Chapter 16. None

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1190

Regina Nuzzo Gene therapy delivered to the inner ear can help shrivelled auditory nerves to regrow — and in turn, improve bionic ear technology, researchers report today in Science Translational Medicine1. The work, conducted in guinea pigs, suggests a possible avenue for developing a new generation of hearing prosthetics that more closely mimics the richness and acuity of natural hearing. Sound travels from its source to ears, and eventually to the brain, through a chain of biological translations that convert air vibrations to nerve impulses. When hearing loss occurs, it’s usually because crucial links near the end of this chain — between the ear’s cochlear cells and the auditory nerve — are destroyed. Cochlear implants are designed to bridge this missing link in people with profound deafness by implanting an array of tiny electrodes that stimulate the auditory nerve. Although cochlear implants often work well in quiet situations, people who have them still struggle to understand music or follow conversations amid background noise. After long-term hearing loss, the ends of the auditory nerve bundles are often frayed and withered, so the electrode array implanted in the cochlea must blast a broad, strong signal to try to make a connection, instead of stimulating a more precise array of neurons corresponding to particular frequencies. The result is an ‘aural smearing’ that obliterates fine resolution of sound, akin to forcing a piano player to wear snow mittens or a portrait artist to use finger paints. To try to repair auditory nerve endings and help cochlear implants to send a sharper signal to the brain, researchers turned to gene therapy. Their method took advantage of the electrical impulses delivered by the cochlear-implant hardware, rather than viruses often used to carry genetic material, to temporarily turn inner-ear cells porous. This allowed DNA to slip in, says lead author Jeremy Pinyon, an auditory scientist at the University of New South Wales in Sydney, Australia. © 2014 Nature Publishing Group

Keyword: Hearing; Aggression
Link ID: 19533 - Posted: 04.24.2014

by Michael Slezak Could preventing the brain shrinkage associated with depression be as simple as blocking a protein? Post-mortem analysis of brain tissue has shown that the dendrites that relay messages between neurons are more shrivelled in people with severe depression than in people without the condition. This atrophy could be behind some of the symptoms of depression, such as the inability to feel pleasure. As a result, drugs that help repair the neuronal connections, like ketamine, are under investigation. But how this shrinkage occurs has remained a mystery, limiting researchers' ability to find ways of stopping it. Ronald Duman at Yale University wondered whether a protein called REDD1, which was recently shown to reduce myelin, the fatty material that protects neurons, was the key. To find out, his team bred rats unable to produce REDD1 and exposed them to a prolonged period of unpredictable stress. In normal rats, this stress resulted in depressive-like behaviour and brain shrinkage, but Duman's rats were unaffected. In contrast, rats engineered to overproduce REDD1 became depressed and had brain shrinkage, even without being stressed. What's more, injecting normal rats with a stress hormone boosted levels of REDD1 in the brain. Giving them a drug that blocked the production of stress hormones stopped them producing the protein, even when they were externally stressed. Taken together, the experiments show that REDD1 is necessary to produce the brain shrinkage seen in stressed rats, and that stress hormones are involved in its production – offering a possible way to prevent the shrinkage. © Copyright Reed Business Information Ltd

Keyword: Depression
Link ID: 19532 - Posted: 04.24.2014

Here to stay. The Y chromosome is small compared with the X, but is required to keep levels of some genes high enough for mammals to survive. The small, stumpy Y chromosome—possessed by male mammals but not females, and often shrugged off as doing little more than determining the sex of a developing fetus—may impact human biology in a big way. Two independent studies have concluded that the sex chromosome, which shrank millions of years ago, retains the handful of genes that it does not by chance, but because they are key to our survival. The findings may also explain differences in disease susceptibility between men and women. “The old textbook description says that once maleness is determined by a few Y chromosome genes and you have gonads, all other sex differences stem from there,” says geneticist Andrew Clark of Cornell University, who was not involved in either study. “These papers open up the door to a much richer and more complex way to think about the Y chromosome.” The sex chromosomes of mammals have evolved over millions of years, originating from two identical chromosomes. Now, males possess one X and one Y chromosome and females have two Xs. The presence or absence of the Y chromosome is what determines sex—the Y chromosome contains several genes key to testes formation. But while the X chromosome has remained large throughout evolution, with about 2000 genes, the Y chromosome lost most of its genetic material early in its evolution; it now retains less than 100 of those original genes. That’s led some scientists to hypothesize that the chromosome is largely indispensable and could shrink away entirely. © 2014 American Association for the Advancement of Science.

