Chapter 16. None

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1550

by Amy Standen The important thing is that Meghan knew something was wrong. When I met her, she was 23, a smart, wry young woman living with her mother and stepdad in Simi Valley, about an hour north of Los Angeles. Meghan had just started a training program to become a respiratory therapist. Concerned about future job prospects, she asked NPR not to use her full name. Five years ago, Meghan's prospects weren't nearly so bright. At 19, she had been severely depressed, on and off, for years. During the bad times, she'd hide out in her room making thin, neat cuts with a razor on her upper arm. "I didn't do much of anything," Meghan recalls. "It required too much brain power." "Her depression just sucked the life out of you," Kathy, Meghan's mother, recalls. "I had no idea what to do or where to go with it." One night in 2010, Meghan's mental state took an ominous turn. Driving home from her job at McDonald's, she found herself fascinated by the headlights of an oncoming car. "I had the weird thought of, you know, I've never noticed this, but their headlights really look like eyes." To Meghan, the car seemed malicious. It wanted to hurt her. Kathy tried to reason with her. "Honey, you know it's a car, right? You know those are headlights," she recalls pressing her daughter. "You understand that this makes no sense, right?" © 2014 NPR

Keyword: Schizophrenia
Link ID: 20223 - Posted: 10.21.2014

By Catherine Saint Louis KATY, Tex. — Like many parents of children with autism, Nicole Brown feared she might never find a dentist willing and able to care for her daughter, Camryn Cunningham, now a lanky 13-year-old who uses words sparingly. Finishing a basic cleaning was a colossal challenge, because Camryn was bewildered by the lights in her face and the odd noises from instruments like the saliva suctioner — not to mention how utterly unfamiliar everything was to a girl accustomed to routine. Sometimes she’d panic and bolt from the office. Then in May, Ms. Brown, 45, a juvenile supervision officer, found Dr. Amy Luedemann-Lazar, a pediatric dentist in this suburb of Houston. Unlike previous dentists, Dr. Luedemann-Lazar didn’t suggest that Camryn would need to be sedated or immobilized. Instead, she suggested weekly visits to help her learn to be cooperative, step by step, with lots of breaks so she wouldn’t be overwhelmed. Bribery helped. If she sat calmly for 10 seconds, her reward was listening to a snippet of a Beyoncé song on her sister’s iPod. This month, Camryn sat still in the chair, hands crossed on her lap, for no less than 25 minutes through an entire cleaning — her second ever — even as purple-gloved hands hovered near her face, holding a noisy tooth polisher. At the end, Dr. Luedemann-Lazar examined Camryn’s teeth and declared her cavity-free and ready to see an orthodontist. “It was like a breakthrough,” Ms. Brown said, adding, “Dr. Amy didn’t just turn her away.” Parents of children with special needs have long struggled to find dentists who will treat them. In a 2005 study, nearly three-fifths of 208 randomly chosen general dentists in Michigan said they would not provide care for children on the autism spectrum; two-thirds said the same for adults. But as more and more children receive diagnoses of autism spectrum disorder, more dentists and dental hygienists are recognizing that with accommodations, many of them can become cooperative patients. © 2014 The New York Times Company

Keyword: Autism
Link ID: 20222 - Posted: 10.21.2014

Daniel Cressey The history of sex may have to be rewritten thanks to a group of unsightly, long-extinct fish called placoderms. A careful study1 of fossils of these armour-plated creatures, which gave rise to all current vertebrates with jaws, suggests that their descendants — our ancient ancestors — switched their sexual practices from internal to external fertilization, an event previously thought to be evolutionarily improbable. “This was totally unexpected,” says John Long, a palaeontologist at Flinders University in Adelaide, Australia, and lead author of the study, published in Nature1. “Biologists thought that there could not be a reversion back from internal fertilization to external fertilization, but we have shown it must have happened this way.” Go back far enough in your family tree — before placoderms — and your ancestors were rather ugly jawless fish who reproduced through external fertilization, in which sperm and eggs are expelled into the water to unite. Some of these distant relatives later gave rise to the jawless fish called lampreys that lurk in seas today and still use this method of reproduction. Bony organ Long's team studied placoderms, one of the earliest groups of jawed animals, and found structures in fossils that they interpret as bony ‘claspers’ — male organs that penetrate the female and deliver sperm. © 2014 Nature Publishing Group,

