Chapter 16. None

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 101 - 120 of 6585

By Ashley Juavinett In the 2010 award-winning film “Inception,” Leonardo DiCaprio’s character and others run around multiple layers of someone’s consciousness, trying to implant an idea in the person’s mind. If you can plant something deep enough, the film suggests, you can make them believe it is their own idea. The film was billed as science fiction, but three years later, in 2013, researchers actually did this — in a mouse, at least. The work focused on the hippocampus, along with its closely interconnected structures, long recognized by scientists to hold our dearest memories. If you damage significant portions of just one region of your hippocampus, the dentate gyrus, you’ll lose the ability to form new memories. How these memories are stored, however, is still up for debate. One early but persistent idea posits that enduring changes in our neural circuitry, or “engrams,” may represent the physical traces of specific memories. An engram is sometimes thought of as a group of cells, along with their synaptic weights and connections throughout the brain. In sum, the engram is what DiCaprio’s character would have had to discreetly manipulate in his target. In 2012, a team in Susumu Tonegawa’s lab at the Massachusetts Institute of Technology (MIT) showed that you could mark the cells of a real memory engram and reactivate them later. Taking that work one step further, Steve Ramirez, Xu Liu and others in Tonegawa’s lab demonstrated the following year that you can implant a memory of something that never even happened. In doing so, they turned science fiction into reality, one tiny foot shock at a time. Published in Science, Ramirez and Liu’s study is a breath of fresh air, scientifically speaking. The abstract starts with one of the shortest sentences you’ll ever find in a scientific manuscript: “Memories can be unreliable.” The entire paper is extremely readable, and there is no shortage of related papers and review articles that you could give your students to read for additional context. © 2024 Simons Foundation

Keyword: Learning & Memory
Link ID: 29131 - Posted: 02.06.2024

April Smith Did you know that anorexia is the most lethal mental health condition? One person dies from an eating disorder every hour in the U.S. Many of these deaths are not from health consequences related to starvation, but from suicide. Up to 1 in 5 women and 1 in 7 men in the U.S. will develop an eating disorder by age 40, and 1 in 2 people with an eating disorder will think about ending their life. About 1 in 4 people with anorexia nervosa or bulimia nervosa will attempt to kill themselves, and those with anorexia have a risk of death by suicide 31 times higher than peers without the disorder. In fact, nonsuicidal self-injury, suicidal ideation, suicide attempts and suicide deaths are all more prevalent among those with any type of eating disorder compared to those without an eating disorder. Why might that be? I am a clinical psychologist who studies eating disorders and self-harm, and I have spent the past 15 years researching this question. We still don’t have the answer. But new work on perception of the internal state of the body points to some promising possibilities for treatment. And what we’re learning could help anyone improve their relationship with their body. To understand why people with eating disorders are at risk of dying by suicide, I first want to ask you to do a little thought exercise. I’d like you to really think about your body: Think about your hair, face, arms, stomach, chest and legs. What words and feelings come to mind? Are there any things you wish you could change? Feel free to close your eyes and try this out. © 2010–2024, The Conversation US, Inc.

Keyword: Anorexia & Bulimia
Link ID: 29127 - Posted: 02.03.2024

By Laura Sanders Under extremely rare circumstances, it appears that Alzheimer’s disease can be transmitted between people. Five people who received contaminated injections of a growth hormone as children went on to develop Alzheimer’s unusually early, researchers report January 29 in Nature Medicine. The findings represent “the first time iatrogenic Alzheimer’s disease has been described,” neurologist John Collinge said January 25 in a news briefing, referring to a disease caused by a medical procedure. That sounds alarming, but researchers are quick to emphasize that Alzheimer’s disease is not contagious in everyday life, including caretaking and most medical settings. Support Science Today. Thank you for being a subscriber to Science News! Interested in more ways to support STEM? Consider making a gift to our nonprofit publisher, Society for Science, an organization dedicated to expanding scientific literacy and ensuring that every young person can strive to become an engineer or scientist. Donate Now “We are not suggesting for a moment that you can catch Alzheimer’s disease,” said Collinge, of the University College London’s Institute of Prion Diseases. “This is not transmissible in the sense of a viral or bacterial infection.” The reassurance is echoed by Carlo Condello, a neurobiologist at the University of California, San Francisco who wasn’t involved in the study. “In no way do we believe sporadic Alzheimer’s disease is a communicable disease,” he says. “Only under incredibly artificial, now out-of-date, medical practices is this appearing. It’s no longer an issue.” © Society for Science & the Public 2000–202

