Chapter 16. None

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 2738

By Clare Wilson People who meditate are more aware of their unconscious brain activity – or so a new take on a classic “free will” experiment suggests. The results hint that the feeling of conscious control over our actions can vary – and provide more clues to understanding the complex nature of free will. The famous experiment that challenged our notions of free will was first done in 1983 by neuroscientist Benjamin Libet. It involved measuring electrical activity in someone’s brain while asking them to press a button, whenever they like, while they watch a special clock that allows them to note the time precisely. Typically people feel like they decide to press the button about 200 milliseconds before their finger moves – but the electrodes reveal activity in the part of their brain that controls movement occurs a further 350 milliseconds before they feel they make that decision. This suggests that in fact it is the unconscious brain that “decides” when to press the button. In the new study, a team at the University of Sussex in Brighton, UK, did a slimmed-down version of the experiment (omitting the brain electrodes), with 57 volunteers, 11 of whom regularly practised mindfulness mediation. The meditators had a longer gap in time between when they felt like they decided to move their finger and when it physically moved – 149 compared with 68 milliseconds for the other people. © Copyright Reed Business Information Ltd.

Keyword: Consciousness
Link ID: 22369 - Posted: 06.28.2016

Playing simple card games, such as snap, can help stroke patients with their recovery, say Canadian researchers. The scientists found it improved patients' motor skills. Playing Jenga, bingo or a games consol like Wii worked equally well. They told the Lancet Neurology that the type of task used for motor rehabilitation might be less relevant, as long as it is intensive, repetitive and gets the hands and arms moving. The researchers designed their study to test whether virtual reality gaming, which is increasingly being employed as a rehab therapy for stroke patients, is any better than more traditional games for honing upper limb motor skills. The Canadian team recruited 141 patients who had recently suffered a stroke, and now had some impaired movement in one or both of their hands and arms. Approximately half of the patients, at random, were then allocated to the Wii rehab, while the rest were asked to do other recreational activities, such as playing cards. All of the patients continued to receive usual stroke rehabilitation care and support on top of the 10, one-hour sessions of gaming or card playing for a fortnight. Both groups showed significant improvement in their motor skills at the end of the two weeks and four weeks later. Importantly, both groups fared equally well, say the researchers. While it's not clear from this study how much of the improvement was from the regular stroke care the participants received, other research suggests adding in more therapy is beneficial. Investigator Dr Gustavo Saposnik, from St Michael's Hospital in Toronto, said: "We all like technology and have the tendency to think that new technology is better than old-fashioned strategies, but sometimes that's not the case. In this study, we found that simple recreational activities that can be implemented anywhere may be as effective as technology." © 2016 BBC.

Keyword: Stroke
Link ID: 22367 - Posted: 06.28.2016

Emily Conover Sharks have a sixth sense that helps them locate prey in murky ocean waters. They rely on special pores on their heads and snouts, called ampullae of Lorenzini, that can sense electric fields generated when nearby prey move. The pores were first described in 1678, but scientists haven’t been sure how they work. Now, the answer is a bit closer. The pores, which connect to electrosensing cells, are filled with a mysterious clear jelly. This jelly is a highly efficient proton conductor, researchers report May 13 in Science Advances. In the jelly, positively charged particles move and transmit current. Marco Rolandi of the University of California, Santa Cruz and colleagues squeezed jelly from the pores of one kind of shark and two kinds of skate and tested how well protons could flow through the substance. Good proton conductors, including a protein found in squid skin, occur in nature. But the jelly is the best biological proton conductor discovered so far. In fact, even humankind’s best technology isn’t wildly better. The most efficient proton conductor devised by people — a polymer known as Nafion — is a mere 40 times better than the stuff sharks are born with. Citations E.E. Josberger et al. Proton conductivity in ampullae of Lorenzini jelly. Science Advances. Published online May 13, 2016. doi:10.1126/sciadv.1600112. Further Reading |© Society for Science & the Public 2000 - 2016.