Keyword: Sexual Behavior; Aggression
Link ID: 20220 - Posted: 10.20.2014

By KONIKA BANERJEE and PAUL BLOOM ON April 15, 2013, James Costello was cheering on a friend near the finish line at the Boston Marathon when the bombs exploded, severely burning his arms and legs and sending shrapnel into his flesh. During the months of surgery and rehabilitation that followed, Mr. Costello developed a relationship with one of his nurses, Krista D’Agostino, and they soon became engaged. Mr. Costello posted a picture of the ring on Facebook. “I now realize why I was involved in the tragedy,” he wrote. “It was to meet my best friend, and the love of my life.” Mr. Costello is not alone in finding meaning in life events. People regularly do so for both terrible incidents, such as being injured in an explosion, and positive ones, like being cured of a serious disease. As the phrase goes, everything happens for a reason. Where does this belief come from? One theory is that it reflects religious teachings — we think that events have meaning because we believe in a God that plans for us, sends us messages, rewards the good and punishes the bad. But research from the Yale Mind and Development Lab, where we work, suggests that this can’t be the whole story. In one series of studies, recently published in the journal Cognition, we asked people to reflect on significant events from their own lives, such as graduations, the births of children, falling in love, the deaths of loved ones and serious illnesses. Unsurprisingly, a majority of religious believers said they thought that these events happened for a reason and that they had been purposefully designed (presumably by God). But many atheists did so as well, and a majority of atheists in a related study also said that they believed in fate — defined as the view that life events happen for a reason and that there is an underlying order to life that determines how events turn out. © 2014 The New York Times Company

Keyword: Attention
Link ID: 20219 - Posted: 10.20.2014

By Smitha Mundasad Health reporter, BBC News Scientists have uncovered hidden signatures in the brains of people in vegetative states that suggest they may have a glimmer of consciousness. Doctors normally consider these patients - who have severe brain injuries - to be unaware of the world around them although they appear awake. Researchers hope their work will help identify those who are actually conscious, but unable to communicate. Their report appears in PLoS Computational Biology. After catastrophic brain injuries, for example due to car crashes or major heart attacks, some people can appear to wake up yet do not respond to events around them. Doctors describe these patients as being in a vegetative state. Patients typically open their eyes and look around, but cannot react to commands or make any purposeful movements. Some people remain in this state for many years. But a handful of recent studies have questioned this diagnosis - suggesting some patients may actually be aware of what is going on around them, but unable to communicate. A team of scientists at Cambridge University studied 13 patients in vegetative states, mapping the electrical activity of their nerves using a mesh of electrodes applied to their scalps. The electrical patterns and connections they recorded were then compared with healthy volunteers. The study reveals four of the 13 patients had an electrical signature that was very similar to those seen in the volunteers. Dr Srivas Chennu, who led the research, said: "This suggests some of the brain networks that support consciousness in healthy adults may be well-preserved in a number of people in persistent vegetative state too." BBC © 2014

Keyword: Consciousness
Link ID: 20217 - Posted: 10.18.2014

|By Amy Yee Pouring a bucket of ice water over one’s head may seem like a distant summer memory. But although the “ice bucket challenge” craze has died down, public awareness of amyotrophic lateral sclerosis (ALS), commonly known as Lou Gehrig’s disease, has never been stronger. The viral video campaign raised $115 million from more than 3 million donors for the ALS Association. In one month, from July 29 to August 29, donors raised $100.9 million, compared with $2.8 million during the same period the previous year. In early October, the ALS Association began spending that money. It approved $21.7 million of funding for six programs and initiatives by groups that include the academic-industry partnership ALS Accelerated Therapeutics, the New York Genome Center, three California labs that form the Neuro Collaborative, and Project MinE, which will map the genomes of 15,000 people with ALS (about 10 percent of ALS patients have a family member with the disease). The grants focus on developing gene therapies for common ALS genes and exploring approaches to counter two major contributors to the disease, the inflammation of nervous tissue and misfolded proteins in brain cells that control movement. These efforts may not only someday lead to new treatments, but may also point to the cause of ALS. At the level of basic research, scientists do not have a dominant theory from which to work, notes Tom Jessell, a neuroscientist and co-director of Columbia University’s new Zuckerman Mind Brain Behavior Institute. Jessell is also the chair of the research advisory board of Project ALS, a nonprofit that identifies and funds ALS research. © 2014 Scientific American