Keyword: Alzheimers
Link ID: 29126 - Posted: 01.31.2024

By Laurie McGinley ABINGTON, Pa. — Wrapped in a purple blanket, Robert Williford settles into a quiet corner of a bustling neurology clinic, an IV line delivering a colorless liquid into his left arm. The 67-year-old, who has early Alzheimer’s disease, is getting his initial dose of Leqembi. The drug is the first to clearly slow the fatal neurodegenerative ailment that afflicts 6.7 million older Americans, though the benefits may be modest. The retired social worker, one of the first African Americans to receive the treatment, hopes it will ease his forgetfulness so “I drive my wife less crazy.” But as Williford and his doctors embark on this treatment, they are doing so with scant scientific data about how the medication might work in people of color. In the pivotal clinical trial for the drug, Black patients globally accounted for only 47 of the 1,795 participants — about 2.6 percent. For U.S. trial sites, the percentage was 4.5 percent. The proportion of Black enrollees was similarly low for Eli Lilly Alzheimer’s drug, called donanemab, expected to be cleared by the Food and Drug Administration in coming months. Black people make up more than 13 percent of the U.S. population. The paltry data for the new class of groundbreaking drugs, which strip a sticky substance called amyloid beta from the brain, has ignited an intense debate among researchers and clinicians. Will the medications — the first glimmer of hope after years of failure — be as beneficial for African Americans as for White patients? “Are these drugs going to work in non-Whites? And particularly in Blacks? We just don’t have enough data, I don’t think,” said Suzanne E. Schindler, a clinical neurologist and dementia specialist at Washington University in St. Louis.

Keyword: Alzheimers
Link ID: 29122 - Posted: 01.31.2024

Ashley Montgomery In December 1963, a military family named the Gardners had just moved to San Diego, Calif. The oldest son, 17-year-old Randy Gardner, was a self-proclaimed "science nerd." His family had moved every two years, and in every town they lived in, Gardner made sure to enter the science fair. He was determined to make a splash in the 10th Annual Greater San Diego Science Fair. When researching potential topics, Gardner heard about a radio deejay in Honolulu, Hawaii, who avoided sleep for 260 hours. So Gardner and his two friends, Bruce McAllister and Joe Marciano, set out to beat this record. Randy Gardner spoke to NPR's Hidden Brain host Shankar Vedantam in 2017. When asked about his interest in breaking a sleep deprivation record, Gardner said, "I'm a very determined person, and when I get things under my craw, I can't let it go until there's some kind of a solution." Of his scientific trio, Randy lost the coin toss: He would be the test subject who would deprive himself of sleep. His two friends would take turns monitoring his mental and physical reaction times as well as making sure Gardner didn't fall asleep. The experiment began during their school's winter break on Dec. 28, 1963. Three days into sleeplessness, Gardner said, he experienced nausea and had trouble remembering things. Speaking to NPR in 2017, Gardner said: "I was really nauseous. And this went on for just about the entire rest of the experiment. And it just kept going downhill. I mean, it was crazy where you couldn't remember things. It was almost like an early Alzheimer's thing brought on by lack of sleep." But Gardner stayed awake. The experiment gained the attention of local reporters, which, in Gardner's opinion, was good for the experiment "because that kept me awake," he said. "You know, you're dealing with these people and their cameras and their questions." The news made its way to Stanford, Calif., where a young Stanford sleep researcher named William C. Dement was so intrigued that he drove to San Diego to meet Gardner. © 2024 npr