Keyword: Pain & Touch
Link ID: 22366 - Posted: 06.28.2016

By MAIA SZALAVITZ I SHOT heroin and cocaine while attending Columbia in the 1980s, sometimes injecting many times a day and leaving scars that are still visible. I kept using, even after I was suspended from school, after I overdosed and even after I was arrested for dealing, despite knowing that this could reduce my chances of staying out of prison. My parents were devastated: They couldn’t understand what had happened to their “gifted” child who had always excelled academically. They kept hoping I would just somehow stop, even though every time I tried to quit, I relapsed within months. There are, speaking broadly, two schools of thought on addiction: The first was that my brain had been chemically “hijacked” by drugs, leaving me no control over a chronic, progressive disease. The second was simply that I was a selfish criminal, with little regard for others, as much of the public still seems to believe. (When it’s our own loved ones who become addicted, we tend to favor the first explanation; when it’s someone else’s, we favor the second.) We are long overdue for a new perspective — both because our understanding of the neuroscience underlying addiction has changed and because so many existing treatments simply don’t work. Addiction is indeed a brain problem, but it’s not a degenerative pathology like Alzheimer’s disease or cancer, nor is it evidence of a criminal mind. Instead, it’s a learning disorder, a difference in the wiring of the brain that affects the way we process information about motivation, reward and punishment. And, as with many learning disorders, addictive behavior is shaped by genetic and environmental influences over the course of development. Scientists have documented the connection between learning processes and addiction for decades. Now, through both animal research and imaging studies, neuroscientists are starting to recognize which brain regions are involved in addiction and how. © 2016 The New York Times Company

Keyword: Drug Abuse
Link ID: 22365 - Posted: 06.27.2016

By Sara Chodosh Although scientists have learned a lot about the brain in the last few decades, approaches to treating mental illnesses have not kept up. As neuroscientists learn more about brain circuits, Stanford psychiatrist Amit Etkin foresees a time when diagnoses will be based on brain scans rather than symptoms. Etkin, who will be speaking at the World Economic Forum’s Annual Meeting of the New Champions in Tianjin, China, from June 26 to 28, spoke with Scientific American about his research on the neurological basis of emotional disorders and the future of mental health treatment. The high cost of treating mental illness doesn’t get talked about very much. Why is that? It’s a really interesting issue. The costs associated with mental illness are not just the care of people who have an illness, which often starts early in life and continues as a lifelong process, but also the cost to employers in decreased productivity and the cost to society in general. A report that came out recently in Health Affairs showed that spending within our health system in the U.S. is greater for mental illness than for any other area of medicine, and yet our understanding of these illnesses is incredibly backwards. Treatments are no different than they were 40 years ago, so that feels like a problem that is only getting bigger without an obvious solution. Why hasn’t there been much progress? It was really not until about 10 years ago that [mental health professionals] started realizing how little difference we have made. There are a few fundamental issues and mistakes we’ve made. One is that in the absence of knowing what the causes of the illnesses that we treat are, we focus on the symptoms, and that has already led us down the wrong path. If you go to another country and you ask somebody to tell you their symptoms, as a clinician you might have the sense that they have anxiety or depression. In Asian countries they express that in a somatic way: “I can’t sleep” or “I feel weak.” The biology cannot be that different, but the symptoms are different because they’re culturally bound. If you look at different parts of the U.S. you’ll see people expressing symptoms in different ways depending on their local culture. If that’s the case, then a symptom-based definition is problematic. The long and short of it is that people have named syndromes or disorders that they don’t actually know represent a valid entity that is distinct from another entity. © 2016 Scientific American

Keyword: Depression; Schizophrenia
Link ID: 22364 - Posted: 06.27.2016

By VANESSA FRIEDMAN IT’S been another big month for talking about women’s bodies. Just as the White House hosted the first United States of Women summit meeting, which culminated in Oprah Winfrey’s noting, in conversation with Michelle Obama, “We live in a world where you are constantly being bombarded by images,” across the ocean the new mayor of London was announcing a policy that would ban ads on public transport that might cause women to feel pressured “into unrealistic expectations surrounding their bodies.” Mayor Sadiq Khan’s policy sounds, on the surface, like a big step forward. Down with fat-shaming! But it is, rather, an old idea, and one that reinforces stereotypes instead of grappling with the real issue: How do we change the paradigm altogether? The immediate impetus for the ban, which will be carried out by the London transit authority via a steering committee that will rule on ads case by case, was a 2015 diet pill ad depicting a very tan, very curvy woman (the kind who is a staple of lad mags) in a bright yellow bikini alongside the words, “Are you beach body ready?” The implication was that if you had not achieved the unrealistic proportions of a Barbie, you were not. The public protested (a petition on change.org received more than 70,000 signatures), and Mr. Khan made it part of his election campaign. The regulation follows decisions by the Advertising Standards Authority of Britain to ban certain ads, such as a Gucci shot that depicted what was deemed an “unhealthily thin” young woman. Though often conflated with the movement to protect models, which resulted in legislation in France in 2015 requiring models to produce a doctor’s note attesting to their health, and digital alteration of photographs to be disclosed, banning is a separate issue. It doesn’t involve working conditions (which can and should be legislated), but subjective, and ultimately regressive, assumptions about what constitutes a positive female image. While I have no doubt that Mr. Khan had the best intentions (he made a reference to his desire to protect his daughters), and there is no question that studies have shown that depictions of thin women in idealized or overly airbrushed photographs can be an important factor in eating disorders and other types of body dysmorphia, I do not believe banning is the answer. And I say that as someone with two daughters (and a son) who is acutely aware of the distortions of the fashion world and their dangers. © 2016 The New York Times Company