Keyword: Sexual Behavior
Link ID: 19531 - Posted: 04.24.2014

By Brady Dennis, The Food and Drug Administration will for the first time regulate the booming market of electronic cigarettes, as well as cigars, pipe tobacco and hookahs, under a proposal to be released Thursday. The move would begin to place restrictions on e-cigarettes, a nearly $2 billion industry that for years has operated outside the reach of federal regulators. If adopted, the government’s plan would force manufacturers to curb sales to minors, stop handing out free samples, place health warning labels on their products and disclose the ingredients. Makers of e-cigarettes also would be banned from making health-related claims without scientific evidence. The FDA’s proposal stops short of broader restrictions sought by many­ ­tobacco-control advocates. Regulators at this point are not seeking to halt online sales of e-cigarettes, curb television advertising, or ban the use of flavorings such as watermelon, grape soda and piña colada — all tactics that critics say are aimed at attracting young smokers and that have been banned for traditional cigarettes. Those restrictions might come eventually, FDA officials said, but not before more rigorous research can establish a scientific basis for tougher rules. “Right now, for something like e-cigarettes, there are far more questions than answers,” said Mitch Zeller, director of the FDA’s Center for Tobacco Products. Thursday’s action is about expanding FDA’s authority to products that have been “rapidly evolving with no regulation whatsoever,” in order to create a foundation for broader regulation in the future, he said. “It creates the framework. We’re calling this the first step. . . . For the first time, there will be a science-based, independent regulatory agency playing a vital gate-keeping function.” © 1996-2014 The Washington Post

Keyword: Drug Abuse
Link ID: 19529 - Posted: 04.24.2014

Associated Press Diagnosed with retinitis pigmentosa as a teenager, Pontz has been almost completely blind for years. Now, thanks to a high-tech procedure that involved the surgical implantation of a "bionic eye," he has regained enough of his eyesight to catch small glimpses of his wife, grandson and cat. "It's awesome. It's exciting - seeing something new every day," Pontz said during a recent appointment at the University of Michigan Kellogg Eye Center. The 55-year-old former competitive weightlifter and factory worker is one of four people in the U.S. to receive an artificial retina since the Food and Drug Administration signed off on its use last year. The facility in Ann Arbor has been the site of all four such surgeries since FDA approval. A fifth is scheduled for next month. Retinitis pigmentosa is an inherited disease that causes slow but progressive vision loss due to a gradual loss of the light-sensitive retinal cells called rods and cones. Patients experience loss of side vision and night vision, then central vision, which can result in near blindness. Not all of the 100,000 or so people in the U.S. with retinitis pigmentosa can benefit from the bionic eye. An estimated 10,000 have vision low enough, said Dr. Brian Mech, an executive with Second Sight Medical Products Inc., the Sylmar (Los Angeles County) company that makes the device. Of those, about 7,500 are eligible for the surgery. The artificial implant in Pontz's left eye is part of a system developed by Second Sight that includes a small video camera and transmitter housed in a pair of glasses. © 2014 Hearst Communications, Inc.

Keyword: Vision; Aggression
Link ID: 19527 - Posted: 04.24.2014

By David Grimm “We did one study on cats—and that was enough!” Those words effectively ended my quest to understand the feline mind. I was a few months into writing Citizen Canine: Our Evolving Relationship With Cats and Dogs, which explores how pets are blurring the line between animal and person, and I was gearing up for a chapter on pet intelligence. I knew a lot had been written about dogs, and I assumed there must be at least a handful of studies on cats. But after weeks of scouring the scientific world for someone—anyone—who studied how cats think, all I was left with was this statement, laughed over the phone to me by one of the world’s top animal cognition experts, a Hungarian scientist named Ádám Miklósi. We are living in a golden age of canine cognition. Nearly a dozen laboratories around the world study the dog mind, and in the past decade scientists have published hundreds of articles on the topic. Researchers have shown that Fido can learn hundreds of words, may be capable of abstract thought, and possesses a rudimentary ability to intuit what others are thinking, a so-called theory of mind once thought to be uniquely human. Miklósi himself has written an entire textbook on the canine mind—and he’s a cat person. I knew I was in trouble even before I got Miklósi on the phone. After contacting nearly every animal cognition expert I could find (people who had studied the minds of dogs, elephants, chimpanzees, and other creatures), I was given the name of one man who might, just might, have done a study on cats. His name was Christian Agrillo, and he was a comparative psychologist at the University of Padova in Italy. When I looked at his website, I thought I had the wrong guy. A lot of his work was on fish. But when I talked to him he confirmed that, yes, he had done a study on felines. Then he laughed. “I can assure you that it’s easier to work with fish than cats,” he said. “It’s incredible.” © 2014 The Slate Group LLC.

