Chapter 16. None

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.

Links 1 - 20 of 2262

By ANDREW POLLACK What could become the first gene therapy to win approval in the United States moved closer to market on Monday, when its developer announced that the medicine had succeeded in a late-stage clinical trial in treating an inherited eye disease that can cause blindness. The developer, Spark Therapeutics, said the treatment had allowed people with certain so-called inherited retinal dystrophies to more easily maneuver in dimmer light than they could before. The company said it planned to apply to the Food and Drug Administration next year for approval to sell the product. “We saw substantial restoration of vision in patients who were progressing toward complete blindness,” Dr. Albert M. Maguire, a professor of ophthalmology at the University of Pennsylvania and a lead researcher in the study, said in a news release being issued by Spark. Dr. Katherine High, Spark’s president and chief scientific officer, said this was the first successful randomized, controlled trial for any gene therapy aimed at an inherited disease. “I’ve been working in gene therapy for most of my career,” she said. “It’s been a long time coming, and I’m delighted.” Besides encouraging the once beleaguered field of gene therapy, the results — if interpreted positively by investors — could help lift biotechnology stocks, which have been battered recently by concerns over a backlash against high drug prices. Still, much remains unknown. Spark did not provide the actual trial data, saying only that the treatment achieved the main goal of the study as well as two out of three of its secondary goals. It is also unclear what the F.D.A. will deem sufficient for approval of the product. Spark’s stock had slumped in the last two months as it changed how it would measure the results of the trial. © 2015 The New York Times Company

Keyword: Vision
Link ID: 21475 - Posted: 10.05.2015

Gareth Cook talks to Douwe Draaisma Much has been written on the wonders of human memory: its astounding feats of recall, the way memories shape our identities and are shaped by them, memory as a literary theme and a historical one. But what of forgetting? This is the topic of a new book by Douwe Draaisma, author of The Nostalgia Factory: Memory, Time and Ageing (Yale University Press, 2013; 176 pages) and a professor of the history of psychology at the University of Groningen in the Netherlands. In Forgetting: Myths, Perils and Compensations (Yale University Press, 2015; 288 pages), Draaisma considers dreaming, amnesia, dementia and all the ways in which our minds—and lives—are shaped by memory’s opposite. He answered questions from contributing editor Gareth Cook. What is your earliest memory, and why, do you suppose, have you not forgotten it? Quite a few early memories in the Netherlands involve bicycles; mine is no exception. I was two and a half years old when my aunts walked my mother to the train station. They had taken a bike to transport her bags. I was sitting on the back of the bike. Suddenly the whole procession came to a halt when my foot got caught between the spokes of a wheel. I am pretty sure this memory is accurate because I had to see a doctor, and there is a dated medical record. It is a brief, snapshotlike memory, black-and-white. I do not remember any pain, but I do remember the consternation among my mom and her sisters. Looking back on this memory from a professional perspective, I would say that it has the flashlike character typical for first memories from before age three; “later” first memories are usually a bit longer and more elaborate. © 2015 Scientific American

Keyword: Learning & Memory
Link ID: 21474 - Posted: 10.05.2015

Carl Zimmer In recent years, a peculiar sort of public performance has taken place periodically on the sidewalks of Seattle. It begins with a woman named Kaeli N. Swift sprinkling peanuts and cheese puffs on the ground. Crows swoop in to feed on the snacks. While Ms. Swift observes the birds from a distance, notebook in hand, another person walks up to the birds, wearing a latex mask and a sign that reads “UW CROW STUDY.” In the accomplice’s hands is a taxidermied crow, presented like a tray of hors d’oeuvres. This performance is not surreal street theater, but an experiment designed to explore a deep biological question: What do crows understand about death? Ms. Swift has been running this experiment as part of her doctoral research at the University of Washington, under the guidance of John M. Marzluff, a biologist. Dr. Marzluff and other experts on crow behavior have long been intrigued by the way the birds seem to congregate noisily around dead comrades. Dr. Marzluff has witnessed these gatherings many times himself, and has heard similar stories from other people. “Whenever I give a talk about crows, there’s always someone who says, ‘Well, what about this?’ ” he said. Dr. Marzluff and Ms. Swift decided to bring some scientific rigor to these stories. They wanted to determine whether a dead crow really does trigger a distinctive response from living crows and, if so, what the purpose of the large, noisy gatherings might be. To run the experiment, Ms. Swift began by delivering food to a particular spot each day, so that the crows learned to congregate there to eat. Then one of her volunteers would approach the feast with a dead crow, and Ms. Swift observed how the birds reacted. © 2015 The New York Times Company