Keyword: Anorexia & Bulimia
Link ID: 22363 - Posted: 06.27.2016

By MOSHE BAR A FRIEND of mine has a bad habit of narrating his experiences as they are taking place. I tease him for being a bystander in his own life. To be fair, we all fail to experience life to the fullest. Typically, our minds are too occupied with thoughts to allow complete immersion even in what is right in front of us. Sometimes, this is O.K. I am happy not to remember passing a long stretch of my daily commute because my mind has wandered and my morning drive can be done on autopilot. But I do not want to disappear from too much of life. Too often we eat meals without tasting them, look at something beautiful without seeing it. An entire exchange with my daughter (please forgive me) can take place without my being there at all. Recently, I discovered how much we overlook, not just about the world, but also about the full potential of our inner life, when our mind is cluttered. In a study published in this month’s Psychological Science, the graduate student Shira Baror and I demonstrate that the capacity for original and creative thinking is markedly stymied by stray thoughts, obsessive ruminations and other forms of “mental load.” Many psychologists assume that the mind, left to its own devices, is inclined to follow a well-worn path of familiar associations. But our findings suggest that innovative thinking, not routine ideation, is our default cognitive mode when our minds are clear. In a series of experiments, we gave participants a free-association task while simultaneously taxing their mental capacity to different degrees. In one experiment, for example, we asked half the participants to keep in mind a string of seven digits, and the other half to remember just two digits. While the participants maintained these strings in working memory, they were given a word (e.g., shoe) and asked to respond as quickly as possible with the first word that came to mind (e.g., sock). © 2016 The New York Times Company

Keyword: Attention
Link ID: 22360 - Posted: 06.25.2016

Annie Murphy Paul Twelve years ago, I tried to drive a stake into the heart of the personality-testing industry. Personality tests are neither valid nor reliable, I argued, and we should stop using them — especially for making decisions that affect the course of people's lives, like workplace hiring and promotion. But if I thought that my book, The Cult of Personality Testing, would lead to change in the world, I was keenly mistaken. Personality tests appear to be more popular than ever. I say "appear" because — today as when I wrote the book — verifiable numbers on the use of such tests are hard to come by. Personality testing is an industry the way astrology or dream analysis is an industry: slippery, often underground, hard to monitor or measure. There are the personality tests administered to job applicants "to determine if you're a good fit for the company;" there are the personality tests imposed on people who are already employed, "in order to facilitate teamwork;" there are the personality tests we take voluntarily, in career counseling offices and on self-improvement retreats and in the back pages of magazines (or, increasingly, online.) I know these tests are popular because after the book was published, most of the people I heard from were personality-test enthusiasts, eager to rebut my critique of the tests that had, they said, changed their lives. © 2016 npr