Keyword: ALS-Lou Gehrig's Disease
Link ID: 20213 - Posted: 10.18.2014

by Penny Sarchet He's sexy and he knows it. The little devil frog is noisy in pursuit of a partner, and doesn't care who hears him. The little devil frog's fearlessness in the face of hungry predators could be down to his toxicity. The little devil, Oophaga sylvatica, is a member of the dendrobatid group of poisonous frogs. His bright colours warn predators that he is unsafe to eat, which Juan Santos of the University of British Columbia in Vancouver, Canada, believes has allowed the evolution of more flamboyant mating calls. Santos and his colleagues examined the calls, colourings and toxicity of 170 species of frog, including the little devil. They found a strong relationship between the volume of a frog's call and its aposematism – markings that warn of its toxicity. In general, the more toxic a frog, the brighter and more noticeable it is – and the louder and more rapidly it sings (Proceedings of the Royal Society B ). Non-toxic frogs are camouflaged and call from less exposed perches, says Santos. "Females can have a significant effect on the selection of the most noisy males, given that predators will avoid these aposematic individuals," says Santos. The male's calls can travel over long distances, in an attempt to attract a mate. But it's not just about attracting a female frog's attention – it's about letting her know how desirable he is. © Copyright Reed Business Information Ltd.

Keyword: Sexual Behavior; Aggression
Link ID: 20212 - Posted: 10.18.2014

By Josie Gurney-Read, Online Education Editor Myths about the brain and how it functions are being used to justify and promote teaching methods that are essentially “ineffective”, according to new research. The study, published today in Nature Reviews Neuroscience, began by presenting teachers in the UK, Turkey, Greece, China and the Netherlands, with seven myths about the brain and asked them whether they believed the myths to be true. According to the figures, over half of teachers in the UK, the Netherlands and China believe that children are less attentive after sugary drinks and snacks and over a quarter of teachers in the UK and Turkey believe that a pupil’s brain will shrink if they drink fewer than six to eight glasses of water a day. Furthermore, over 90 per cent of teachers in all countries believe that a student will learn better if they receive information in their preferred learning style – auditory, visual, kinaesthetic. This is despite the fact that there is "no convincing evidence to support this theory". Dr Paul Howard-Jones, author of the article from Bristol University’s Graduate School of Education, said that many teaching practices are “sold to teachers as based on neuroscience”. However, he added that, in many cases, these ideas have “no educational value and are often associated with poor practice in the classroom.” The prevalence of many of these “neuromyths” in different countries, could reflect the absence of any teacher training in neuroscience, the research concludes. Dr Howard-Jones warned that this could mean that many teachers are “ill-prepared to be critical of ideas and educational programmes that claim a neuroscientific basis.” © Copyright of Telegraph Media Group Limited 2014

Keyword: Learning & Memory
Link ID: 20207 - Posted: 10.16.2014

|By Jenni Laidman During the second and third trimester of pregnancy, the outer layer of the embryo's brain, the cortex, assembles itself into six distinct layers. But in autism, according to new research, this organization goes awry—marring parts of the brain associated with the abilities often impaired in the disorder, such as social skills and language development. Eric Courchesne, director of the Autism Center of Excellence at the University of California, San Diego, and his colleagues uncovered this developmental misstep in a small study that compared 11 brains of children with autism who died at ages two through 15 with 11 brains of kids who died without the diagnosis. The study employed a sophisticated genetic technique that looked for signatures of the activity of 25 genes in brain slices taken from the front of the brain—an area called the prefrontal cortex—as well as from the occipital cortex at the back of the brain and the temporal cortex near the temple. The researchers found disorganized patches, roughly a quarter of an inch across, in which gene expression indicated cells were not where they were supposed to be, amid the folds of tissue in the prefrontal cortex in 10 of 11 brains from children with autism. That part of the brain is associated with higher-order communication and social interactions. The team also found messy patches in the temporal cortices of autistic brains but no disorder at the back of the brain, which also matches typical symptom profiles. The patches appeared at seemingly random locations within the frontal and temporal cortices, which may help explain why symptoms can differ dramatically among individuals, says Rich Stoner, then at U.C. San Diego and the first author of the study, which appeared in the New England Journal of Medicine. © 2014 Scientific American