Keyword: Intelligence; Aggression
Link ID: 19522 - Posted: 04.23.2014

Josh Fischman Dogs and cats, historically, have been people’s property like a couch or a toaster. But as they’ve moved into our houses and our hearts, courts of law have begun to treat them as something more. They can inherit your estate, get an appointed lawyer if your relatives challenge that inheritance and are protected from cruel acts. Your toaster can’t do any of that. As these animals inch closer to citizens' rights, the trend is being watched with worried eyes by biomedical researchers who fear judges could extend these rights to lab animals like monkeys and rats, thereby curbing experimentation. It also disturbs veterinarians who fear a flood of expensive malpractice suits if pets are worth more than their simple economic value. David Grimm, deputy news editor for Science magazine, explores this movement in his book Citizen Canine: Our Evolving Relationship with Cats and Dogs (PublicAffairs Books, 2014), published this month. He explained to Scientific American why scientists and animal doctors have good reason to be concerned. An edited transcript of the interview follows. In what way have dogs and cats moved beyond the status of property? They can inherit money, for one thing. And since property cannot inherit property, that makes them different. Legal scholars say that is the biggest change. About 25 US states have adopted the Uniform Trust Code, which allows animals to inherit.* Also judges have granted owners of slain animals awards of emotional damages. You cannot get emotional damages from the loss of a toaster. In 2004 a California jury awarded a man named Marc Bluestone $39,000 for the loss of his dog Shane; $30,000 of that was for Shane’s special and unique value to Bluestone. © 2014 Nature Publishing Group

Keyword: Animal Rights
Link ID: 19521 - Posted: 04.23.2014

It looks like a standardized test question: Is the sum of two numbers on the left or the single number on the right larger? Rhesus macaques that have been trained to associate numerical values with symbols can get the answer right, even if they haven’t passed a math class. The finding doesn’t just reveal a hidden talent of the animals—it also helps show how the mammalian brain encodes the values of numbers. Previous research has shown that chimpanzees can add single-digit numbers. But scientists haven’t explained exactly how, in the human or the monkey brain, numbers are being represented or this addition is being carried out. Now, a new study helps begin to answer those questions. Neurobiologist Margaret Livingstone of Harvard Medical School in Boston and her colleagues had already taught three rhesus macaques (Macaca mulatta) in the lab to associate the Arabic numbers 0 through 9 and 15 select letters with the values zero through 25. When given the choice between two symbols, monkeys reliably chose the larger to get a correspondingly larger number of droplets of water, apple juice, or orange soda as a reward. To test whether the monkeys could add these values, the researchers began giving them a choice between a sum and a single symbol rather than two single symbols. Within 4 months, the monkeys had learned how the task worked and were able to effectively add two symbols and compare the sum to a third, single symbol. To ensure that the monkeys hadn’t simply memorized every possible combination of symbols and associated a value with the combination—this wouldn’t be true addition—Livingstone’s team next taught the animals an entirely new set of symbols —Tetris-like blocks rather than letters and numbers. With the new symbols, the monkeys were again able to add—this time calculating the value of combinations they’d never seen before and confirming the ability to do basic addition, the team reports online today in the Proceedings of the National Academy of Sciences. © 2014 American Association for the Advancement of Science.

