Chapter 16. None

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1787

By Abby Phillip Jan Scheuermann, who has quadriplegia, brings a chocolate bar to her mouth using a robot arm guided by her thoughts. Research assistant Elke Brown watches in the background. (University of Pittsburgh Medical Center) Over at the Defense Advanced Research Projects Agency, also known as DARPA, there are some pretty amazing (and often top-secret) things going on. But one notable component of a DARPA project was revealed by a Defense Department official at a recent forum, and it is the stuff of science fiction movies. According to DARPA Director Arati Prabhakar, a paralyzed woman was successfully able use her thoughts to control an F-35 and a single-engine Cessna in a flight simulator. It's just the latest advance for one woman, 55-year-old Jan Scheuermann, who has been the subject of two years of groundbreaking neurosignaling research. First, Scheuermann began by controlling a robotic arm and accomplishing tasks such as feeding herself a bar of chocolate and giving high fives and thumbs ups. Then, researchers learned that -- surprisingly -- Scheuermann was able to control both right-hand and left-hand prosthetic arms with just the left motor cortex, which is typically responsible for controlling the right-hand side. After that, Scheuermann decided she was up for a new challenge, according to Prabhakar.

Keyword: Robotics
Link ID: 20647 - Posted: 03.04.2015

by Catherine de Lange You won't believe you do it, but you do. After shaking hands with someone, you'll lift your hands to your face and take a deep sniff. This newly discovered behaviour – revealed by covert filming – suggests that much like other mammals, humans use bodily smells to convey information. We know that women's tears transmit chemosensory signals - their scent lowers testosterone levels and dampens arousal in men - and that human sweat can transmit fear. But unlike other mammals, humans don't tend to go around sniffing each other. Wondering how these kinds of signals might be exchanged, Noam Sobel and his colleagues at the Weizmann Institute of Science in Rehovot, Israel turned to one of the most common ways in which people touch each other - shaking hands. "We started looking at people and noticed that afterwards, the hand somehow inadvertently reached the face," says Sobel. To find out if people really were smelling their hands, as opposed to scratching their nose, for example, his team surreptitiously filmed 153 volunteers. Some were wired up to a variety of physiological instruments so that airflow to the nose could be measured without them realising this was the intention. The volunteers were filmed as they greeted a member of the team, either with or without a handshake. The researchers recorded how often the volunteers lifted their hands close to their nose, and how long they kept them there, the minute before and after the greeting. © Copyright Reed Business Information Ltd.

Keyword: Chemical Senses (Smell & Taste)
Link ID: 20645 - Posted: 03.04.2015

By Felicity Muth Visual illusions are fun: we know with our rational mind that, for example, these lines are parallel to each other, yet they don’t appear that way. Similarly, I could swear that squares A and B are different colours. But they are not. This becomes clearer when a connecting block is drawn between the two squares (see the image below). Illusions aren’t just fun tricks for us to play with, they can also tell us something about our minds. Things in the world look to us a certain way, but that doesn’t mean that they are that way in reality. Rather, our brain represents the world to us in a particular way; one that has been selected over evolutionary time. Having such a system means that, for example, we can see some animals running but not others; we couldn’t see a mouse moving from a mile away like a hawk could. This is because there hasn’t been the evolutionary selective pressures on our visual system to be able to do such a thing, whereas there has on the hawk’s. We can also see a range of wavelengths of light, represented as particular colours in our brain, while not being able to see other wavelengths (that, for example, bees and birds can see). Having a system limited by what evolution has given us means that there are many things we are essentially blind to (and wouldn’t know about if it weren’t for technology). It also means that sometimes our brain misrepresents physical properties of the external world in a way that can be confusing once our rational mind realises it. Of course, all animals have their own representation of the world. How a dog visually perceives the world will be different to how we perceive it. But how can we know how other animals perceive the world? What is their reality? One way we can try to get this is through visual illusions. © 2015 Scientific American

