Hutson We like to think of our moral judgments as consistent, but they can be as capricious as moods. Research reveals that such judgments are swayed by incidental emotions and perceptions—for instance, people become more moralistic when they feel dirty or sense contamination, such as in the presence of moldy food. Now a series of studies shows that hippies, the obese and “trailer trash” suffer prejudicial treatment because they tend to elicit disgust. Researchers asked volunteers to read short paragraphs about people committing what many consider to be impure acts, such as watching pornography, swearing or being messy. Some of the paragraphs described the individuals as being a hippie, obese or trailer trash—and the volunteers judged these fictional sinners more harshly, according to the paper in the Journal of Experimental Psychology: General. Questionnaires revealed that feelings of disgust toward these groups were driving the volunteers' assessments. A series of follow-up studies solidified the link, finding that these groups also garnered greater praise for purity-related virtues, such as keeping a neat cubicle. If the transgression in question did not involve purity, such as not tipping a waiter, the difference in judgment disappeared. “The assumption people have is that we draw on values that are universal and important,” says social psychologist E. J. Masicampo of Wake Forest University, who led the study, “but something like mentioning that a person is overweight can really push that judgment around. It's triggering these gut-level emotions.” The researchers also looked for real-world effects. © 2015 Scientific American

Keyword: Emotions; Attention
Link ID: 20622 - Posted: 02.26.2015

By Christian Jarrett Imagine a politician from your party is in trouble for alleged misdemeanors. He’s been assessed by an expert who says he likely has early-stage Alzheimer’s. If this diagnosis is correct, your politician will have to resign, and he’ll be replaced by a candidate from an opposing party. This was the scenario presented to participants in a new study by Geoffrey Munro and Cynthia Munro. A vital twist was that half of the 106 student participants read a version of the story in which the dementia expert based his diagnosis on detailed cognitive tests; the other half read a version in which he used a structural MRI brain scan. All other story details were matched, such as the expert’s years of experience in the field, and the detail provided for the different techniques he used. Overall, the students found the MRI evidence more convincing than the cognitive tests. For example, 69.8 percent of those given the MRI scenario said the evidence the politician had Alzheimer’s was strong and convincing, whereas only 39.6 percent of students given the cognitive tests scenario said the same. MRI data was also seen to be more objective, valid and reliable. Focusing on just those students in both conditions who showed skepticism, over 15 percent who read the cognitive tests scenario mentioned the unreliability of the evidence; none of the students given the MRI scenario cited this reason. In reality, a diagnosis of probable Alzheimer’s will always be made with cognitive tests, with brain scans used to rule out other explanations for any observed test impairments. The researchers said their results are indicative of naive faith in the trustworthiness of brain imaging data. “When one contrasts the very detailed manuals accompanying cognitive tests to the absences of formalized operational criteria to guide the clinical interpretation of structural brain MRI in diagnosing disease, the perception that brain MRI is somehow immune to problems of reliability becomes even more perplexing,” they said. WIRED.com © 2015 Condé Nast.

Keyword: Brain imaging; Emotions
Link ID: 20621 - Posted: 02.26.2015

By Francis Shen and Dena Gromet Neuroscience is appearing everywhere. And the legal system is taking notice. The past few years have seen the emergence of “neurolaw.” A spread in the NYT Magazine, a best-selling NYT book, a primetime PBS documentary, the first Law and Neuroscience casebook, and a multimillion-dollar investment from the MacArthur Foundation to fund a Research Network on Law and Neuroscience have all fueled interest in how neuroscience might revolutionize the law. The potential implications of neurolaw are broad. For example, future developments in brain science might allow: criminal law to better identify recidivists; tort law to better differentiate between those in real pain and those who are faking; insurance law to more accurately and adequately compensate those with mental illness; and end-of-life law to more ethically treat patients who might be able to communicate only through their thoughts. Increasingly courts, including the U.S. Supreme Court, and legislatures are citing brain evidence. But despite the media coverage, and much enthusiasm from science and legal elites, our new research shows that Americans know very little about neurolaw, and that Republicans and independents may diverge from Democrats in their support for neuroscience based legal reforms. In our study, we conducted an experiment within a national survey of Americans (more details about the survey are in our article). Everyone in the survey was told that, “Recently developed neuroscientific techniques allow researchers to see inside the human brain as never before.”

Keyword: Brain imaging; Emotions
Link ID: 20620 - Posted: 02.26.2015

Julie Beck When Paul Ekman was a grad student in the 1950s, psychologists were mostly ignoring emotions. Most psychology research at the time was focused on behaviorism—classical conditioning and the like. Silvan Tomkins was the one other person Ekman knew of who was studying emotions, and he’d done a little work on facial expressions that Ekman saw as extremely promising. “To me it was obvious,” Ekman says. “There’s gold in those hills; I have to find a way to mine it.” For his first cross-cultural studies in the 1960s, he traveled around the U.S., Chile, Argentina, and Brazil. In each location, he showed people photos of different facial expressions and asked them to match the images with six different emotions: happiness, sadness, anger, surprise, fear, and disgust. “There was very high agreement,” Ekman says. People tended to match smiling faces with “happiness,” furrow-browed, tight-lipped faces with “anger,” and so on. But these responses could have been influenced by culture. The best way to test whether emotions were truly universal, he thought, would be to repeat his experiment in a totally remote society that hadn’t been exposed to Western media. So he planned a trip to Papua New Guinea, his confidence bolstered by films he’d seen of the island’s isolated cultures: “I never saw an expression I wasn’t familiar with in our culture,” he says. Once there, he showed locals the same photos he’d shown his other research subjects. He gave them a choice between three photos and asked them to pick images that matched various stories (such as “this man’s child has just died”). Adult participants chose the expected emotion between 28 and 100 percent of the time, depending which photos they were choosing among. (The 28 percent was a bit of an outlier: That was when people had to choose between fear, surprise, and sadness. The next lowest rate was 48 percent.) © 2014 by The Atlantic Monthly Group.

Keyword: Emotions
Link ID: 20619 - Posted: 02.26.2015

By Sandhya Sekar It’s stressful being a low-ranking hyena—so stressful that even their chromosomes feel it. Researchers have discovered that the challenges of African savanna hyena society shorten underdogs’ telomeres, stretches of DNA that bookend chromosomes and protect them from wear and tear during cell replication. The stress may come from the top hyenas getting the best meat, whereas lower ranking individuals have to travel long distances—sometimes to the edges of the group territory—to fend for themselves. With increased stress, higher amounts of stress hormones and cellular byproducts like oxygen ions and peroxides are produced, both of which have been shown to shorten telomeres in other species. When telomeres fall below a certain length, cells go into damage-control mode and kick off biochemical pathways that can result in cell death. The study, the team reports online today in Biology Letters, is the first to show that the stress of social hierarchy can shorten telomeres in a wild species. © 2015 American Association for the Advancement of Science.

Keyword: Stress
Link ID: 20611 - Posted: 02.25.2015