Keyword: Evolution
Link ID: 19518 - Posted: 04.22.2014

By Floyd Skloot, March 27, 2009. I was fine the night before. The little cold I’d had was gone, and I’d had the first good night’s sleep all week. But when I woke up Friday morning at 6:15 and got out of bed, the world was whirling counterclockwise. I knocked against the bookcase, stumbled through the bathroom doorway and landed on my knees in front of the sink. It was as though I’d been tripped by a ghost lurking beside the bed. Even when I was on all fours, the spinning didn’t stop. Lightheaded, reaching for solid support, I made it back to bed and, showing keen analytical insight, told my wife, Beverly, “Something’s wrong.” The only way I could put on my shirt was to kneel on the floor first. I teetered when I rose. Trying to keep my head still, moving only my eyes, I could feel my back and shoulders tightening, forming a shell. Everything was in motion, out of proportion, unstable. I barely made it downstairs for breakfast, clutching the banister, concentrating on each step and, when I finally made it to the kitchen, feeling too aswirl to eat anyway. I didn’t realize it at the time, but those stairs would become my greatest risk during this attack of relentless, intractable vertigo. Vertigo — the feeling that you or your surroundings are spinning — is a symptom, not a disease. You don’t get a diagnosis of vertigo; instead, you present with vertigo, a hallmark of balance dysfunction. Or with dizziness, a more generalized term referring to a range of off-kilter sensations including wooziness, faintness, unsteadiness, spatial disorientation, a feeling akin to swooning. It happens to almost everyone: too much to drink or standing too close to the edge of a roof or working out too hard or getting up too fast. © 1996-2014 The Washington Post

Keyword: Miscellaneous
Link ID: 19516 - Posted: 04.22.2014

By CLYDE HABERMAN Her surname in Italian means “slave,” and is pronounced skee-AH-vo. Grim as it may be, the word could apply to Theresa Marie Schiavo, even with its Americanized pronunciation: SHY-vo. For 15 years, Terri Schiavo was effectively a slave — slave to an atrophied brain that made her a prisoner in her body, slave to bitter fighting between factions of her family, slave to seemingly endless rounds of court hearings, slave to politicians who injected themselves into her tragedy and turned her ordeal into a national morality play. To this day, the name Schiavo is virtually a synonym for epic questions about when life ends and who gets to make that determination. It would be nice to believe that since Ms. Schiavo’s death nine years ago, America has found clear answers. Of course it has not, as is evident in Retro Report’s exploration of the Schiavo case, the latest video documentary in a weekly series that examines major news stories from the past and their aftermath. Ms. Schiavo, a married woman living in St. Petersburg, Fla., was 26 years old when she collapsed on Feb. 25, 1990. While her potassium level was later found to be abnormally low, an autopsy drew no conclusion as to why she had lost consciousness. Whatever the cause, her brain was deprived of oxygen long enough to leave her in a “persistent vegetative state,” a condition that is not to be confused with brain death. She could breathe without mechanical assistance. But doctors concluded that she was incapable of thought or emotion. After her death on March 31, 2005, an autopsy determined that the brain damage was irreversible. Between her collapse — when she “departed this earth,” as her grave marker puts it — and her death — when she became “at peace” — the nation bore witness to an increasingly acrimonious battle between her husband, Michael Schiavo, and her parents, Robert and Mary Schindler. Mr. Schiavo wanted to detach the feeding tube that gave her nourishment. Terri never would have wanted to be kept alive that way, he said. The Schindlers insisted that the tube be kept in place. That, they said, is what their daughter would have wanted. To Mr. Schiavo, the woman he had married was gone. To the Schindlers, a sentient human was still in that body. © 2014 The New York Times Company

Keyword: Consciousness
Link ID: 19512 - Posted: 04.21.2014

By Bill Briggs A Vietnam veteran swoops his hand through a row of baby vegetables, caressing the peppers on down to the kale. The plants are aligned in tidy, military order atop his backyard fence. He could spend hours describing his first garden. But he cannot utter a word. He can’t even eat his eventual harvest. So, Bob Hoaglan, 71, simply stands and grins at the spouts behind his Oxnard, Calif., home. Then, he grabs his primary communication tool, an LCD tablet, scribbling a stylus across the screen. He displays his words with a silent chuckle: “I don’t have a green thumb.” With a button click, he erases that sentence before composing another. His daily aim is to throw his body and brain into new pursuits. The crops — fresh life for a man facing mortality — help shove his disease to the back of his mind. He admits, though, he can’t keep it there: “I try,” he writes, “Sometimes it creeps up on me.” As he shows that message, the smile vanishes. Hoaglan was diagnosed with amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, nearly a year ago. Inside a malady that offers no cure or explanation, he embodies two intriguing clues that, a top researcher says, may whisper answers: Hoaglan served in the military, and he is a nice man. U.S. veterans carry a nearly 60 percent greater risk of contracting ALS than civilians, according to a white paper published in 2013 by the ALS Association, citing Harvard University research that tracked ex-service members back to 1910.