Keyword: Emotions
Link ID: 22359 - Posted: 06.25.2016

By Patrick Monahan The soft, blinking lights of fireflies aren’t just beautiful—they may also play a role in creating new species. A new study shows that using light-up powers for courtship makes species split off from each other at a faster pace, providing some of the clearest evidence yet that the struggle to find mates shapes the diversity of life. The firefly’s glow, like the enormous claws of fiddler crabs and the elaborate dances of manakins, was sculpted by the struggle for sex. Scientists have long thought that this kind of mating-driven natural selection—called “sexual selection”—could make species split into two. Say females in two populations prefer different color patterns in males: Even if the populations have the same needs in every other way, that simple preference could make them split into species with males of separate colors. “A lot of closely related species differ in sexual traits,” says Emily Ellis, an evolutionary biologist at the University of California (UC), Santa Barbara. But actually linking this kind of evolution to species proliferation is a hard idea to test. “So many people have looked at this and found differing results,” she says—possibly because they looked at smaller groups, like birds, rather than across the whole tree of life. That’s where bioluminescence comes in. Many groups of living organisms, from insects to fish to octopuses, emit light, whether to ward off predators, dazzle prey, or attract mates. It’s a trait that has evolved more than 40 times across the animal kingdom, Ellis says. © 2016 American Association for the Advancement of Science.

Keyword: Sexual Behavior; Evolution
Link ID: 22358 - Posted: 06.25.2016

By Eric Hand That many animals sense and respond to Earth’s magnetic field is no longer in doubt, and people, too, may have a magnetic sense. But how this sixth sense might work remains a mystery. Some researchers say it relies on an iron mineral, magnetite; others invoke a protein in the retina called cryptochrome. Magnetite has turned up in bird beaks and fish noses and even in the human brain, as Joe Kirschvink of the California Institute for Technology in Pasadena reported in 1992, and it is extremely sensitive to magnetic fields. As a result, Kirschvink and other fans say, it can tell an animal not only which way it is heading (compass sense) but also where it is. “A compass cannot explain how a sea turtle can migrate all the way around the ocean and return to the same specific stretch of beach where it started out,” says neurobiologist Kenneth Lohmann of the University of North Carolina, Chapel Hill. A compass sense is enough for an animal to figure out latitude, based on changes in the inclination of magnetic field lines (flat at the equator, plunging into the earth at the poles). But longitude requires detecting subtle variations in field strength from place to place—an extra map or signpost sense that magnetite could supply, Lohmann says. Except in bacteria, however, no one has seen magnetite crystals serving as a magnetic sensor. The crystals could be something else—say, waste products of iron metabolism, or a way for the body to sequester carcinogenic heavy metals. In the early 2000s, scientists found magnetite-bearing cells in the beaks of pigeons. But a follow-up study found that the supposed magnetoreceptors were in fact scavenger immune cells that had nothing to do with the neural system. And because there is no unique stain or marker for magnetite, false sightings are easy to make. © 2016 American Association for the Advancement of Science

Keyword: Pain & Touch
Link ID: 22357 - Posted: 06.24.2016

By Eric Hand Birds do it. Bees do it. But the human subject, standing here in a hoodie—can he do it? Joe Kirschvink is determined to find out. For decades, he has shown how critters across the animal kingdom navigate using magnetoreception, or a sense of Earth’s magnetic field. Now, the geophysicist at the California Institute of Technology (Caltech) in Pasadena is testing humans to see if they too have this subconscious sixth sense. Kirschvink is pretty sure they do. But he has to prove it. He takes out his iPhone and waves it over Keisuke Matsuda, a neuroengineering graduate student from the University of Tokyo. On this day in October, he is Kirschvink’s guinea pig. A magnetometer app on the phone would detect magnetic dust on Matsuda—or any hidden magnets that might foil the experiment. “I want to make sure we don’t have a cheater,” Kirschvink jokes. They are two floors underground at Caltech, in a clean room with magnetically shielded walls. In a corner, a liquid helium pump throbs and hisses, cooling a superconducting instrument that Kirschvink has used to measure tiny magnetic fields in everything from bird beaks to martian meteorites. On a lab bench lie knives—made of ceramic and soaked in acid to eliminate magnetic contamination—with which he has sliced up human brains in search of magnetic particles. Matsuda looks a little nervous, but he will not be going under the knife. With a syringe, a technician injects electrolyte gel onto Matsuda’s scalp through a skullcap studded with electrodes. He is about to be exposed to custom magnetic fields generated by an array of electrical coils, while an electroencephalogram (EEG) machine records his brain waves. © 2016 American Association for the Advancement of Science.