Keyword: Vision; Evolution
Link ID: 20642 - Posted: 03.03.2015

|By Christof Koch In the Dutch countryside, a tall, older man, dressed in a maroon sports coat, his back slightly stooped, stands out because of his height and a pair of extraordinarily bushy eyebrows. His words, inflected by a British accent, are directed at a middle-aged man with long, curly brown hair, penetrating eyes and a dark, scholarly gown, who talks in only a halting English that reveals his native French origins. Their strangely clashing styles of speaking and mismatched clothes do not seem to matter to them as they press forward, with Eyebrows peering down intently at the Scholar. There is something distinctly odd about the entire meeting—a crossing of time, place and disciplines. Eyebrows: So I finally meet the man who doubts everything. The Scholar: (not missing a beat) At this time, I admit nothing that is not necessarily true. I'm famous for that! Eyebrows: Is there anything that you are certain of? (sotto voce) Besides your own fame? The Scholar: (evading the sarcastic jibe) I can't be certain of my fame. Indeed, I can't even be certain that there is a world out there, for I could be dreaming or hallucinating it. I can't be certain about the existence of my own body, its shape and extension, its corporality, for again I might be fooling myself. But now what am I, when I suppose that there is some supremely powerful and, if I may be permitted to say so, malicious deceiver who deliberately tries to fool me in any way he can? Given this evil spirit, how do I know that my sensations about the outside world—that is, it looks, feels and smells in a particular way—are not illusions, conjured up by Him to deceive me? It seems to me that therefore I can never know anything truly about the world. Nothing, rien du tout. I have to doubt everything. © 2015 Scientific American

Keyword: Consciousness
Link ID: 20640 - Posted: 03.03.2015

By Neuroskeptic In an interesting short paper just published in Trends in Cognitive Science, Caltech neuroscientist Ralph Adolphs offers his thoughts on The Unsolved Problems of Neuroscience. Here’s Adolphs’ list of the top 23 questions (including 3 “meta” issues), which, he says, was inspired by Hilbert’s famous set of 23 mathematical problems: Problems that are solved, or soon will be: I. How do single neurons compute? II. What is the connectome of a small nervous system, like that of Caenorhabitis elegans (300 neurons)? III. How can we image a live brain of 100,000 neurons at cellular and millisecond resolution? IV. How does sensory transduction work? Problems that we should be able to solve in the next 50 years: V. How do circuits of neurons compute? VI. What is the complete connectome of the mouse brain (70,000,000 neurons)? VII. How can we image a live mouse brain at cellular and millisecond resolution? VIII. What causes psychiatric and neurological illness? IX. How do learning and memory work? X. Why do we sleep and dream? XI. How do we make decisions? XII. How does the brain represent abstract ideas? Problems that we should be able to solve, but who knows when: XIII. How does the mouse brain compute? XIV. What is the complete connectome of the human brain (80,000,000,000 neurons)? XV. How can we image a live human brain at cellular and millisecond resolution? XVI. How could we cure psychiatric and neurological diseases? XVII. How could we make everybody’s brain function best? Problems we may never solve: XVIII. How does the human brain compute? XIX. How can cognition be so flexible and generative? XX. How and why does conscious experience arise? Meta-questions: XXI. What counts as an explanation of how the brain works? (and which disciplines would be needed to provide it?) XXII. How could we build a brain? (how do evolution and development do it?) XXIII. What are the different ways of understanding the brain? (what is function, algorithm, implementation?) Adolphs R (2015). The unsolved problems of neuroscience. Trends in cognitive sciences PMID: 25703689

Keyword: Consciousness
Link ID: 20637 - Posted: 03.02.2015

By JONATHAN MAHLER The mother of the bride wore white and gold. Or was it blue and black? From a photograph of the dress the bride posted online, there was broad disagreement. A few days after the wedding last weekend on the Scottish island of Colonsay, a member of the wedding band was so frustrated by the lack of consensus that she posted a picture of the dress on Tumblr, and asked her followers for feedback. “I was just looking for an answer because it was messing with my head,” said Caitlin McNeill, a 21-year-old singer and guitarist. Within a half-hour, her post attracted some 500 likes and shares. The photo soon migrated to Buzzfeed and Facebook and Twitter, setting off a social media conflagration that few were able to resist. As the debate caught fire across the Internet — even scientists could not agree on what was causing the discrepancy — media companies rushed to get articles online. Less than a half-hour after Ms. McNeil’s original Tumblr post, Buzzfeed posted a poll: “What Colors Are This Dress?” As of Friday afternoon, it had been viewed more than 28 million times. (White and gold was winning handily.) At its peak, more than 670,000 people were simultaneously viewing Buzzfeed’s post. Between that and the rest of Buzzfeed’s blanket coverage of the dress Thursday night, the site easily smashed its previous records for traffic. So did Tumblr. Everyone, it seems, had an opinion. And everyone was convinced that he, or she, was right. “I don’t understand this odd dress debate and I feel like it’s a trick somehow,” Taylor Swift wrote on Twitter. “PS it’s OBVIOUSLY BLUE AND BLACK.” “IT’S A BLUE AND BLACK DRESS!” wrote Mindy Kaling. “ARE YOU KIDDING ME,” she continued, including an unprintable modifier for emphasis. © 2015 The New York Times Company