Keyword: Intelligence; Evolution
Link ID: 21473 - Posted: 10.03.2015

By Margaret M. McCarthy “We have raised our children in a gender-neutral household since the day they were born, and we never allowed any sort of weapons, not even a water pistol,” a young mother told me emphatically from the microphone in the lecture hall where I’d just given a talk on the differences between male and female brains. “But the other day my seven-year-old son bit his peanut butter and jelly sandwich into the shape of a gun and started shooting his little sister with it!” The audience laughed appreciatively; everyone had a similar story. “What did we do wrong?” she pleaded. This story is a common refrain I hear when discussing my research on sex differences in the brain. There is no single correct answer when it comes to human behavior. Some researchers would insist that there is nothing parents can do to suppress the innate tendencies of boys to gravitate to guns and trucks while girls prefer dolls and tea sets. Others would disagree, arguing that there is no inherent biological difference between the brains of boys and girls. Rather, it is the parents’ own implicit biases and those of society at large that influence their children to behave in gender-typical ways. In the end, my response is that sex differences in the brain are more than some would like and less than others believe. Just how large those differences are, however, is the crux of an ongoing debate in science. And how much a brain’s function can be attributed to biology versus cultural expectations is a challenging question to answer. Confounding the issue is the concept of gender, a purely human construct that can itself influence brain development. Gender refers to both personal and societal perceptions of one’s sex, and embodies all the complexities of cultural expectations, inherent biases, and predetermined norms of behavior, each of which differs for boys and girls and can affect the young brain. © 1986-2015 The Scientist

Keyword: Sexual Behavior
Link ID: 21472 - Posted: 10.03.2015

By Emily Underwood WASHINGTON, D.C.—As part of President Barack Obama’s high-profile initiative to study the brain, the Kavli Foundation and several university partners today announced $100 million in new funding for neuroscience research, including three new institutes at universities in Maryland, New York, and California. Each of the institutes will receive a $20 million endowment, provided equally by their universities and the foundation, along with start-up funding to pursue projects in areas such as brain plasticity and tool development. The new funding, geared at providing stable support for high-risk, interdisciplinary research, exceeds the original commitment of $40 million that the Kavli Foundation made to the national Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative, when it was first launched by President Obama in 2013. The funds are also unrestricted, allowing each institute to determine which projects to pursue. “That’s the most precious money any scientist can have,” Robert Conn, president and CEO of The Kavli Foundation, noted at a meeting today on Capitol Hill. Neuroscientist Loren Frank, who will serve as co-director at the new institute at the University of California, San Francisco, says the funds will allow his lab to explore fundamental questions such as how the brain can maintain its function despite constant change, and to form interdisciplinary partnerships with labs such as the Lawrence Livermore National Laboratory. The other two sites creating new institutes are Johns Hopkins University in Baltimore, Maryland, and Rockefeller University in New York City. In addition, Kavli announced a $40 million boost for four of its existing neuroscience institutes, located at Yale University, UC San Diego, Columbia University, and the Norwegian University of Science and Technology. © 2015 American Association for the Advancement of Science.