Keyword: Autism; Aggression
Link ID: 20205 - Posted: 10.14.2014

By JOSHUA A. KRISCH An old stucco house stands atop a grassy hill overlooking the Long Island Sound. Less than a mile down the road, the renowned Cold Spring Harbor Laboratory bustles with more than 600 researchers and technicians, regularly producing breakthroughs in genetics, cancer and neuroscience. But that old house, now a private residence on the outskirts of town, once held a facility whose very name evokes dark memories: the Eugenics Record Office. In its heyday, the office was the premier scientific enterprise at Cold Spring Harbor. There, bigoted scientists applied rudimentary genetics to singling out supposedly superior races and degrading minorities. By the mid-1920s, the office had become the center of the eugenics movement in America. Today, all that remains of it are files and photographs — reams of discredited research that once shaped anti-immigration laws, spurred forced-sterilization campaigns and barred refugees from entering Ellis Island. Now, historians and artists at New York University are bringing the eugenics office back into the public eye. “Haunted Files: The Eugenics Record Office,” a new exhibit at the university’s Asian/Pacific/American Institute, transports visitors to 1924, the height of the eugenics movement in the United States. Inside a dimly lit room, the sounds of an old typewriter click and clack, a teakettle whistles and papers shuffle. The office’s original file cabinets loom over reproduced desks and period knickknacks. Creaky cabinets slide open, and visitors are encouraged to thumb through copies of pseudoscientific papers. © 2014 The New York Times Company

Keyword: Genes & Behavior
Link ID: 20204 - Posted: 10.14.2014

By GINA KOLATA For the first time, and to the astonishment of many of their colleagues, researchers created what they call Alzheimer’s in a Dish — a petri dish with human brain cells that develop the telltale structures of Alzheimer’s disease. In doing so, they resolved a longstanding problem of how to study Alzheimer’s and search for drugs to treat it; the best they had until now were mice that developed an imperfect form of the disease. The key to their success, said the lead researcher, Rudolph E. Tanzi of Massachusetts General Hospital in Boston, was a suggestion by his colleague Doo Yeon Kim to grow human brain cells in a gel, where they formed networks as in an actual brain. They gave the neurons genes for Alzheimer’s disease. Within weeks they saw the hard Brillo-like clumps known as plaques and then the twisted spaghetti-like coils known as tangles — the defining features of Alzheimer’s disease. The work, which also offers strong support for an old idea about how the disease progresses, was published in Nature on Sunday. Leading researchers said it should have a big effect. “It is a giant step forward for the field,” said Dr. P. Murali Doraiswamy, an Alzheimer’s researcher at Duke University. “It could dramatically accelerate testing of new drug candidates.” Of course, a petri dish is not a brain, and the petri dish system lacks certain crucial components, like immune system cells, that appear to contribute to the devastation once Alzheimer’s gets started. But it allows researchers to quickly, cheaply and easily test drugs that might stop the process in the first place. The crucial step, of course, will be to see if drugs that work in this system stop Alzheimer’s in patients. © 2014 The New York Times Company