Keyword: Sleep
Link ID: 29120 - Posted: 01.31.2024

By Gina Kolata Aissam Dam, an 11-year-old boy, grew up in a world of profound silence. He was born deaf and had never heard anything. While living in a poor community in Morocco, he expressed himself with a sign language he invented and had no schooling. Last year, after moving to Spain, his family took him to a hearing specialist, who made a surprising suggestion: Aissam might be eligible for a clinical trial using gene therapy. On Oct. 4, Aissam was treated at the Children’s Hospital of Philadelphia, becoming the first person to get gene therapy in the United States for congenital deafness. The goal was to provide him with hearing, but the researchers had no idea if the treatment would work or, if it did, how much he would hear. The treatment was a success, introducing a child who had known nothing of sound to a new world. “There’s no sound I don’t like,” Aissam said, with the help of interpreters during an interview last week. “They’re all good.” While hundreds of millions of people in the world live with hearing loss that is defined as disabling, Aissam is among those whose deafness is congenital. His is an extremely rare form, caused by a mutation in a single gene, otoferlin. Otoferlin deafness affects about 200,000 people worldwide. The goal of the gene therapy is to replace the mutated otoferlin gene in patients’ ears with a functional gene. Although it will take years for doctors to sign up many more patients — and younger ones — to further test the therapy, researchers said that success for patients like Aissam could lead to gene therapies that target other forms of congenital deafness. © 2024 The New York Times Company

Keyword: Hearing
Link ID: 29119 - Posted: 01.27.2024

By Erin Garcia de Jesús Bruce the kea is missing his upper beak, giving the olive green parrot a look of perpetual surprise. But scientists are the astonished ones. The typical kea (Nestor notabilis) sports a long, sharp beak, perfect for digging insects out of rotten logs or ripping roots from the ground in New Zealand’s alpine forests. Bruce has been missing the upper part of his beak since at least 2012, when he was rescued as a fledgling and sent to live at the Willowbank Wildlife Reserve in Christchurch. The defect prevents Bruce from foraging on his own. Keeping his feathers clean should also be an impossible task. In 2021, when comparative psychologist Amalia Bastos arrived at the reserve with colleagues to study keas, the zookeepers reported something odd: Bruce had seemingly figured out how to use small stones to preen. “We were like, ‘Well that’s weird,’ ” says Bastos, of Johns Hopkins University. Over nine days, the team kept a close eye on Bruce, quickly taking videos if he started cleaning his feathers. Bruce, it turned out, had indeed invented his own work-around to preen, the researchers reported in 2021 in Scientific Reports. First, Bruce selects the proper tool, rolling pebbles around in his mouth with his tongue and spitting out candidates until he finds one that he likes, usually something pointy. Next, he holds the pebble between his tongue and lower beak. Then, he picks through his feathers. “It’s crazy because the behavior was not there from the wild,” Bastos says. When Bruce arrived at Willowbank, he was too young to have learned how to preen. And no other bird in the aviary uses pebbles in this way. “It seems like he just innovated this tool use for himself,” she says. © Society for Science & the Public 2000–2024.

Keyword: Intelligence; Evolution
Link ID: 29117 - Posted: 01.27.2024

By Shaena Montanari Around 2012, Jennifer Groh and her colleagues began a series of experiments investigating the effect of eye movements on auditory signals in the brain. It wasn’t until years later that they noticed something curious in their data: In both an animal model and in people, eye movements coincide with ripples across the eardrum. The finding, published in 2018, seemed “weird,” says Groh, professor of psychology and neuroscience at Duke University — and ripe for further investigation. “You can go your whole career never studying something that is anywhere near as beautifully regular and reproducible,” she says. “Signals that are really robust are unlikely to be just random.” A new experiment from Groh’s lab has now taken her observation a step further and suggests the faint sounds — dubbed “eye movement-related eardrum oscillations,” or EMREOs for short — serve to link two sensory systems. The eardrum oscillations contain “clean and precise” information about the direction of eye movements and, according to Groh’s working hypothesis, help animals connect sound with a visual scene. “The basic problem is that the way we localize visual information and the way we localize sounds leads to two different reference frames,” Groh says. EMREOs, she adds, play a part in relating those frames. The brain, and not the eyes, must generate the oscillations, Groh and her colleagues say, because they happen at the same time as eye movements, or sometimes even before. To learn more about the oscillations, the team placed small microphones in the ears of 10 volunteers, who then performed visual tasks while the researchers tracked their eye movements. The group published their results in Proceedings of the National Academy of Sciences in November. © 2024 Simons Foundation