Keyword: Vision
Link ID: 20635 - Posted: 02.28.2015

By Pascal Wallisch If you are just encountering The Dress for the first time, you might first want to click here to see what all the fuss was about. The brain lives in a bony shell. The completely light-tight nature of the skull renders this home a place of complete darkness. So the brain relies on the eyes to supply an image of the outside world, but there are many processing steps between the translation of light energy into electrical impulses that happens in the eye and the neural activity that corresponds to a conscious perception of the outside world. In other words, the brain is playing a game of telephone and—contrary to popular belief—our perception corresponds to the brain’s best guess of what is going on in the outside world, not necessarily to the way things actually are. This has been recognized for at least 150 years, since the time of Hermann von Helmholtz. This week, it was recognized by masses of people on the Internet, who have been debating furiously over what should be a simple question: What color is this dress? Many parts of the brain contribute to any given perception, and it should not be surprising that different people can reconstruct the outside world in different ways. This is true for many perceptual qualities, including form and motion. While this guessing game is going on all the time, it is possible to demonstrate it clearly by generating impoverished stimulus displays that are consistent with different, mutually exclusive interpretations. That means the brain will not necessarily commit to one interpretation, but will switch back and forth. These are known as ambiguous or bi-stable stimuli, and they illustrate the point that the brain is ultimately only guessing when perceiving the world. It usually just has more information to disambiguate the interpretation. © 2014 The Slate Group LLC. All

Keyword: Vision
Link ID: 20634 - Posted: 02.28.2015

Carmen Fishwick It’s not every day that fashion and science come together to polarise the world. Tumblr blogger Caitlin posted a photograph of what is now known as #TheDress – a layered lace dress and jacket that was causing much distress among her friends. The distress spread rapidly across social media, with Taylor Swift admitting she was “confused and scared”. The internet is now made up by people firmly in two camps: the white and gold, and the blue and black – with each thinking the other is completely wrong. But Ron Chrisley, director of the Centre for Research in Cognitive Science at the University of Sussex, believes that the problem mainly lies in the fact that everyone has forgotten we are dealing with a colour illusion. Chrisley said: “The first step in reaching a truce in the dress war is to construct a demonstration that can show to the white-and-gold crowd how the very same dress can also look blue and black under different conditions.” The image below, tweeted by @namin3485, demonstrates that even though the right-hand side of each image is the same, in the context of the two different left halves, the right is interpreted as being either white and gold, or blue and black. So does this mean people who are less self-confident are more likely to be able to see both, at least eventually? Chrisley said: “My guess is it’s not to do with self-confidence. It’s a perceptual issue. I could imagine someone that’s open minded could still see it only one way. This is below the level of us trying to understand other peoples views. It’s more physiological than that.” © 2015 Guardian News and Media Limited