Keyword: Pain & Touch
Link ID: 22356 - Posted: 06.24.2016

By Elahe Izadi It's referred to as the "brain-eating amoeba." Naegleria fowleri resides in warm freshwater, hot springs and poorly maintained swimming pools. When the single-celled organism enters a person's body through the nose, it can cause a deadly infection that leads to destruction of brain tissue. These infections are extremely rare; 138 people have been infected since 1962, according to the Centers for Disease Control and Prevention. But over the weekend, the amoeba claimed another victim when an 18-year-old died from a meningitis infection caused by N. fowleri, said health officials in North Carolina. Lauren Seitz of Westerville, Ohio, died from a suspected case of primary amebic meningoencephalitis (PAM), and officials are investigating whether she contracted the infection while whitewater rafting in Charlotte during a church trip, the Charlotte Observer reported. The N. fowleri infection "resulted in her developing a case of meningitis ... and inflaming of the brain and surrounding tissues, and unfortunately she died of this condition," Mecklenburg County Health Department director Marcus Plescia told reporters Wednesday. Plescia said that, while they were still gathering information from health officials in Ohio, they do know one of the stops Seitz's group made was to the U.S. National Whitewater Center.

Keyword: Miscellaneous
Link ID: 22355 - Posted: 06.24.2016

By REUTERS SINGAPORE — Phones or watches may be smart enough to detect sound, light, motion, touch, direction, acceleration and even the weather, but they can't smell. That's created a technology bottleneck that companies have spent more than a decade trying to fill. Most have failed. A powerful portable electronic nose, says Redg Snodgrass, a venture capitalist funding hardware start-ups, would open up new horizons for health, food, personal hygiene and even security. Imagine, he says, being able to analyze what someone has eaten or drunk based on the chemicals they emit; detect disease early via an app; or smell the fear in a potential terrorist. "Smell," he says, "is an important piece" of the puzzle. It's not through lack of trying. Aborted projects and failed companies litter the aroma-sensing landscape. But that's not stopping newcomers from trying. Like Tristan Rousselle's Grenoble-based Aryballe Technologies, which recently showed off a prototype of NeOse, a hand-held device he says will initially detect up to 50 common odors. "It's a risky project. There are simpler things to do in life," he says candidly. The problem, says David Edwards, a chemical engineer at Harvard University, is that unlike light and sound, scent is not energy, but mass. "It's a very different kind of signal," he says. That means each smell requires a different kind of sensor, making devices bulky and limited in what they can do. The aroma of coffee, for example, consists of more than 600 components. France's Alpha MOS was first to build electronic noses for limited industrial use, but its foray into developing a smaller model that would do more has run aground. Within a year of unveiling a prototype for a device that would allow smartphones to detect and analyze smells, the website of its U.S.-based arm Boyd Sense has gone dark. Neither company responded to emails requesting comment. © 2016 The New York Times Company

Keyword: Chemical Senses (Smell & Taste)
Link ID: 22354 - Posted: 06.24.2016

By BARRY MEIER and ABBY GOODNOUGH A few months ago, Douglas Scott, a property manager in Jacksonville, Fla., was taking large doses of narcotic drugs, or opioids, to deal with the pain of back and spine injuries from two recent car accidents. The pills helped ease his pain, but they also caused him to withdraw from his wife, his two children and social life. “Finally, my wife said, ‘You do something about this or we’re going to have to make some changes around here,’” said Mr. Scott, 43. Today, Mr. Scott is no longer taking narcotics and feels better. Shortly after his wife’s ultimatum, he entered a local clinic where patients are weaned off opioids and spend up to five weeks going through six hours of training each day in alternative pain management techniques such as physical therapy, relaxation exercises and behavior modification. Mr. Scott’s story highlights one patient’s success. Yet it also underscores the difficulties that the Obama administration and public health officials face in reducing the widespread use of painkillers like OxyContin and Percocet. The use and abuse of the drugs has led to a national epidemic of overdose deaths, addiction and poor patient outcomes. In recent months, federal agencies and state health officials have urged doctors to first treat pain without using opioids, and some have announced plans to restrict how many pain pills a doctor can prescribe. But getting the millions of people with chronic pain to turn to alternative treatments is a daunting task, one that must overcome inconsistent insurance coverage as well as some resistance from patients and their doctors, who know the ease and effectiveness of pain medications. “We are all culpable,” said Dr. David Deitz, a former insurance industry executive and a consultant on pain treatment issues. “I don’t care whether you are a doctor, an insurer or a patient.” © 2016 The New York Times Compan