Keyword: Alzheimers
Link ID: 20203 - Posted: 10.13.2014

By David Leonhardt and Amanda Cox Like so many other parts of health care, childbirth has become a more medically intense experience over the last two decades. The use of drugs to induce labor has become far more common, as have cesarean sections. Today, about half of all births in this country are hastened either by drugs or surgery, double the share in 1990. Crucial to the change has been a widely held belief that once fetuses pass a certain set of thresholds — often 39 weeks of gestation and five and a half pounds in weight — they’re as healthy as they can get. More time in the womb doesn’t do them much good, according to this thinking. For parents and doctors, meanwhile, scheduling a birth, rather than waiting for its random arrival, is clearly more convenient. But a huge new set of data, based on every child born in Florida over an 11-year span, is calling into question some of the most basic assumptions of our medicalized approach to childbirth. The results also play into a larger issue: the growing sense among many doctors and other experts that Americans would actually be healthier if our health care system were sometimes less aggressive. The new data suggest that the thresholds to maximize a child’s health seem to be higher, which means that many fetuses might benefit by staying longer in the womb, where they typically add at least a quarter-pound per week. Seven-pound babies appear to be healthier than six-pound babies — and to fare better in school as they age. The same goes for eight-pound babies compared with seven-pound babies, and nine-pound babies compared with eight-pound babies. Weight, of course, may partly be an indicator of broader fetal health, but it seems to be a meaningful one: The chunkier the baby, the better it does on average, all the way up to almost 10 pounds. “Birth weight matters, and it matters for everyone,” says David N. Figlio, a Northwestern University professor and co-author of the study, which will soon be published in the American Economic Review, one of the field’s top journals. © 2014 The New York Times Company

Keyword: Development of the Brain; Aggression
Link ID: 20201 - Posted: 10.13.2014

By Meredith Levine, Word went round Janice Mackay's quiet neighbourhood that she was hitting the bottle hard. She'd been seen more than once weaving along the sidewalk in front of her suburban home in Pickering, just outside Toronto, in a sad, drunken stagger. But Mackay wasn't drunk. As it turned out, her inner ear, the body's balance centre, had been destroyed by medication when she was hospitalized for over a month back in May 2005. At the time, Mackay was diagnosed with a life-threatening infection in one of her ovaries, and so was put on a cocktail of medication, including an IV drip of gentamicin, a well-known, inexpensive antibiotic that is one of the few that hasn't fallen prey to antibiotic-resistant bacteria. A few weeks later, the infection was almost gone when Mackay, still hospitalized, suddenly developed the bed spins and vomiting. Her medical team told her she'd been laying down too long and gave her Gravol, but the symptoms didn't go away. In a follow-up appointment after her discharge, Mackay was told that the dizziness was a side effect of the gentamicin, and that she would probably have to get used to it. But she didn't discover the extent of the damage until later when neurotologist Dr. John Rutka assessed her condition and concluded that the gentamicin had essentially destroyed her vestibular system, the body's motion detector, located deep within the inner ear. © CBC 2014

Keyword: Hearing
Link ID: 20198 - Posted: 10.13.2014

By CATHERINE SAINT LOUIS Many cases of so-called crib death, about one in eight, occur among infants who have been placed on sofas, researchers reported on Monday. Dr. Jeffrey Colvin, a pediatrician at Children’s Mercy Hospital in Kansas City, Mo., and his colleagues analyzed data on 7,934 sudden infant deaths in 24 states, comparing those that occurred on sofas with those in cribs, bassinets or beds. Previous research had shown that couches were particularly hazardous for infants. The new analysis, published in the journal Pediatrics, tried to identify factors significant in these deaths. “It’s not only one risk that’s higher relative to other sleep environments,” said Barbara Ostfeld, a professor of pediatrics at Rutgers Robert Wood Johnson Medical School who was not involved in the new study. “It’s multiple risks.” Nearly three-quarters of the deaths occurred among infants age 3 months or younger, the researchers found. Pediatricians have long advised putting infants to sleep only on their backs, alone and on a firm, flat surface without a pillow. The new study found parents were more likely to lay their infants face down on a sofa than, for instance, face down in a crib. There’s a “fallacy that if I’m awake or watching, SIDS won’t happen,” Dr. Colvin said, referring to sudden infant death syndrome. © 2014 The New York Times Company