Keyword: Vision
Link ID: 20633 - Posted: 02.28.2015

Fatty liver disease, or the buildup of fat in the liver, and sleep apnea, marked by snoring and interruptions of breathing at night, share some things in common. The two conditions frequently strike people who are overweight or obese. Each afflicts tens of millions of Americans, and often the diseases go undiagnosed. Researchers used to believe that sleep apnea and fatty liver were essentially unrelated, even though they occur together in many patients. But now studies suggest that the two may be strongly linked, with sleep apnea directly exacerbating fatty liver. In a study published last year in the journal Chest, researchers looked at 226 obese middle-aged men and women who were referred to a clinic because they were suspected of having sleep apnea. They found that two-thirds had fatty liver disease, and that the severity of the disease increased with the severity of their sleep apnea. A study last year in The Journal of Pediatrics found a similar relationship in children. The researchers identified sleep apnea in 60 percent of young subjects with fatty liver disease. The worse their apnea episodes, the more likely they were to have fibrosis, or scarring of the liver. Though it is still somewhat unclear, some doctors suspect that the loss of oxygen from sleep apnea may increase chronic inflammation, which worsens fatty liver. Although fat in the liver can be innocuous at first, as inflammation sets in, the fat turns to scar tissue, and that can lead to liver failure. © 2015 The New York Times Company

Keyword: Sleep
Link ID: 20630 - Posted: 02.28.2015

By Nicholas Weiler The grizzled wolf stalks from her rival’s den, her mouth caked with blood of the pups she has just killed. It’s a brutal form of birth control, but only the pack leader is allowed to keep her young. For her, this is a selfish strategy—only her pups will carry on the future of the pack. But it may also help the group keep its own numbers in check and avoid outstripping its resources. A new survey of mammalian carnivores worldwide proposes that many large predators have the ability to limit their own numbers. The results, though preliminary, could help explain how top predators keep the food chains beneath them in balance. Researchers often assume that predator numbers grow and shrink based on their food supply, says evolutionary biologist Blaire Van Valkenburgh of the University of California, Los Angeles, who was not involved in the new study. But several recent examples, including an analysis of the resurgent wolves of Yellowstone National Park, revealed that some large predators keep their own numbers in check. The new paper is the first to bring all the evidence together, Van Valkenburgh says, and presents a “convincing correlation.” Hunting and habitat loss are killing off big carnivores around the world, just as ecologists are discovering how important they are for keeping ecosystems in balance. Mountain lions sustain woodlands by hunting deer that would otherwise graze the landscape bare. Coyotes protect scrub-dwelling birds by keeping raccoons and foxes in line. Where top carnivores disappear, these smaller predators often explode in numbers, with potentially disastrous consequences for small birds and mammals. © 2015 American Association for the Advancement of Science

Keyword: Sexual Behavior; Evolution
Link ID: 20629 - Posted: 02.28.2015

By Elizabeth Pennisi Last week, researchers expanded the size of the mouse brain by giving rodents a piece of human DNA. Now another team has topped that feat, pinpointing a human gene that not only grows the mouse brain but also gives it the distinctive folds found in primate brains. The work suggests that scientists are finally beginning to unravel some of the evolutionary steps that boosted the cognitive powers of our species. “This study represents a major milestone in our understanding of the developmental emergence of human uniqueness,” says Victor Borrell Franco, a neurobiologist at the Institute of Neurosciences in Alicante, Spain, who was not involved with the work. The new study began when Wieland Huttner, a developmental neurobiologist at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, Germany, and his colleagues started closely examining aborted human fetal tissue and embryonic mice. “We specifically wanted to figure out which genes are active during the development of the cortex, the part of the brain that is greatly expanded in humans and other primates compared to rodents,” says Marta Florio, the Huttner graduate student who carried out the main part of the work. That was harder than it sounded. Building a cortex requires several kinds of starting cells, or stem cells. The stem cells divide and sometimes specialize into other types of “intermediate” stem cells that in turn divide and form the neurons that make up brain tissue. To learn what genes are active in the two species, the team first had to develop a way to separate out the various types of cortical stem cells. © 2015 American Association for the Advancement of Science

Keyword: Development of the Brain; Evolution
Link ID: 20628 - Posted: 02.27.2015

by Helen Thomson We meet in a pub, we have a few drinks, some dinner and then you lean in for a kiss. You predict, based on our previous interactions, that the kiss will be reciprocated – rather than landing you with a slap in the face. All our social interactions require us to anticipate another person's undecided intentions and actions. Now, researchers have discovered specific brain cells that allow monkeys to do this. It is likely that the cells do the same job in humans. Keren Haroush and Ziv Williams at Harvard Medical School trained monkeys to play a version of the prisoner's dilemma, a game used to study cooperation. The monkeys sat next to each other and decided whether or not they wanted to cooperate with their companion, by moving a joystick to pick either option. Moving the joystick towards an orange circle meant cooperate, a blue triangle meant "not this time". Neither monkey could see the other's face, or receive any clues about their planned action. If the monkeys cooperated, both received four drops of juice. If one cooperated and the other decided not to, the one who cooperated received one drop, and the other received six drops of juice. If both declined to work together they both received two drops of juice. Once both had made their selections, they could see what the other monkey had chosen and hear the amount of juice their companion was enjoying. © Copyright Reed Business Information Ltd.