Keyword: Hearing
Link ID: 29115 - Posted: 01.27.2024

By Kenna Hughes-Castleberry Crows, ravens and other birds in the Corvidae family have a head for numbers. Not only can they make quantity estimations (as can many other animal species), but they can learn to associate number values with abstract symbols, such as “3.” The biological basis of this latter talent stems from specific number-associated neurons in a brain region called the nidopallium caudolaterale (NCL), a new study shows. The region also supports long-term memory, goal-oriented thinking and number processing. Discovery of the specialized neurons in the NCL “helps us understand the origins of our counting and math capabilities,” says study investigator Andreas Nieder, professor of animal physiology at the University of Tübingen. Until now, number-associated neurons — cells that fire especially frequently in response to an animal seeing a specific number — had been found only in the prefrontal cortex of primates, which shared a common ancestor with corvids some 300 million years ago. The new findings imply that the ability to form number-sign associations evolved independently and convergently in the two lineages. “Studying whether animals have similar concepts or represent numerosity in ways that are similar to what humans do helps us establish when in our evolutionary history these abilities may have emerged and whether these abilities emerge only in species with particular ecologies or social structures,” says Jennifer Vonk, professor of psychology at Oakland University, who was not involved in the new study. Corvids are considered especially intelligent birds, with previous studies showing that they can create and use tools, and may even experience self-recognition. Nieder has studied corvids’ and other animals’ “number sense,” or the ability to understand numerical values, for more than a decade. His previous work revealed specialized neurons in the NCL that recognize and respond to different quantities of items — including the number zero. But he tested the neurons only with simple pictures and signs that have inherent meaning for the crows, such as size. © 2023 Simons Foundation.

Keyword: Intelligence; Evolution
Link ID: 29111 - Posted: 01.23.2024

By Ewen Callaway Researchers have used the protein-structure-prediction tool AlphaFold to identify1 hundreds of thousands of potential new psychedelic molecules — which could help to develop new kinds of antidepressant. The research shows, for the first time, that AlphaFold predictions — available at the touch of a button — can be just as useful for drug discovery as experimentally derived protein structures, which can take months, or even years, to determine. The development is a boost for AlphaFold, the artificial-intelligence (AI) tool developed by DeepMind in London that has been a game changer in biology. The public AlphaFold database holds structure predictions for nearly every known protein. Protein structures of molecules implicated in disease are used in the pharmaceutical industry to identify and improve promising medicines. But some scientists had been starting to doubt whether AlphaFold’s predictions could stand in for gold standard experimental models in the hunt for new drugs. “AlphaFold is an absolute revolution. If we have a good structure, we should be able to use it for drug design,” says Jens Carlsson, a computational chemist at the University of Uppsala in Sweden. Efforts to apply AlphaFold to finding new drugs have been met with considerable scepticism, says Brian Shoichet, a pharmaceutical chemist at the University of California, San Francisco. “There is a lot of hype. Whenever anybody says ‘such and such is going to revolutionize drug discovery’, it warrants some scepticism.” Shoichet counts more than ten studies that have found AlphaFold’s predictions to be less useful than protein structures obtained with experimental methods, such as X-ray crystallography, when used to identify potential drugs in a modelling method called protein–ligand docking. © 2024 Springer Nature Limited