Keyword: Sleep; Aggression
Link ID: 20197 - Posted: 10.13.2014

By MICHAEL S. A. GRAZIANO OF the three most fundamental scientific questions about the human condition, two have been answered. First, what is our relationship to the rest of the universe? Copernicus answered that one. We’re not at the center. We’re a speck in a large place. Second, what is our relationship to the diversity of life? Darwin answered that one. Biologically speaking, we’re not a special act of creation. We’re a twig on the tree of evolution. Third, what is the relationship between our minds and the physical world? Here, we don’t have a settled answer. We know something about the body and brain, but what about the subjective life inside? Consider that a computer, if hooked up to a camera, can process information about the wavelength of light and determine that grass is green. But we humans also experience the greenness. We have an awareness of information we process. What is this mysterious aspect of ourselves? Many theories have been proposed, but none has passed scientific muster. I believe a major change in our perspective on consciousness may be necessary, a shift from a credulous and egocentric viewpoint to a skeptical and slightly disconcerting one: namely, that we don’t actually have inner feelings in the way most of us think we do. Imagine a group of scholars in the early 17th century, debating the process that purifies white light and rids it of all colors. They’ll never arrive at a scientific answer. Why? Because despite appearances, white is not pure. It’s a mixture of colors of the visible spectrum, as Newton later discovered. The scholars are working with a faulty assumption that comes courtesy of the brain’s visual system. The scientific truth about white (i.e., that it is not pure) differs from how the brain reconstructs it. © 2014 The New York Times Company

Keyword: Consciousness
Link ID: 20196 - Posted: 10.11.2014

by Mallory Locklear Do you have an annoying friend who loves bungee jumping or hang-gliding, and is always blathering on about how it never scares them? Rather than being a macho front, their bravado may have a biological basis. Research from Stony Brook University in New York shows that not all risk-takers are cut from the same cloth. Some actually seem to feel no fear – or at least their bodies and brains don't respond to danger in the usual way. The study is the first to attempt to tease apart the differences in the risk-taking population. In order to ensure every participant was a card-carrying risk-taker, the team led by Lilianne Mujica-Parodi, recruited 30 first-time skydivers. "Most studies on sensation-seeking compare people who take risks and people who don't. We were interested in something more subtle – those who take risks adaptively and those who do so maladaptively." In other words, do all risk-takers process potential danger in the same way or do some ignore the risks more than others? To find out, the researchers got their participants to complete several personality questionnaires, including one that asked them to rank how well statements such as, "The greater the risk the more fun the activity," described them. Next, the team used fMRI imaging to observe whether the participants' corticolimbic brain circuit – which is involved in risk assessment - was well-regulated. A well-regulated circuit is one that reacts to a threat and then returns to a normal state afterwards. © Copyright Reed Business Information Ltd

Keyword: Emotions; Aggression
Link ID: 20194 - Posted: 10.11.2014

By Carl T. Hall Even Clayton Kershaw, the Los Angeles Dodgers’ pitching ace, makes mistakes now and then. And although very few of his mistakes seemed to do Giants hitters much good this season, a team of San Francisco scientists found a way to take full advantage. A new study by UCSF researchers revealed a tendency of the brain’s motion-control system to run off track in a predictable way when we try to perform the same practiced movement over and over. The scientists found the phenomenon first in macaque monkeys, then documented exactly the same thing in Kershaw’s game video. Although he struggled in a playoff appearance last week, the left-hander’s pitching performance during the regular season was among the best on record. It included a minuscule 1.77 earned run average, a nearly flawless no-hitter in June, 239 strikeouts and only 31 walks. He led the major leagues with 10.85 strikeouts per nine innings pitched. In what turned out to be an early warm-up to the playoffs, UCSF scientists Kris Chaisanguanthum, Helen Shen and Philip Sabes delved into the motor-control system of the primate brain. Their study, published in the Journal of Neuroscience, could help design better prosthetic limbs — or make robots that move less like robots and more like Kershaw. Unlike most machines, our brains seem to never stop trying to adapt to new information, making subtle adjustments each time we repeat a particular movement no matter how practiced. This trial-by-trial form of learning has obvious advantages in a fast-changing world, but also seems prone to drift away from spot-on accuracy as those small adjustments go too far.