Keyword: Brain imaging
Link ID: 21471 - Posted: 10.03.2015

By Steve Mirsky Harvard neuroscientist Beth Stevens, talking about glia cells, which make up more than half the human brain. This week Stevens got a MacArthur Fellowship, the so-called genius grant, for her studies of glia. “These cells are incredibly responsive to damage or injury. They can protect our brain by, for example, clearing bacteria or debris in the brain in the case of injury and disease… “Until about 10 years ago, almost all of the research devoted to these cells was in these contexts. We discovered that there was another role for these cells in the normal healthy brain, in particular during development… “So a synapse is the junction of communication between two neurons, it’s how neurons talk to each other…we’re actually born with an excess of synaptic connections…and through this normal developmental process called pruning, a large number of these extra synapses get permanently removed or eliminated while others get strengthened and maintained. These microglial cells were in fact engulfing or eating these extra synapses. So these cells are necessary to do this and now of course we’re trying to better understand how it is that they know which synapse to prune and which synapse to leave alone. “A hallmark of many neurodegenerative diseases, including Alzheimer’s disease, is the early loss of synaptic connections or synapses…And what’s most striking about this is, it’s thought that the synapse loss happens years before you see signs of cognitive impairment or pathology. © 2015 Scientific American

Keyword: Development of the Brain; Glia
Link ID: 21470 - Posted: 10.03.2015

By Lisa Sanders, M.d. On Thursday we challenged Well readers to solve the case of a 27-year-old woman who had vomiting, weakness and confusion months after having weight loss surgery. More than 200 readers offered their perspective on the case. Most of you recognized it as a nutritional deficiency, and nearly half of you totally nailed it. The diagnosis is: Wernicke’s encephalopathy due to thiamine (vitamin B1) deficiency. The very first reader to post a comment, Dr. Adrian Budhram, figured it out. His answer landed on our doorstep just five minutes after the case went up. Dr. Budhram is a second year neurology resident at Western University in London, Ontario. He says that Wernicke’s is on the list of diseases he thinks about every time someone is brought to the hospital because they are confused. Thiamine, or vitamin B1, is a nutrient essential for the body to break down and use sugars and proteins. It is found in many foods, including beans, brown rice, pork and cereals. Although the body only stores enough of the vitamin to last three to four weeks, deficiencies are rare when a full and varied diet is available. Diseases caused by a thiamine deficiency were described in Chinese medicine as early as 2600 B.C. – well before the vitamin was identified chemically. Western medicine came to know the disease as beriberi – a Sinhalese term meaning weak (apparently from the phrase “I can’t, I can’t”) characterized by either numbness and weakness in the legs (dry beriberi) or a weakened heart leading to hugely swollen legs (wet beriberi). © 2015 The New York Times Company

Keyword: Learning & Memory
Link ID: 21469 - Posted: 10.03.2015

Joe Palca Mothers have been warned for years that sleeping with their newborn infant is a bad idea because it increases the risk the baby might die unexpectedly during the night. But now Israeli researchers are reporting that even sleeping in the same room can have negative consequences: not for the child, but for the mother. Researchers at Ben-Gurion University of the Negev wanted to see whether sleeping in the same room as their newborn affected mothers' or babies' sleep. The short answer: It did, and the effect wasn't good for moms. The researchers recruited 153 married couples expecting their first child to participate in the study. The new parents weren't told where or how to sleep. They were simply asked to record whether they slept in the same room as their newborn, the same bed and same room, or if the child slept in another room. To measure sleep patterns, both mom and baby wore wristbands designed to measure movement during the night, a measurement that gives a pretty accurate indication of sleep patterns for both mother and child. The researchers measured sleep patterns before the babies were born, at 3 months and at 6 months. Mothers who slept in the same room as their infants, whether in the same bed or just the same room, had poorer sleep than mothers whose babies slept elsewhere in the house: They woke up more frequently (approximately three times per night versus two), were awake approximately 20 minutes longer per night, and had shorter periods of uninterrupted sleep (approximately 136 minutes versus 166 minutes). These results held true even taking into account that many of the women in the study were breast-feeding their babies. © 2015 NPR