Keyword: Drug Abuse
Link ID: 29110 - Posted: 01.23.2024

By Evelyn Lake Functional MRI (fMRI), though expensive, has many properties of an ideal clinical tool. It’s safe and noninvasive. It is widely available in some countries, and increasingly so on a global scale. Its “blood oxygen level dependent,” or BOLD, signal is altered in people with almost any neurological condition and is rich enough to contain information specific to each person, offering the potential for a personalized approach to medical care across a wide spectrum of neurological conditions. But despite enormous interest and investment in fMRI — and its wide use in basic neuroscience research — it still lacks broad clinical utility; it is mainly employed for surgical planning. For fMRI to inform a wider range of clinical decision-making, we need better ways of deciphering what underlying changes in the brain drive changes to the BOLD signal. If someone with Alzheimer’s disease has an increase in functional connectivity (a measure of synchrony between brain regions), for example, does this indicate that synapses are being lost? Or does it suggest that the brain is forming compensatory pathways to help the person avoid further cognitive decline? Or something else entirely? Depending on the answer, one can imagine different courses of treatment. Put simply, we cannot extract sufficient information from fMRI and patient outcomes alone to determine which scenarios are playing out and therefore what we should do when we observe changes in our fMRI readouts. To better understand what fMRI actually shows, we need to use complementary methodologies, such as the emerging optical imaging tool of wide-field fluorescence calcium imaging. Combining modalities presents significant technical challenges but offers the potential for deeper insights: observing the BOLD signal alongside other signals that report more directly on what is occurring in brain tissue. Using these more direct measurements instead of fMRI in clinical practice is not an option — they are unethical to use in people or invasive, requiring physical or optical access to the brain. © 2023 Simons Foundation.

Keyword: Brain imaging
Link ID: 29109 - Posted: 01.23.2024

By Mariana Lenharo Neuroscientist Lucia Melloni didn’t expect to be reminded of her parents’ divorce when she attended a meeting about consciousness research in 2018. But, much like her parents, the assembled academics couldn’t agree on anything. The group of neuroscientists and philosophers had convened at the Allen Institute for Brain Science in Seattle, Washington, to devise a way to empirically test competing theories of consciousness against each other: a process called adversarial collaboration. Devising a killer experiment was fraught. “Of course, each of them was proposing experiments for which they already knew the expected results,” says Melloni, who led the collaboration and is based at the Max Planck Institute for Empirical Aesthetics in Frankfurt, Germany. Melloni, falling back on her childhood role, became the go-between. The collaboration Melloni is leading is one of five launched by the Templeton World Charity Foundation, a philanthropic organization based in Nassau, the Bahamas. The charity funds research into topics such as spirituality, polarization and religion; in 2019, it committed US$20 million to the five projects. The aim of each collaboration is to move consciousness research forward by getting scientists to produce evidence that supports one theory and falsifies the predictions of another. Melloni’s group is testing two prominent ideas: integrated information theory (IIT), which claims that consciousness amounts to the degree of ‘integrated information’ generated by a system such as the human brain; and global neuronal workspace theory (GNWT), which claims that mental content, such as perceptions and thoughts, becomes conscious when the information is broadcast across the brain through a specialized network, or workspace. She and her co-leaders had to mediate between the main theorists, and seldom invited them into the same room. Their struggle to get the collaboration off the ground is mirrored in wider fractures in the field. © 2024 Springer Nature Limited

Keyword: Consciousness
Link ID: 29106 - Posted: 01.18.2024

Nicola Davis Science correspondent Breaking up is hard to do, but it seems the brain may have a mechanism to help get over an ex. Researchers studying prairie voles say the rodents, which form monogamous relationships, experience a burst of the pleasure hormone dopamine in their brain when seeking and reuniting with their partner. However, after being separated for a lengthy period, they no longer experience such a surge. “We tend to think of it as ‘getting over a breakup’ because these voles can actually form a new bond after this change in dopamine dynamics – something they can’t do while the bond is still intact,” said Dr Zoe Donaldson, a behavioural neuroscientist at CU Boulder and senior author of the work. Writing in the journal Current Biology, the team describe how they carried out a series of experiments in which voles had to press levers to access either their mate or an unknown vole located on the other side of a see-through door. The team found the voles had a greater release of dopamine in their brain when pressing levers and opening doors to meet their mate than when meeting the novel vole. They also huddled more with their mate on meeting, and experienced a greater rise in dopamine while doing so. Donaldson said: “We think the difference is tied to knowing you are about to reunite with a partner and reflects that it is more rewarding to reunite with a partner than go hang out with a vole they don’t know.” However, these differences in dopamine levels were no longer present after they separated pairs of voles for four weeks – a considerable period in the lifetime of the rodents. Differences in huddling behaviour also decreased. The researchers say the findings suggest a devaluation of the bond between pairs of voles, rather than that they have forgotten each other. © 2024 Guardian News & Media Limited