Keyword: ALS-Lou Gehrig's Disease
Link ID: 19509 - Posted: 04.19.2014

By David Z. Hambrick and Christopher Chabris The College Board—the standardized testing behemoth that develops and administers the SAT and other tests—has redesigned its flagship product again. Beginning in spring 2016, the writing section will be optional, the reading section will no longer test “obscure” vocabulary words, and the math section will put more emphasis on solving problems with real-world relevance. Overall, as the College Board explains on its website, “The redesigned SAT will more closely reflect the real work of college and career, where a flexible command of evidence—whether found in text or graphic [sic]—is more important than ever.” A number of pressures may be behind this redesign. Perhaps it’s competition from the ACT, or fear that unless the SAT is made to seem more relevant, more colleges will go the way of Wake Forest, Brandeis, and Sarah Lawrence and join the “test optional admissions movement,” which already boasts several hundred members. Or maybe it’s the wave of bad press that standardized testing, in general, has received over the past few years. Critics of standardized testing are grabbing this opportunity to take their best shot at the SAT. They make two main arguments. The first is simply that a person’s SAT score is essentially meaningless—that it says nothing about whether that person will go on to succeed in college. Leon Botstein, president of Bard College and longtime standardized testing critic, wrote in Time that the SAT “needs to be abandoned and replaced,” © 2014 The Slate Group LLC.

Keyword: Intelligence
Link ID: 19508 - Posted: 04.19.2014

By David Brown, At the very least, the new experiment reported in Science is going to make people think differently about what it means to be a “rat.” Eventually, though, it may tell us interesting things about what it means to be a human being. In a simple experiment, researchers at the University of Chicago sought to find out whether a rat would release a fellow rat from an unpleasantly restrictive cage if it could. The answer was yes. The free rat, occasionally hearing distress calls from its compatriot, learned to open the cage and did so with greater efficiency over time. It would release the other animal even if there wasn’t the payoff of a reunion with it. Astonishingly, if given access to a small hoard of chocolate chips, the free rat would usually save at least one treat for the captive — which is a lot to expect of a rat. The researchers came to the unavoidable conclusion that what they were seeing was empathy — and apparently selfless behavior driven by that mental state. “There is nothing in it for them except for whatever feeling they get from helping another individual,” said Peggy Mason, the neurobiologist who conducted the experiment along with graduate student Inbal Ben-Ami Bartal and fellow researcher Jean Decety. “There is a common misconception that sharing and helping is a cultural occurrence. But this is not a cultural event. It is part of our biological inheritance,” she added. The idea that animals have emotional lives and are capable of detecting emotions in others has been gaining ground for decades. Empathic behavior has been observed in apes and monkeys, and described by many pet owners (especially dog owners). Recently, scientists demonstrated “emotional contagion” in mice, a situation in which one animal’s stress worsens another’s. © 1996-2014 The Washington Post

Keyword: Emotions; Aggression
Link ID: 19506 - Posted: 04.17.2014

Everything we do — all of our movements, thoughts and feelings – are the result of neurons talking with one another, and recent studies have suggested that some of the conversations might not be all that private. Brain cells known as astrocytes may be listening in on, or even participating in, some of those discussions. But a new mouse study suggests that astrocytes might only be tuning in part of the time — specifically, when the neurons get really excited about something. This research, published in Neuron, was supported by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health. For a long time, researchers thought that the star-shaped astrocytes (the name comes from the Greek word for star) were simply support cells for the neurons. It turns out that these cells have a number of important jobs, including providing nutrients and signaling molecules to neurons, regulating blood flow, and removing brain chemicals called neurotransmitters from the synapse. The synapse is the point of information transfer between two neurons. At this connection point, neurotransmitters are released from one neuron to affect the electrical properties of the other. Long arms of astrocytes are located next to synapses, where they can keep tabs on the conversations going on between neurons. In recent years, it has been shown that astrocytes may also play a role in neuronal communication. When neurons release neurotransmitters, levels of calcium change within astrocytes. Calcium is critical for many processes, including release of molecules from the cell, and activation of a host of proteins within the cell. The role of this astrocytic calcium signaling for brain function remains a mystery.