Keyword: Sleep
Link ID: 21468 - Posted: 10.03.2015

By Jon Cohen A virus that long ago spliced itself into the human genome may play a role in amyotrophic lateral sclerosis (ALS), the deadly muscle degenerative disease that crippled baseball great Lou Gehrig and ultimately took his life. That’s the controversial conclusion of a new study, which finds elevated levels of human endogenous retrovirus K (HERV-K) in the brains of 11 people who died from the disease. “This certainly is interesting and provocative work,” says Raymond Roos, a neurologist at the University of Chicago in Illinois who treats and studies ALS but who was not involved with the finding. Still, even the scientists behind the work caution that more research is needed to confirm the link. “I’m very careful to say HERV-K doesn’t cause the disease but may play a role in the pathophysiology,” says study leader Avindra Nath, a neuroimmunologist at the National Institute of Neurological Disorders and Stroke in Bethesda, Maryland. “The darn thing is in the chromosomes to begin with. It’s going to be very hard to prove causation.” It was another retrovirus, HIV, that led Nath to first suspect a connection between viruses and ALS. In 2006, he was helping a patient control his HIV infection with antiretroviral drugs when he noticed that the man’s ALS also improved. “That intrigued me, and I looked in the ALS literature and saw that people had reported they could see reverse transcriptase in the blood.” Reverse transcriptase, an enzyme that converts RNA to DNA, is a hallmark of retroviruses, which use it to insert copies of their genes into chromosomes of their hosts. © 2015 American Association for the Advancement of Science

Keyword: ALS-Lou Gehrig's Disease ; Evolution
Link ID: 21466 - Posted: 10.01.2015

By BENEDICT CAREY Medical literature has overstated the benefits of talk therapy for depression, in part because studies with poor results have rarely made it into journals, researchers reported Wednesday. Their analysis is the first effort to account for unpublished tests of such therapies. Treatments like cognitive behavior therapy and interpersonal therapy are indeed effective, the analysis found, but about 25 percent less so than previously thought. Doctors have long known that journal articles exaggerate the benefits of antidepressant drugs by about the same amount, and partly for the same reason — a publication bias in favor of encouraging findings. The new review, in the journal PLOS One, should give doctors and patients a better sense of what to expect from various forms of talk therapy, experts said, if not settle long-running debates in psychiatry about the relative merits of one treatment over another. Five million to six million Americans receive psychotherapy for depression each year, and many of them also take antidepressant drugs, surveys find. Most people find some relief by simply consulting a doctor regularly about the problem, experts said. Engaging in a course of well-tested psychotherapy, according to the new analysis, gives them an added 20 percent chance of achieving an even more satisfying improvement, or lasting recovery. Before accounting for the unpublished research, that figure was closer to 30 percent, a difference that suggests that hundreds of thousands of patients are less likely to benefit. The new paper is the latest chapter in a broad retrenchment across science in which researchers are scrutinizing past results to weed out publication bias and other, more deliberate statistical manipulations. © 2015 The New York Times Company

Keyword: Depression
Link ID: 21464 - Posted: 10.01.2015

Are you good at picking someone out of a crowd? Most of us are better at recognising faces than distinguishing between other similar objects, so it’s long been suspected there’s something mysterious about the way the brain processes a face. Now further evidence has emerged that this is a special, highly evolved skill. A study of twins suggests there are genes influencing face recognition abilities that are distinct from the ones affecting intelligence – so it’s not that people who are good with faces just have a better memory, for instance. “The idea is that telling friend from foe was so important to survival that there was very strong pressure to improve that trait,” says Nicholas Shakeshaft of King’s College London. Previous studies using brain scanning have suggested there is a part of the brain dedicated to recognising faces, called the fusiform face area. But others have suggested this region may in fact just be used for discriminating between any familiar objects. Wondering if genetics could shed any light, Shakeshaft’s team tested more than 900 sets of UK twins – including both identical and non-identical pairs – on their face recognition skills. The ability turned out to be highly heritable, with identical twins having more similar abilities than fraternal ones. The same went for intelligence, which had earlier been tested as part of a long-running study. © Copyright Reed Business Information Ltd.