Keyword: Attention
Link ID: 20627 - Posted: 02.27.2015

By Michael Erard Freckle, a male rhesus monkey, was greeted warmly by his fellow monkeys at his new home in Amherst, Massachusetts, when he arrived in 2000. But he didn’t return the favor: He terrorized his cagemate by stealing his fleece blanket and nabbed each new blanket the researchers added, until he had 10 and his cagemate none. After a few months, Freckle had also acquired a new name: Ivan, short for Ivan the Terrible. Freckle/Ivan, now at Melinda Novak’s primate research lab at the University of Massachusetts, may be unusual in having two names, but all of his neighbors have at least one moniker, Novak says. “You can say, ‘Kayla and Zoe are acting out today,’ and everybody knows who Kayla and Zoe are,” Novak says. “If you say ‘ZA-56 and ZA-65 are acting up today,’ people pause.” Scientists once shied away from naming research animals, and many of the millions of mice and rats used in U.S. research today go nameless, except for special individuals. But a look at ​many facilities suggests that most of the ​other ​891,161 ​U.S. ​research animals ​have proper names​, including nonhuman primates, dogs, pigs, rabbits, cats, and sheep​. Rats are Pia, Splinter, Oprah, Persimmon. Monkeys are Nyah, Nadira, Tas, Doyle. One octopus is called Nixon. Breeder pairs of mice are “Tom and Katie,” or “Brad and Angelina.” If you’re a mouse with a penchant for escape, you’ll be Mighty Mouse or Houdini. If you’re a nasty mouse, you’ll be Lucifer or Lucifina. Animals in research are named after shampoos, candy bars, whiskeys, family members, movie stars, and superheroes. They’re named after Russians (Boris, Vladimir, Sergei), colors, the Simpsons, historical figures, and even rival scientists. These unofficial names rarely appear in publications, except sometimes in field studies of primates. But they’re used daily. © 2015 American Association for the Advancement of Science.

Keyword: Animal Rights
Link ID: 20625 - Posted: 02.27.2015

People with attention deficit hyperactivity disorder are about twice as likely to die prematurely as those without the disorder, say researchers. Researchers followed 1.92 million Danes, including 32,000 with ADHD, from birth through to 2013. "In this nationwide prospective cohort study with up to 32-year followup, children, adolescents and adults with ADHD had decreased life expectancy and more than double the risk of death compared with people without ADHD," Soren Dalsgaard, from Aarhus University in Denmark, and his co-authors concluded in Wednesday's online issue of Lancet. Actress Kirstie Alley holds a picture of Raymond Perone while testifying in favour of a bill designed to curb the over-prescribing of psychotropic drugs. Danish researchers studying ADHD say medications can reduce symptoms of inattention and impulsivity. (Phil Coale/Associated Press) "People diagnosed with ADHD in adulthood had a greater risk of death than did those diagnosed in childhood and adolescence. This finding could be caused by persistent ADHD being a more severe form of the disorder." Of the 107 individuals with ADHD who died, information on cause of death was available for 79. Of those, 25 died from natural causes and 54 from unnatural causes, including 42 from accidents. Being diagnosed with ADHD along with oppositional defiant disorder, conduct disorder and substance use disorder also increased the risk of death, the researchers found. Mortality risk was also higher for females than males, which led Dalsgaard to stress the need for early diagnosis, especially in girls and women, and to treat co-existing disorders. Although talk of premature death will worry parents and patients, they can seek solace in knowing the absolute risk of premature death at an individual level is low and can be greatly reduced with treatment, Stephen Faraone, a professor of psychiatry and director of child and adolescent psychiatry research at SUNY Upstate Medical University in New York, said in a journal commentary published with the study. ©2015 CBC/Radio-Canada.