Keyword: Sexual Behavior; Evolution
Link ID: 29104 - Posted: 01.18.2024

By Jude Coleman When it comes to tail wagging among dogs, some questions still hound researchers. We know that domesticated dogs (Canis familiaris) use their tails to communicate — with other dogs as well as humans — and even what various types of wags mean, researchers note in a new review of the scientific literature. But we don’t know why dogs seem to wag more than other canines or even how much of it is under their control, ethologist Silvia Leonetti and colleagues report January 17 in Biology Letters. “Among all possible animal behavior that humans experience in everyday life, domestic dog tail wagging is one of the most common,” says Leonetti, who is now at the University of Turin in Italy. “But a lot of dog behavior remains a scientific enigma.” So Leonetti and her colleagues pored through previous studies to figure out what elements of tail wagging are understood and which remain mysterious. They also hypothesized about the behavior’s origins: Perhaps tail wagging placates some human need for rhythm, the researchers suggest, or maybe the behavior is a genetic tagalong, a trait tied to others that humans bred into domesticated dogs. “People think wagging tail equals happy dog. But it’s actually a lot more complicated than that,” says Emily Bray, an expert in canine cognition at the University of Arizona in Tucson who was not involved with the work. Understanding why dogs wag their tails is important partly from an animal welfare perspective, she says, as it could help dog owners read their pups’ cues better. One main thing that researchers know about tail wagging is that it’s used predominantly for communication instead of locomotion, like a whale, or swatting away bugs, like a horse. Wagging also means different things depending on how the tail is wagged, such as its height or side-to-side movement. © Society for Science & the Public 2000–2024.

Keyword: Animal Communication; Emotions
Link ID: 29103 - Posted: 01.18.2024

By Carissa Wong Researchers have identified some of the earliest known cases of sex-chromosome syndromes — in five ancient humans. “It’s quite interesting to think that these people existed throughout human history and how they seem to have been part of their societies,” says Kyriaki Anastasiadou, who studies ancient genomics at the Francis Crick Institute in London and is a co-author of the study, which was published on 11 January in Communications Biology1. People with extra or missing chromosomes often have differences in appearance and behaviour compared with others in the population. By identifying individuals who had these genetic syndromes, the researchers could illuminate how past societies viewed and treated people with differences. Through sequencing ancient DNA, researchers have previously found2 ancient people with an atypical number of chromosomes, including an infant with Down syndrome — caused by an extra copy of chromosome 21 — who lived around 5,000 years ago. Anastasiadou and her colleagues have now discovered the first prehistoric person known to have had Turner syndrome, which occurs in females and is characterized by having only one complete copy of the X chromosome, instead of the two copies usually found in females (males have one X and one Y). The person lived in Somerset, UK, roughly 2,500 years ago, during the Iron Age. People with Turner syndrome tend to be shorter than average and experience fertility problems. The other people the researchers identified with sex-chromosome syndromes were male. Among them was the earliest known person to have an extra Y chromosome, known as Jacob’s syndrome, which is linked to being taller than average. The man lived around 1,100 years ago, during the Early Medieval Period. The team also found three ancient males from different points in time who had an extra X chromosome, a condition known as Klinefelter syndrome, which is linked to growing taller than average and having broader hips and larger breasts. © 2024 Springer Nature Limited