Keyword: Pain & Touch
Link ID: 22352 - Posted: 06.23.2016

By Nancy Stearns Bercaw In her memoir “Aliceheimer’s: Alzheimer’s Through the Looking Glass,” Dana Walrath uses drawings and stories to chronicle three years of caregiving for her mother, Alice, who was in the middle stages of Alzheimer’s disease. The experience turned out to be a magical trip down the rabbit hole of memory loss, an outcome that inspired Dr. Walrath, a medical anthropologist who taught at the University of Vermont College of Medicine and who also studied art and writing, to share their tale. Refusing to accept the dominant narrative of Alzheimer’s disease as a horror story, Dr. Walrath used the techniques of graphic medicine to create “Aliceheimer’s,” an 80-page, 35-picture tribute to her mother’s animated mind. Graphic medicine uses text and graphics to, as she writes in the book’s introduction, “let us better understand those who are hurting, feel their stories, and redraw and renegotiate those social boundaries.” We spoke with Dr. Walrath to learn more about graphic medicine, how the book came into being, and what it can teach others about caring for someone with Alzheimer’s disease. Here’s an edited excerpt of our conversation. Q. You say that “Aliceheimer’s” found you, not the other way around. What’s the backstory of your story? A. After a lifetime of mutually abrasive interaction, my mother moved into my home when a lock-down memory-care unit was her only other option. The years of living together not only brought us closure, but it also integrated my disparate career threads. Medical anthropology, creative writing, visual art — who knew they were connected? I sure didn’t. But Alice must have. During dementia, she said to me, “You should quit your job and make art full time.” © 2016 The New York Times Company

Keyword: Alzheimers
Link ID: 22350 - Posted: 06.23.2016

Alison Abbott It isn’t a scam, as neuroscientist Elena Cattaneo had first assumed. A total stranger really has left the prominent Italian, who is also a senator and a relentless campaigner against the misuse of science, his entire fortune to distribute for research. The sum is likely to be upwards of €1.5 million (US$1.7 million). The short, handwritten will of Franco Fiorini, an accountant from the small town of Molinella near Bologna, was officially made public on 21 June. “I’ll never know for sure why he decided to do this,” says Cattaneo, who adds that she has wept with regret that she cannot thank Fiorini. “But it gives a hopeful message that there are some people like Franco who are able to work out on their own the importance of science and research for Italy’s future.” She intends to make the money available for fellowships for young scientists in Italy, where funds for research are notoriously scarce. Cattaneo, who is based at the University of Milan, is no ordinary researcher. In 2013, then-president Giorgio Napolitano appointed her a senator-for-life in recognition of her activities in promoting science. One of her most famous achievements, made with a handful of colleagues, was a successful two-year battle to stop the Stamina Foundation in Brescia from administering unproven stem-cell therapies. Fiorini died on 21 May at the age of 64. A wheelchair user since a bout of childhood polio left him partially paralysed, he had been director of a construction company in Molinella before taking early retirement 15 years ago. © 2016 Macmillan Publishers Limited,

Keyword: Stem Cells
Link ID: 22349 - Posted: 06.23.2016

Bentley Yoder was born with his brain outside his skull. Doctors said he didn’t have a chance, but he not only survived—he thrived. Now, some seven months later, Bentley has undergone reconstructive surgery to move his brain back into his skull. Bentley’s parents, Sierra and Dustin, both 25, found out something was wrong when they went in for a routine ultrasound at 22 weeks. Still in the womb, he was diagnosed with a rare condition called encephalocele, or cranium bifidum, in which parts of the brain protrude outside of gaps that have formed in the developing skull. The parents were told that their baby likely wouldn’t survive very long after birth, or that if he did he wouldn’t have any brain function; he was simply “incompatible with life.” As Sierra told the Washington Post, “We had no hope whatsoever.” The parents were unwilling to terminate the pregnancy, saying they wanted at least one chance to meet him before saying goodbye. To virtually everyone’s surprise, Bentley came out on his due date, October 31, 2015, kicking and screaming. After the first 36 hours, Sierra and Dustin had to take him home wearing the only onesie they bothered to purchase. Over the course of the next few weeks and months, Bentley continued to march on, save for a staph infection in his lungs. Aside from the large sac containing critical parts of his brain atop his head, Bentley developed normally. He continued to grow, and cried when he was hungry. The doctors were incredulous, and insisted that the growth above his head was just “damaged tissue,” and that “there’s no way it could be functioning,” but Bentley’s behaviors and normal developmental trajectory suggested otherwise.