Keyword: Attention; Evolution
Link ID: 21461 - Posted: 09.30.2015

By Puneet Kollipara The list of health problems that scientists can confidently link to exposure to hormone-disrupting chemicals has grown to include diabetes, cardiovascular disease, and obesity, a new scientific statement suggests. The statement, released today by the Endocrine Society, also adds support to the somewhat controversial idea that even minute doses of these chemicals can interfere with the activity of natural hormones, which play a major role in regulating physiology and behavior. But the report—which updates a similar statement released in 2009—is drawing sharp criticism from the chemical industry. An executive summary of the new statement, which synthesizes 1300 studies on endocrine disrupters, posits that scientists are more confident than ever before in linking these substances to a host of known health issues, including reproductive and developmental problems, thyroid impairment, certain reproductive cancers, and neurodevelopmental problems such as decreased IQ. But studies suggest those links can now be extended to heart and weight problems, and diabetes, says the executive summary's first author, Andrea C. Gore, a professor of pharmacology and toxicology at the University of Texas, Austin. Six years ago, scientists couldn’t make such a strong case for those links, Gore says, because there weren’t enough good studies. “But this has really been an emerging field where there is much stronger evidence now,” Gore told reporters today on a conference call. Still, some toxicologists and industry groups have long disputed the assertion that endocrine disrupters can trigger effects at minimal doses; this idea can be tough to test in lab animals, which are usually exposed to high doses in toxicology studies. © 2015 American Association for the Advancement of Science

Keyword: Hormones & Behavior; Sexual Behavior
Link ID: 21454 - Posted: 09.29.2015

Neuroscientist Dr. Charles Tator has asked the family of former NHL enforcer Todd Ewen to donate Ewen's brain so he can study it. This week, Ewan's death was ruled a suicide and Tator wants to examine his brain to determine whether it has signs of degeneration. In particular, he's interested in what Ewen's brain may have in common with the other brains of athletes he's studying as part of the Canadian Sports Concussion Project. Brent Bambury speaks with Dr. Tator about how concussions can affect athletes and what big unanswered questions remain when it comes to the links between concussions, brain injury and self-harm. This conversation has been edited for clarity and length. Brent Bambury: You and your team already have examined the brains of eighteen former professional athletes. What do you hope to learn by looking at Todd Ewen's brain? Dr. Charles Tator: Well we want to know if he had C.T.E. In other words, was this the cause of his decline in terms of depression, for example. BB: What is C.T.E. ? CT: Well C.T.E. is chronic traumatic encephalopathy which is a specific type of brain degeneration that occurs after repetitive trauma like multiple concussions. BB: Is that something that you can only determine by examining the brain from a cadaver? CT: Unfortunately, even though we are getting clues about it from other tests like M.R.I., at this point in 2015, you have to do an autopsy to be sure that it's C.T.E. So with the Todd Ewen donation, if we're fortunate enough to have that opportunity to examine his brain, we would want to see if there were any manifestations of these previous concussions that he had in his career. ©2015 CBC/Radio-Canada

Keyword: Brain Injury/Concussion
Link ID: 21450 - Posted: 09.28.2015

A 26-year-old man who is paralysed in both legs has walked for the first time in five years – just by thinking about it. He is the first person to have his brain activity recorded and used to control a muscle-stimulating device in his legs. Every year, 250,000 to 500,000 people worldwide suffer spinal cord injuries, which can leave them partially or completely paralysed below the site of damage. Many rehabilitation clinics already offer functional electric stimulation (FES) devices, which activate the nerves that innervate leg muscles at the push of a button. But people with upper-body paralysis are not always able to operate the FES in this way. The new system bypasses the button and returns control to the brain. “We want to re-establish the connection between the brain and the leg muscles, to bring back the function that was once present,” says Zoran Nenadic at the University of California Irvine. To do that, Nenadic and his colleagues combined an FES system with a brain-computer interface. The team developed an electrode cap that picks up the brainwaves created when a person thinks specifically about walking or standing still. They tailored the device to pick up brain signals from their volunteer – a man who has had little sensation below his shoulder blades for five years. © Copyright Reed Business Information Ltd.