Keyword: Learning & Memory
Link ID: 20193 - Posted: 10.11.2014

By David Shultz The next time you see a fruit fly hovering around your pint of beer, don’t swat it—appreciate it. You’re witnessing a unique relationship between yeast and insect. A new study reveals that the single-celled organisms have evolved to secrete a fruity scent that attracts fruit flies, which they hitch a ride on for greener pastures. The findings may also explain the sweet aroma of some craft beers. Like many scientific discoveries, the new work was the product of a happy accident. Kevin Verstrepen, a geneticist at KU Leuven in Belgium, was working with two types of yeast: a normal strain and another with a mutation in a gene called ATF1 that causes the cells to produce fewer odors during fermentation. “Nobody really knew what was happening until I was lazy enough to leave the lab on a Friday with these yeast left out on the bench,” he says. By coincidence, a group of fruit flies (Drosophila melanogaster) chose that weekend to escape from a neighboring genetics lab. When Verstrepen returned to work on Monday, he discovered that the insects had found their way into the smelly yeast culture but had ignored the mutant colony. To probe further, Verstrepen and colleagues set up an enclosed “arena” and pumped ATF1 aromas, which are either fruity, flowery, or solventlike, into one corner. Another corner received a dose of odors from the ATF1-deficient yeast. The remaining two corners emitted odorless streams of air to serve as controls. As expected, the flies congregated almost exclusively in the corner emitting the fragrant odors of yeast with intact ATF1 genes. Analyses of the insects’ brains revealed that the neurons in flies exposed to smelly yeast responded in an entirely different way from those exposed to odorless air or the scent of ATF1-deficient yeast strain, the researchers report online today in Cell Reports. © 2014 American Association for the Advancement of Science

Keyword: Chemical Senses (Smell & Taste)
Link ID: 20192 - Posted: 10.11.2014

BY Ashley Yeager A protein made by gut bacteria may trigger a chain of interactions in the body that contribute to eating disorders such as anorexia and bulimia. When the protein is produced, the body makes antibodies to bind to it, but the antibodies also attach to a hormone that controls fullness. In tests, mice given bacteria that produce the protein changed how much they ate compared with mice given bacteria that did not make the protein, a new study shows. Researchers also found that the antibodies to the protein were higher in patients with anorexia and bulimia. The results, which appear October 7 in Translational Psychiatry, seem to be some of the earliest to link gut bacteria to eating disorders. © Society for Science & the Public 2000 - 2014.

Keyword: Anorexia & Bulimia
Link ID: 20188 - Posted: 10.11.2014

By Elizabeth Pennisi Four years ago, Igor Spetic lost his right arm in an industrial accident. Doctors outfitted him with a prosthetic arm that restored some function, but they couldn't restore his sense of touch. Without it, simple tasks like picking up a glass or shaking hands became hit-or-miss propositions. The lack of touch also robs Spetic of basic pleasures. “I would love to feel my wife’s hand,” he says. In time, he may regain that pleasure: Two independent research teams have now equipped artificial hands with sensors that send signals to the wearer’s nerves to recreate this missing sense. The sensing technologies work only in the lab, but they have proved durable, and amputees who have tried them, including Spetic, say that they are effective. One technology advances the range of touch sensations available, while the other promises to enable touch through a better way to attach the prosthesis. “All of these results are very positive,” says Mandayam Srinivasan, a neuroengineer at the Massachusetts Institute of Technology in Cambridge, who was not involved in either project. “Each of them fills a piece of the puzzle in terms of [prosthesis] development.” Almost 40 years ago, researchers tried to provide sensory feedback by adding pressure sensors to prostheses that relayed the sensation through electrodes attached to nerves. But for the most part, they just made it seem like the hand was tingling. And durability has been an issue in such efforts, too. In February, Silvestro Micera, a neuroengineer at the Sant'Anna School of Advanced Studies in Pisa, Italy, and the Swiss Federal Institute of Technology in Lausanne and his team showed that it was possible for sensor-equipped prosthetic arms to gently or powerfully grab objects and even to distinguish a round from a square object. But the study lasted just 4 weeks, in part because of the delicate interface with the body. © 2014 American Association for the Advancement of Science.

Keyword: Pain & Touch; Aggression
Link ID: 20187 - Posted: 10.09.2014