Keyword: Sexual Behavior
Link ID: 29099 - Posted: 01.16.2024

By Christina Jewett and Noah Weiland Marijuana is neither as risky nor as prone to abuse as other tightly controlled substances and has potential medical benefits, and therefore should be removed from the nation’s most restrictive category of drugs, federal scientists have concluded. The recommendations are contained in a 250-page scientific review provided to Matthew Zorn, a Texas lawyer who sued Health and Human Services officials for its release and published it online on Friday night. An H.H.S. official confirmed the authenticity of the document. The records shed light for the first time on the thinking of federal health officials who are pondering a momentous change. The agencies involved have not publicly commented on their debates over what amounts to a reconsideration of marijuana at the federal level. Since 1970, marijuana has been considered a so-called Schedule I drug, a category that also includes heroin. Schedule I drugs have no medical use and a high potential for abuse, and they carry severe criminal penalties under federal trafficking laws. The documents show that scientists at the Food and Drug Administration and the National Institute on Drug Abuse have recommended that the Drug Enforcement Administration make marijuana a Schedule III drug, alongside the likes of ketamine and testosterone, which are available by prescription. The review by federal scientists found that even though marijuana is the most frequently abused illicit drug, “it does not produce serious outcomes compared to drugs in Schedules I or II.” Marijuana abuse does lead to physical dependence, the analysis noted, and some people develop a psychological dependence. “But the likelihood of serious outcomes is low,” the review concluded. The review also said there is some “scientific support” for therapeutic uses of marijuana, including treatment of anorexia, pain, and nausea and vomiting related to chemotherapy. © 2024 The New York Times Company

Keyword: Drug Abuse
Link ID: 29097 - Posted: 01.13.2024

Diana Fleischman Because of the flaming culture wars, feminists and others who disagree about the nature of sex or sex differences often ascribe significant harms to researchers who claim that sex is binary or who acknowledge biological sex differences. These perceived harms include oppression, inequality, and even murder and suicide. As a result, many influential voices in the sex difference debate rarely engage in dialogue. This context made “The Big Conversation”—an October conference that brought together a diverse group of feminists, evolutionary psychologists, biologists, and neuroscientists—such a remarkable event. The rarity of such a meeting was highlighted by the cancellation of a panel on sex differences at an annual anthropological conference just a few days before. People who had sniped at each other for years through academic papers and social media not only shared stages and panels, they broke bread together. Attendees on all sides of the issue held my baby, whom I brought along. The fear of meeting ideological opponents often leads to the expectation of hostility in person, but what’s worse is that you often will come to like them! The Big Conversation took years to come together. It was organized by sex difference expert Marco Del Giudice and Paul Golding of the Santa Fe Boys Foundation. This foundation is dedicated to exploring how to help boys and young men and was the event’s sponsor. The conference featured 16 talks and 5 discussion sections. The entire conference is available for viewing (for free!) on the Santa Fe Boys Foundation website. A central questions in sex difference research concerns the origins of differences between men and women. Are these differences primarily the result of socialization, culture, and stereotype effects, or are these differences largely innate or biological? We can call these perspectives, as Carole Hooven did during her talk, the strong socialization view and the strong biology view, respectively. Many of the conference attendees, like Gina Rippon, Cordelia Fine and Daphna Joel, endorse the strong socialization view of sex differences, arguing that men and women are innately psychologically similar but are driven into different roles by cultural forces and socialization. This perspective sparks controversy surrounding discussions on biological sex differences because its proponents argue that legitimizing and publicizing sex differences creates them where they did not exist before. © 2024 Colin Wright