Keyword: Robotics
Link ID: 21437 - Posted: 09.24.2015

By Jessica Schmerler Selfies, headshots, mug shots — photos of oneself convey more these days than snapshots ever did back in the Kodak era. Most digitally minded people continually post and update pictures of themselves at professional, social media and dating sites such as LinkedIn, Facebook, and Tinder. For better or worse, viewers then tend to make snap judgments about someone’s personality or character from a single shot. As such, it can be a stressful task to select the photo that conveys the best impression of ourselves. For those of us seeking to appear friendly and trustworthy to others, a new study underscores an old, chipper piece of advice: Put on a happy face. A newly published series of experiments by cognitive neuroscientists at New York University is reinforcing the relevance of facial expressions to perceptions of characteristics such as trustworthiness and friendliness. More importantly, the research also revealed the unexpected finding that perceptions of abilities such as physical strength are not dependent on facial expressions but rather on facial bone structure. The team’s first experiment featured photographs of 10 different people presenting five different facial expressions each. Study subjects rated how friendly, trustworthy or strong the person in each photo appeared. A separate group of subjects scored each face on an emotional scale from “very angry” to “very happy.” And three experts not involved in either of the previous two ratings to avoid confounding results calculated the facial width-to-height ratio for each face. An analysis revealed that participants generally ranked people with a happy expression as friendly and trustworthy but not those with angry expressions. Surprisingly, participants did not rank faces as indicative of physical strength based on facial expression but graded faces that were very broad as that of a strong individual. © 2015 Scientific American

Keyword: Emotions
Link ID: 21436 - Posted: 09.24.2015

By Kristin Ozelli Four years ago writer and producer Jon Palfreman was diagnosed with Parkinson’s disease. He has chronicled his experience and that of many other “Parkies,” as patients sometimes call themselves, in two books, the latest of which is Brain Storms: The Race to Unlock the Mysteries of Parkinson’s Disease, published this year by Scientific American / Farrar, Straus and Giroux, which traces some of the recent progress of medical researchers in treating this disease. He shared with Scientific American MIND senior editor Kristin Ozelli some of the insights he gleaned while working on this book. You wrote an earlier book about Parkinson’s and produced a prize-winning documentary, The Case of the Frozen Addicts, and have experienced the disease personally. While you were researching Brain Storms, was there anything new you learned about the disease that really surprised you? What is truly surprising is just how long biomedical research takes to deliver life-changing therapies. The promising therapies around when I wrote my first book 20 years ago, like neural grafting and growth factors—therapies designed to replace, revive or protect dopamine neurons—well they haven’t panned out. On the other hand, since my first involvement with Parkinson’s, there have been some extraordinary advances in basic science. In a sense, the disease has been rebranded from a movement disorder (resulting from damage to a very small part of the brain) to a systemic condition involving not only tremor and rigidity but also a whole host of symptoms—from depression to sleep disorders, from constipation to dementia. Indeed, there’s an entirely new theory of the disease that sees it as being driven by a protein alpha-synuclein that goes rogue and, prionlike, jumps from neuron to neuron creating havoc. © 2015 Scientific American

Keyword: Parkinsons
Link ID: 21435 - Posted: 09.23.2015

Erin Wayman Priya Rajasethupathy’s research has been called groundbreaking, compelling and beautifully executed. It’s also memorable. Rajasethupathy, a neuroscientist at Stanford University, investigates how the brain remembers. Her work probes the molecular machinery that governs memories. Her most startling — and controversial — finding: Enduring memories may leave lasting marks on DNA. Being a scientist wasn’t her first career choice. Although Rajasethupathy inherited a love of computation from her computer scientist dad, she enrolled in Cornell University as a pre-med student. After graduating in three years, she took a year off to volunteer in India, helping people with mental illness. During that year she also did neuroscience research at the National Centre for Biological Sciences in Bangalore. While there, she began to wonder whether microRNAs, tiny molecules that put protein production on pause, could play a role in regulating memory. She pursued that question as an M.D. and Ph.D. student at Columbia University (while intending, at least initially, to become a physician). She found some answers in the California sea slug (Aplysia californica). In 2009, she and colleagues discovered a microRNA in the slug’s nerve cells that helps orchestrate the formation of memories that linger for at least 24 hours. © Society for Science & the Public 2000 - 2015.