Keyword: ADHD; Attention
Link ID: 20623 - Posted: 02.26.2015

Julie Beck When Paul Ekman was a grad student in the 1950s, psychologists were mostly ignoring emotions. Most psychology research at the time was focused on behaviorism—classical conditioning and the like. Silvan Tomkins was the one other person Ekman knew of who was studying emotions, and he’d done a little work on facial expressions that Ekman saw as extremely promising. “To me it was obvious,” Ekman says. “There’s gold in those hills; I have to find a way to mine it.” For his first cross-cultural studies in the 1960s, he traveled around the U.S., Chile, Argentina, and Brazil. In each location, he showed people photos of different facial expressions and asked them to match the images with six different emotions: happiness, sadness, anger, surprise, fear, and disgust. “There was very high agreement,” Ekman says. People tended to match smiling faces with “happiness,” furrow-browed, tight-lipped faces with “anger,” and so on. But these responses could have been influenced by culture. The best way to test whether emotions were truly universal, he thought, would be to repeat his experiment in a totally remote society that hadn’t been exposed to Western media. So he planned a trip to Papua New Guinea, his confidence bolstered by films he’d seen of the island’s isolated cultures: “I never saw an expression I wasn’t familiar with in our culture,” he says. Once there, he showed locals the same photos he’d shown his other research subjects. He gave them a choice between three photos and asked them to pick images that matched various stories (such as “this man’s child has just died”). Adult participants chose the expected emotion between 28 and 100 percent of the time, depending which photos they were choosing among. (The 28 percent was a bit of an outlier: That was when people had to choose between fear, surprise, and sadness. The next lowest rate was 48 percent.) © 2014 by The Atlantic Monthly Group.

Keyword: Emotions
Link ID: 20619 - Posted: 02.26.2015

by Hal Hodson Video: Bionic arm trumps flesh after elective amputation Bionic hands are go. Three men with serious nerve damage had their hands amputated and replaced by prosthetic ones that they can control with their minds. The procedure, dubbed "bionic reconstruction", was carried out by Oskar Aszmann at the Medical University of Vienna, Austria. The men had all suffered accidents which damaged the brachial plexus – the bundle of nerve fibres that runs from the spine to the hand. Despite attempted repairs to those nerves, the arm and hand remained paralysed. "But still there are some nerve fibres present," says Aszmann. "The injury is so massive that there are only a few. This is just not enough to make the hand alive. They will never drive a hand, but they might drive a prosthetic hand." This approach works because the prosthetic hands come with their own power source. Aszmann's patients plug their hands in to charge every night. Relying on electricity from the grid to power the hand means all the muscles and nerves need do is send the right signals to a prosthetic. Before the operation, Aszmann's patients had to prepare their bodies and brains. First he transplanted leg muscle into their arms to boost the signal from the remaining nerve fibres. Three months later, after the nerves had grown into the new muscle, the men started training their brains. © Copyright Reed Business Information Ltd.

Keyword: Robotics
Link ID: 20617 - Posted: 02.26.2015

By Jocelyn Kaiser The number of animals used by the top federally funded U.S. biomedical research institutions has risen 73% over 15 years, a “dramatic increase” driven mostly by more mice, concludes an animal rights group. They say researchers are not doing enough to reduce their use of mice, which are exempt from some federal animal protection laws. The National Institutes of Health (NIH), which collected the data, says the analysis by People for the Ethical Treatment of Animals (PETA) is “inappropriate.” The analysis was published online today in the Journal of Medical Ethics. Although the Animal Welfare Act requires that the U.S. Department of Agriculture track research labs’ use of cats, dogs, and nonhuman primates, smaller vertebrates—including mice, rats, fish, and birds bred for research—are exempt. To get a sense of the trends, PETA filed Freedom of Information Act requests for data from inventories that NIH-funded institutions must submit to NIH every 4 years to receive an “assurance” allowing them to do animal research. Looking at the 25 top NIH-funded institutions, PETA found these institutions housed a daily average of about 74,600 animals between 1997 and 2003; that leaped to an average of about 128,900 a day by 2008 to 2012, a 73% increase. (Because institutions don’t report at the same time, PETA combined figures over three time periods.) © 2015 American Association for the Advancement of Science