Keyword: Development of the Brain
Link ID: 22347 - Posted: 06.22.2016

By Vinicius Donisete Goulart The “new world” monkeys of South and Central America range from large muriquis to tiny pygmy marmosets. Some are cute and furry, others bald and bright red, and one even has an extraordinary moustache. Yet, with the exception of owl and howler monkeys, the 130 or so remaining species have one thing in common: A good chunk of the females, and all of the males, are colorblind. This is quite different from “old world” primates, including us Homo sapiens, who are routinely able to see the world in what we humans imagine as full color. In evolutionary terms, colorblindness sounds like a disadvantage, one which should really have been eliminated by natural selection long ago. So how can we explain a continent of the colorblind monkeys? I have long wondered what makes primates in the region colorblind and visually diverse, and how evolutionary forces are acting to maintain this variation. We don’t yet know exactly what kept these seemingly disadvantaged monkeys alive and flourishing—but what is becoming clear is that colorblindness is an adaptation not a defect. The first thing to understand is that what we humans consider “color” is only a small portion of the spectrum. Our “trichromatic” vision is superior to most mammals, who typically share the “dichromatic” vision of new world monkeys and colorblind humans, yet fish, amphibians, reptiles, birds, and even insects are able to see a wider range, even into the UV spectrum. There is a whole world of color out there that humans and our primate cousins are unaware of. What is becoming clear is that color blindness is an adaptation not a defect.

Keyword: Vision; Evolution
Link ID: 22345 - Posted: 06.22.2016

By DONALD G. McNEIL Jr. Global health authorities are trying to get more countries to mandate the use of the “world’s ugliest color” on cigarette packaging to discourage smoking. In 2012, GfK Bluemoon, a market research company under contract to the Australian government, announced that nearly 1,000 smokers had voted that a drab greenish brown known as opaque couché, number 448c in the Pantone color matching system, was the world’s most repulsive color. It was described as looking like death, filth, lung tar or baby excrement. Color aficionados later noted that it was also similar to the hue of the dress worn by the Mona Lisa. Photo Cigarettes on sale in Sydney, New South Wales. Credit Ryan Pierse/Getty Images Australia then mandated “plain packaging” for cigarettes that was actually anything but plain. The opaque couché-colored boxes have vivid pictures of rotted teeth, tongues with tumors and dangerously tiny newborns, along with warnings about smoking’s dangers printed in type larger than the brand names. Australia has been very successful in getting smokers to quit, so health officials in Britain, France and Ireland have announced plans to imitate the packaging. Last month, the European Court of Justice rebuffed legal challenges, by tobacco companies, to the use of shocking images, and India’s Supreme Court ruled in favor of letting them cover 85 percent of packs. A recent study in JAMA Internal Medicine found that these pictures prompt more smokers to at least try to quit, but the American tobacco industry has blocked all attempts to put them on cigarette packs sold in the United States. © 2016 The New York Times Company

Keyword: Drug Abuse
Link ID: 22344 - Posted: 06.22.2016

James Gorman There’s an aura of power around invasive species. How is it that they can sweep in and take over from the locals? Are they more adaptable, tougher? What are their secrets? The great-tailed grackle is a case in point. North America has its own similar species — the common and boat-tailed grackle. But the great-tailed bird, Quiscalus mexicanus, native to Central America, is one of the most invasive species in the United States. The black birds with iridescent feathers were prized by the Aztec emperor Auitzotl, who, by some accounts, relocated some of them from Veracruz to near Mexico City about 500 years ago. Over the past century or so the bird has spread north and its range is still expanding, particularly in the West, where it haunts cattle feed lots and big dairy farms. The birds are also quite happy in urban areas, like Santa Barbara, Calif., where Corina J. Logan captured and later released some grackle for recent experiments. Great-tailed grackles first caught the attention of Dr. Logan, now at Cambridge University, in 2004 when she was doing undergraduate research in Costa Rica. “They’ll actually walk right up and look you in the eye,” she said. “They look like they’re so smart.” Years later, having earned her Ph.D. at Cambridge, she decided to look more closely at them because she was interested in behavioral flexibility. Grackles, for example, might look under rocks at the beach for something to eat, or switch to discarded sandwich wrappers in a city park. © 2016 The New York Times Company

Keyword: Intelligence; Evolution
Link ID: 22343 - Posted: 06.21.2016