Keyword: Learning & Memory
Link ID: 21434 - Posted: 09.23.2015

By Virginia Morell Standing 2 meters tall and weighing as much as 1000 kilograms, European bison (Bison bonasus) are impressive animals. These cousins of the American bison—nearly driven to extinction in the last century—are being reintroduced in small herds across Europe, leading some farmers and forest managers to worry that the large herbivores will destroy their habitat. To better understand how the bison decide when and where to move, scientists studied a herd of 43 individuals in the Reserve Biologique des Monts-d’Azur in the Alpes-Maritimes region of France. They recorded the animals’ movements for 4 hours daily, identifying leaders, what type of action led others to follow, and where the herd moved. The herd wasn’t guided by a single leader, the scientists report in the November issue of Animal Behaviour. Instead, any individual regardless of sex or age could prompt the group to move, although most decisions were made by adult females—as is the case with most ungulates. A bison shows that it plans to change its location by taking at least 20 steps without stopping or lowering its head to graze. A potential leader was most likely to be followed if it walked in the direction that most of the others were facing—suggesting that bison vote with their feet. The researchers suspect that most leaders are adult females because they require higher quality food when lactating or pregnant. Wildlife managers can use this research to reduce human-bison conflicts, the scientists say. They need only identify a herd’s leaders, fit them with GPS collars, and install a virtual fence of alarms and electrical shocks. It should then be possible to control the leaders’ movements—and, thus, those of the entire herd.

Keyword: Sexual Behavior
Link ID: 21432 - Posted: 09.23.2015

David Cyranoski A dispute has broken out at two of China’s most prestigious universities over a potentially groundbreaking discovery: the identification of a protein that may allow organisms to sense magnetic fields. On 14 September, Zhang Sheng-jia, a neuroscientist at Tsinghua University in Beijing, and his colleagues published a paper1 in Science Bulletin claiming to use magnetic fields to remotely control neurons and muscle cells in worms, by employing a particular magnetism-sensing protein. But Xie Can, a biophysicist at neighbouring Peking University, says that Zhang’s publication draws on a discovery made in his laboratory, currently under review for publication, and violates a collaboration agreement the two had reached. Administrators at Tsinghua and Peking universities, siding with Xie, have jointly requested that the journal retract Zhang’s paper, and Tsinghua has launched an investigation into Zhang’s actions. The dispute revolves around an answer to the mystery of how organisms as diverse as worms, butterflies, sea turtles and wolves are capable of sensing Earth’s magnetic field to help them navigate. Researchers have postulated that structures in biological cells must be responsible, and dubbed these structures magnetoreceptors. But they have never been found. In research starting in 2009, Xie says that he used a painstaking whole-genome screen to identify a protein containing iron and sulfur that seems, according to his experiments, to have the properties of a magnetoreceptor. He called it MagR, to note its purported properties, and has since been examining its function and structure to determine how it senses magnetic fields. © 2015 Nature Publishing Group,

Keyword: Animal Migration
Link ID: 21431 - Posted: 09.22.2015

Steve Connor A painkiller widely used to treat rheumatoid arthritis has been shown to reverse the symptoms of dementia in the brains of laboratory mice, raising hope that there may soon be an effective treatment for Alzheimer’s disease, scientists have said. The drug, salsalate, is a licensed pain killer but in mice with a form of dementia similar to Alzheimer’s it reversed the changes to a key protein in the brain that builds up in patients with the debilitating neurological disease, they found. The researchers said it is the first time any drug has been shown to have an effect on the “tau” protein that accumulates in the brain of people with Alzheimer’s and a range of similar dementias known as “tauopathies”. It could lead to an effective therapy even for patients in the later stages of disease, the researchers said. “We identified for the first time a pharmacological approach that reverses all aspects of tau toxicity," said Li Gan, PhD of the Gladstone Institutes, a non-profit research organisation affiliated with the University of California, San Francisco. “Remarkably, the profound protective effects of salsalate were achieved even though it was administered after disease onset, indicating that it may be an effective treatment option,” said Dr Gan a senior co-author of the study published in the journal Nature Medicine. As many as 800,000 people in Britain are already affected by Alzheimer’s disease and a new study has suggested that as many as one in three babies born this year will get dementia in their lifetime, largely as a result of people living longer. Age is the biggest risk factor for the disease. ©

Keyword: Alzheimers
Link ID: 21428 - Posted: 09.22.2015