Keyword: Animal Rights
Link ID: 20616 - Posted: 02.26.2015

By KATIE THOMAS The retired tennis player Monica Seles spent this month making the rounds of television talk shows, appearing on everything from “Good Morning America” to “The Dr. Oz Show” to share her personal struggle with binge eating. “It took a while until I felt comfortable talking about it,” she said in a People magazine interview, explaining that she secretly devoured food for years while she was a professional athlete. “That’s one of the reasons I decided to do this campaign: to raise awareness that binge eating is a real medical condition.” But that is not the only reason. Ms. Seles is a paid spokeswoman for Shire, which late last month won approval to market its top-selling drug, Vyvanse, to treat binge-eating disorder, a condition that once existed in the shadow of better-known disorders like anorexia and bulimia but was officially recognized as its own disorder in 2013 by the American Psychiatric Association. As Shire introduces an ambitious campaign to promote Vyvanse but also to raise awareness about the disorder, some are saying the company is going too far to market a drug, a type of amphetamine, that is classified by the federal government as having a high potential for abuse. Shire’s track record is adding to the worry: The company helped put another once-stigmatized condition — attention deficit hyperactivity disorder — on the medical map and made billions of dollars from the sale of drugs, like Vyvanse and Adderall, to treat it. In recent years, federal officials have cited the company for inappropriately marketing Vyvanse and other A.D.H.D. drugs. In addition, some drug safety experts questioned why the Food and Drug Administration so swiftly approved the drug for binge eating — seeking little outside input — despite the fact that, for decades, amphetamines, which suppress the appetite, were widely abused as a treatment for obesity. © 2015 The New York Times Company

Keyword: Anorexia & Bulimia
Link ID: 20614 - Posted: 02.25.2015

Helen Shen Repeated head injuries in American football have been linked to a degenerative brain disorder later in life. Dave Duerson suspected that something was wrong with his brain. By 2011, 18 years after the former American football player had retired from the Phoenix Cardinals, he experienced frequent headaches, memory problems and an increasingly short temper. Before he killed himself, he asked that his brain be donated for study. Researchers who examined it found signs of chronic traumatic encephalopathy (CTE), a degenerative condition linked to repeated head injuries. At least 69 cases have been reported in the literature since 2000, many in former boxers and American football players (P. H. Montenigro et al. Alz. Res. Ther. 6, 68; 2014) — heightening public concern about concussions during contact sports. Yet much about CTE is unknown, from its frequency to its precise risk factors and even whether its pathology is unique. Researchers now hope to take a major step towards answering those questions. At Boston University in Massachusetts on 25–27 February, neuroscientists will convene to examine the characteristics of CTE in brain tissue from post-mortem examinations. They hope to agree on a set of diagnostic criteria for the disease, and to assess whether it is distinct from other brain disorders, such as Alzheimer’s disease. The effort is sorely needed, says Walter Koroshetz, acting director of the US National Institute of Neurological Disorders and Stroke in Bethesda, Maryland, which is organizing the meeting. “The definition is the important piece that lets you do the rest of the research,” he says. And the stakes are high. CTE is associated with memory loss, irritability, depression and explosive anger, which are thought to appear and worsen years after repeated head trauma. © 2015 Nature Publishing Group

Keyword: Brain Injury/Concussion
Link ID: 20613 - Posted: 02.25.2015

By Sandhya Sekar It’s stressful being a low-ranking hyena—so stressful that even their chromosomes feel it. Researchers have discovered that the challenges of African savanna hyena society shorten underdogs’ telomeres, stretches of DNA that bookend chromosomes and protect them from wear and tear during cell replication. The stress may come from the top hyenas getting the best meat, whereas lower ranking individuals have to travel long distances—sometimes to the edges of the group territory—to fend for themselves. With increased stress, higher amounts of stress hormones and cellular byproducts like oxygen ions and peroxides are produced, both of which have been shown to shorten telomeres in other species. When telomeres fall below a certain length, cells go into damage-control mode and kick off biochemical pathways that can result in cell death. The study, the team reports online today in Biology Letters, is the first to show that the stress of social hierarchy can shorten telomeres in a wild species. © 2015 American Association for the Advancement of Science.

Keyword: Stress
Link ID: 20611 - Posted: 02.25.2015