Keyword: Glia
Link ID: 19505 - Posted: 04.17.2014

BY Ellen Rolfes Rebecca Kamen’s sculptures appear as delicate as the brain itself. Thin, green branches stretch from a colorful mass of vein-like filaments. The branches, made from pieces of translucent mylar and stained with diluted acrylic paint, are so delicate that they sway slightly when mounted to the wall. Perched on various parts of the sculpture are mylar butterflies, whose wings also move, as if fluttering. One of Kamen's influences is the writing of Santiago Ramon y Cajal, who is called the "father of modern neuroscience." Cajal once said: “Like the entomologist in search of colorful butterflies, my attention has chased in the gardens of the grey matter cells with delicate and elegant shapes, the mysterious butterflies of the soul, whose beating of wings may one day reveal to us the secrets of the mind." One of Kamen’s artistic influences is the writing of Santiago Ramon y Cajal, who is called the “father of modern neuroscience.” The work, called “Butterflies of the Soul” was inspired by neuroscientist Santiago Ramon y Cajal, who won the 1906 Nobel Prize, for his groundbreaking work on the human nervous system. Kamen’s sculpture is a nod to his work and the development of modern neuroscience. Cajal’s observation of the cells under the microscope radically changed how scientists study the brain and its functions, Kamen said. And the butterflies in her sculpture represent Cajal’s drawings of Purkinje cells, which are found in the cerebellar cortex at the base of the brain. Purkinje cells play an important role in motor control and in certain cognitive functions, such as attention and language. And attention and language are skills of great interest to Kamen, who has dyslexia. Her fascination with the brain and its structure deepened when she discovered that she was dyslexic later in life. © 1996 - 2014 MacNeil / Lehrer Productions.

Keyword: Dyslexia
Link ID: 19503 - Posted: 04.17.2014

By DORIS IAROVICI, M.D. “I think our experiment failed,” the young graduate student told me, referring to our attempt to take her off the antidepressant she’d been on for seven years. She was back in my campus office after a difficult summer break, and as she talked about feeling unsettled and upset, I wondered about the broader experiment playing out on college campuses across the country. Antidepressants are an excellent treatment for depression and anxiety. I’ve seen them improve — and sometimes save — many young lives. But a growing number of young adults are taking psychiatric medicines for longer and longer periods, at the very age when they are also consolidating their identities, making plans for the future and navigating adult relationships. Are we using good scientific evidence to make decisions about keeping these young people on antidepressants? Or are we inadvertently teaching future generations to view themselves as too fragile to cope with the adversity that life invariably brings? My patient had started medication as a college freshman, after she’d become depressed and spent much of her time in bed. She was forced to take a medical leave but improved quickly, returned to school and graduated. She married soon after and worked for a few years, feeling well all the while. Professional guidelines recommend six to nine months of medicine for first episodes of depression. But my patient had never been advised to stop taking it. She reluctantly agreed to my recommendation to taper off her antidepressant. © 2014 The New York Times Company

Keyword: Depression
Link ID: 19502 - Posted: 04.17.2014

Mégevand P et al., Journal of Neuroscience (2014) Close your eyes and imagine home. Sharp details—such as the shape of the front doorknob, the height of the windows, or the paint color—assemble in your mind with a richness that seems touchable. A new study has found where this mental projection lives in the brain by inducing hallucinations in an epilepsy patient. A 22-year-old male was receiving deep brain stimulation to isolate where his daily seizures originated. His disorder appeared after he caught West Nile virus at the age of 10 and subsequently suffered from brain inflammation. His episodes were always preceded by intense déjà vu, suggesting a visual component of his disease, but he had no history of hallucinations. Brain scans revealed a shrunken spot near his hippocampus—the brain’s memory center. Studies had shown that this region—known as the parahippocampal place area (PPA)—was involved with recognizing of scenes and places. Doctors reconfirmed this by showing the patient pictures of a house and seeing the PPA light up on brain scans with functional magnetic resonance imaging (images above show brain activity; yellow indicates stronger activation than red). Thin wire electrodes—less than 2 mm thick—placed in the PPA (yellow dots in right panel) recorded similar brain activity after viewing these pictures. To assess if the PPA was ground zero for seizures, the doctors used a routine procedure that involves shooting soft jolts of electricity into the region and seeing if the patient senses an oncoming seizure. Rather than have déjà vu, the patient’s surroundings suddenly changed as he hallucinated places familiar to him. In one instance, the doctors morphed into the Italians from his local pizza place. Zapping a nearby cluster of neurons produced a vision of his subway station. The findings, published on 16 April in The Journal of Neuroscience, confirm that this small corner of the brain is not only responsible for recognizing places, but is also crucial to recalling a mental vision of that place. © 2014 American Association for the Advancement of Science