Keyword: Sexual Behavior; Evolution
Link ID: 29095 - Posted: 01.13.2024

By Conor Feehly A decade ago, when I was starting my first year of university in New Zealand, I attended a stage hypnosis. It was one of a number of events the university offered to incoming students during orientation week. From the stage of a campus auditorium, the hypnotist-for-hire asked an audience of some 200 students to close their eyes and listen to his voice. Then he directed us to clasp our hands tightly together, and to imagine an invisible thread wrapping around them—over and under, over and under—until it was impossible to pull them apart. After a few minutes of this, he told us to try to separate our hands. Those who could not, he said, should come on down to the stage. I instantly pulled my hands apart, but to my surprise, a close friend sitting next to me made his way to the front of the auditorium with roughly 20 others from the audience. Once on stage, the hypnotist tried to bring them deeper into a hypnotic trance, directing them to focus on his calm, authoritative voice. He then asked a few of them to role-play scenarios for our entertainment: a supermarket checkout clerk ringing up shopping items, a lifeguard scanning for lives to save. After a short time, I saw the hypnotist whisper something into the ear of my friend. He sheepishly made his way back to the seat next to me. “What did he say to you?” I asked. He replied, “I can tell you’re acting, mate, get off the stage.” In the more than 200 years since the practice of contemporary hypnosis was described by German physician Franz Mesmer, public perception of it has see-sawed between skepticism and credulity. Today hypnotherapy is used to provide therapeutic remedy for depression, pain, substance use disorders, and certain traumas, uses that are supported to a certain extent by research evidence. But many still consider hypnosis more of a cheap magician’s trick than legitimate clinical medicine. © 2024 NautilusNext Inc.,

Keyword: Attention
Link ID: 29094 - Posted: 01.13.2024

By Carl Zimmer Multiple sclerosis, an autoimmune disease that affects 2.9 million people, presents a biological puzzle. Many researchers suspect that the disease is triggered by a virus, known as Epstein-Barr, which causes the immune system to attack the nerves and can leave patients struggling to walk or talk. But the virus can’t be the whole story, since nearly everyone is infected with it at some point in life. A new study found a possible solution to this paradox in the skeletal remains of a lost tribe of nomads who herded cattle across the steppes of western Asia 5,000 years ago. It turns out that the nomads carried genetic mutations that most likely protected them from pathogens carried by their animals, but that also made their immune systems more sensitive. These genes, the study suggests, made the nomads’ descendants prone to a runaway immune response. The finding is part of a larger, unprecedented effort to understand how the evolutionary past has shaped the health of living people. Researchers are analyzing thousands of genomes of people who lived between Portugal and Siberia and between Norway and Iran roughly 3,000 to 11,000 years ago. They hope to trace the genetic roots of not only multiple sclerosis, but also diabetes, schizophrenia and many other modern illnesses. “We are taking ancient human genomics to a whole new level,” said Eske Willerslev, a geneticist at the University of Copenhagen who led the effort. The researchers published the multiple sclerosis study as well as three other papers on the genetics and health of ancient peoples on Wednesday in the journal Nature. For more than a decade, Dr. Willerslev and other researchers have been pulling DNA from ancient human bones. By comparing the surviving genetic material with that of living people, the scientists have been able to track some of the most significant migrations of people across the world. © 2024 The New York Times Company

Keyword: Multiple Sclerosis; Evolution
Link ID: 29093 - Posted: 01.11.2024

By Viviane Callier Aging can seem like an unregulated process: As time marches along, our cells and bodies inevitably accumulate dings and dents that cause dysfunctions, failures and ultimately death. However, in 1993 a discovery upended that interpretation of events. Researchers found a mutation in a single gene that doubled a worm’s life span; subsequent work showed that related genes, all involved in the response to insulin, are key regulators of aging in a host of animals, from worms and flies to humans. The discovery suggested that aging is not a random process — indeed, specific genes regulate it — and opened the door to further research into how aging proceeds at a molecular level. Recently, a set of papers documented a new biochemical pathway that regulates aging, one based on signals passed between mitochondria, the organelles best known as the powerhouse of the cell. Working with worms, the researchers found that damage to mitochondria in brain cells triggered a repair response that was then amplified, setting off similar reactions in mitochondria throughout the worm’s body. The effect of this repair activity was to extend the organism’s life span: The worms with repaired mitochondrial damage lived 50% longer. What’s more, cells in the germline — the cells that produce eggs and sperm — were central to this anti-aging communication system. It’s a finding that adds new dimensions to the fertility concerns implied when people talk about aging and their “biological clock.” Some of the findings were reported in Science Advances and others were posted on the scientific preprint server biorxiv.org in the fall. All Rights Reserved © 2024

Keyword: Development of the Brain
Link ID: 29092 - Posted: 01.11.2024