Keyword: Vision
Link ID: 19499 - Posted: 04.17.2014

The two marmosets—small, New World monkeys—had been a closely bonded couple for more than 3 years. Then, one fateful day, the female had a terrible accident. She fell out of a tree and hit her head on a ceramic vase that happened to be underneath on the forest floor. Her partner left two of their infants alone in the tree and jumped down to apparently comfort her, until she died an agonizing death a couple of hours later. According to the researchers who recorded the events with a video camera (see video above), this is the first time such compassionate mourning behavior has been observed outside of humans and chimpanzees, and it could indicate that mourning is more widespread among primates than previously thought. Humans mourn their dead, of course, and some recent studies have strongly suggested that chimpanzees do as well. Scientists have recorded cases of adult chimps apparently caring for fellow animals before they die, and chimp mothers have been observed carrying around the bodies of infants for days after their death—although scientists have debated whether the latter behavior represents true grieving or if the mothers didn’t realize their infants were really dead. But there has been little or no evidence that other primates engage in these kinds of behaviors. Indeed, a recent review of the evidence led by anthropologist Peter Fashing of California State University, Fullerton, concluded that there were no convincing observations of “compassionate caretaking” of dying individuals among other nonhuman primates, such as monkeys. © 2014 American Association for the Advancement of Science.

Keyword: Emotions; Aggression
Link ID: 19496 - Posted: 04.16.2014

by Simon Makin Could drama workshops help children with autism-spectrum disorders? Results from a pilot study called Imagining Autism suggests this might be the case. The research involved 22 children aged between 7 and 12 and consisted of one 45-minute session every week for 10 weeks. During this time, groups of four children entered an enclosed themed environment, such as a forest or outer space. These environments were designed to engage all senses simultaneously, using lights, sounds, puppetry and interactive digital elements. Trained performers used improvisation techniques to encourage the children to engage creatively with the environment and each other, both physically and verbally. The hope was that the sessions would help develop the children's communication, social interaction, and imagination skills – the "triad of impairments" seen in autism. Children were assessed before the intervention, and again between two and six weeks after the sessions ended. As well as looking at whether behaviours used to diagnose autism changed after the drama sessions, the researchers also assessed emotion recognition, imitation, IQ and theory of mind – the ability to infer what others are thinking and feeling. Subjective ratings were also gathered from parents and teachers and follow-up assessments were conducted up to a year later. At the early assessments, all children showed some improvement. The most significant change was in the number of facial expressions recognised, a key communication skill. Nine children improved on this. Six children improved on their level of social interaction. The majority of these changes were also seen at the follow-up assessments. © Copyright Reed Business Information Ltd.

Keyword: Autism
Link ID: 19494 - Posted: 04.16.2014

By SABRINA TAVERNISE WASHINGTON — Researchers at the University of North Carolina published a paper last week that introduced another wrinkle into the debate about childhood obesity. They disputed recent findings that obesity among young children had fallen since 2004, arguing that a longer view — using data all the way back to 1999 — showed that these youngsters were not really getting any thinner. So which view is correct? The answer seems to be both. Obesity has become a major health problem in the United States, affecting about 17 percent of Americans ages 2 to 19, up from about 5 percent in the early 1970s. The rate rose for years but then leveled off, and the current debate centers on whether obesity has begun to decline in the youngest of these children. The question has drawn considerable attention not just because scientists disagree on the answer, but also because it has a political dimension: The issue has been vigorously championed by Michelle Obama, the first lady. The North Carolina researchers and the federal team that produced the earlier findings both relied on the same data from the National Health and Nutrition Examination Survey. It is considered the gold standard in health research because height and weight are measured by a health professional, not the respondents themselves. But instead of looking only at the past decade of data on children ages 2 to 5, the North Carolina researchers looked at 14 years’ worth. An unusual spike in obesity among these children in 2003 created the false appearance of a later decline, they concluded, so comparing 2012 to 1999 gave a truer view of the trends. © 2014 The New York Times Company

Keyword: Obesity
Link ID: 19487 - Posted: 04.15.2014