Chapter 13. Memory, Learning, and Development

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 4896

By JOSHUA A. KRISCH An old stucco house stands atop a grassy hill overlooking the Long Island Sound. Less than a mile down the road, the renowned Cold Spring Harbor Laboratory bustles with more than 600 researchers and technicians, regularly producing breakthroughs in genetics, cancer and neuroscience. But that old house, now a private residence on the outskirts of town, once held a facility whose very name evokes dark memories: the Eugenics Record Office. In its heyday, the office was the premier scientific enterprise at Cold Spring Harbor. There, bigoted scientists applied rudimentary genetics to singling out supposedly superior races and degrading minorities. By the mid-1920s, the office had become the center of the eugenics movement in America. Today, all that remains of it are files and photographs — reams of discredited research that once shaped anti-immigration laws, spurred forced-sterilization campaigns and barred refugees from entering Ellis Island. Now, historians and artists at New York University are bringing the eugenics office back into the public eye. “Haunted Files: The Eugenics Record Office,” a new exhibit at the university’s Asian/Pacific/American Institute, transports visitors to 1924, the height of the eugenics movement in the United States. Inside a dimly lit room, the sounds of an old typewriter click and clack, a teakettle whistles and papers shuffle. The office’s original file cabinets loom over reproduced desks and period knickknacks. Creaky cabinets slide open, and visitors are encouraged to thumb through copies of pseudoscientific papers. © 2014 The New York Times Company

Keyword: Genes & Behavior
Link ID: 20204 - Posted: 10.14.2014

By GINA KOLATA For the first time, and to the astonishment of many of their colleagues, researchers created what they call Alzheimer’s in a Dish — a petri dish with human brain cells that develop the telltale structures of Alzheimer’s disease. In doing so, they resolved a longstanding problem of how to study Alzheimer’s and search for drugs to treat it; the best they had until now were mice that developed an imperfect form of the disease. The key to their success, said the lead researcher, Rudolph E. Tanzi of Massachusetts General Hospital in Boston, was a suggestion by his colleague Doo Yeon Kim to grow human brain cells in a gel, where they formed networks as in an actual brain. They gave the neurons genes for Alzheimer’s disease. Within weeks they saw the hard Brillo-like clumps known as plaques and then the twisted spaghetti-like coils known as tangles — the defining features of Alzheimer’s disease. The work, which also offers strong support for an old idea about how the disease progresses, was published in Nature on Sunday. Leading researchers said it should have a big effect. “It is a giant step forward for the field,” said Dr. P. Murali Doraiswamy, an Alzheimer’s researcher at Duke University. “It could dramatically accelerate testing of new drug candidates.” Of course, a petri dish is not a brain, and the petri dish system lacks certain crucial components, like immune system cells, that appear to contribute to the devastation once Alzheimer’s gets started. But it allows researchers to quickly, cheaply and easily test drugs that might stop the process in the first place. The crucial step, of course, will be to see if drugs that work in this system stop Alzheimer’s in patients. © 2014 The New York Times Company

Keyword: Alzheimers
Link ID: 20203 - Posted: 10.13.2014

By David Leonhardt and Amanda Cox Like so many other parts of health care, childbirth has become a more medically intense experience over the last two decades. The use of drugs to induce labor has become far more common, as have cesarean sections. Today, about half of all births in this country are hastened either by drugs or surgery, double the share in 1990. Crucial to the change has been a widely held belief that once fetuses pass a certain set of thresholds — often 39 weeks of gestation and five and a half pounds in weight — they’re as healthy as they can get. More time in the womb doesn’t do them much good, according to this thinking. For parents and doctors, meanwhile, scheduling a birth, rather than waiting for its random arrival, is clearly more convenient. But a huge new set of data, based on every child born in Florida over an 11-year span, is calling into question some of the most basic assumptions of our medicalized approach to childbirth. The results also play into a larger issue: the growing sense among many doctors and other experts that Americans would actually be healthier if our health care system were sometimes less aggressive. The new data suggest that the thresholds to maximize a child’s health seem to be higher, which means that many fetuses might benefit by staying longer in the womb, where they typically add at least a quarter-pound per week. Seven-pound babies appear to be healthier than six-pound babies — and to fare better in school as they age. The same goes for eight-pound babies compared with seven-pound babies, and nine-pound babies compared with eight-pound babies. Weight, of course, may partly be an indicator of broader fetal health, but it seems to be a meaningful one: The chunkier the baby, the better it does on average, all the way up to almost 10 pounds. “Birth weight matters, and it matters for everyone,” says David N. Figlio, a Northwestern University professor and co-author of the study, which will soon be published in the American Economic Review, one of the field’s top journals. © 2014 The New York Times Company

Keyword: Development of the Brain; Aggression
Link ID: 20201 - Posted: 10.13.2014

Ann Robinson Neuroscience research got a huge boost last week with news of Professor John O’Keefe’s Nobel prize for work on the “brain’s internal GPS system”. It is an exciting new part of the giant jigsaw puzzle of our brain and how it functions. But how does cutting-edge neuroscience research translate into practical advice about how to pass exams, remember names, tot up household bills and find where the hell you left the car in a crowded car park? O’Keefe’s prize was awarded jointly with Swedish husband and wife team Edvard and May-Britt Moser for their discovery of “place and grid cells” that allow rats to chart where they are. When rats run through a new environment, these cells show increased activity. The same activity happens much faster while the rats are asleep, as they replay the new route. We already knew that the part of the brain known as the hippocampus was involved in spatial awareness in birds and mammals, and this latest work on place cells sheds more light on how we know where we are and where we’re going. In 2000, researchers at University College London led by Dr Eleanor Maguire showed that London taxi drivers develop a pumped-up hippocampus after years of doing the knowledge and navigating the backstreets of the city. MRI scans showed that cabbies start off with bigger hippocampuses than average, and that the area gets bigger the longer they do the job. As driver David Cohen said at the time to BBC News: “I never noticed part of my brain growing – it makes you wonder what happened to the rest of it!” © 2014 Guardian News and Media Limited

Keyword: Learning & Memory; Aggression
Link ID: 20199 - Posted: 10.13.2014

For decades, scientists thought that neurons in the brain were born only during the early development period and could not be replenished. More recently, however, they discovered cells with the ability to divide and turn into new neurons in specific brain regions. The function of these neuroprogenitor cells remains an intense area of research. Scientists at the National Institutes of Health (NIH) report that newly formed brain cells in the mouse olfactory system — the area that processes smells — play a critical role in maintaining proper connections. The results were published in the October 8 issue of the Journal of Neuroscience. “This is a surprising new role for brain stem cells and changes the way we view them,” said Leonardo Belluscio, Ph.D., a scientist at NIH’s National Institute of Neurological Disorders and Stroke (NINDS) and lead author of the study. The olfactory bulb is located in the front of the brain and receives information directly from the nose about odors in the environment. Neurons in the olfactory bulb sort that information and relay the signals to the rest of the brain, at which point we become aware of the smells we are experiencing. Olfactory loss is often an early symptom in a variety of neurological disorders, including Alzheimer’s and Parkinson’s diseases. In a process known as neurogenesis, adult-born neuroprogenitor cells are generated in the subventricular zone deep in the brain and migrate to the olfactory bulb where they assume their final positions. Once in place, they form connections with existing cells and are incorporated into the circuitry.

Keyword: Chemical Senses (Smell & Taste); Aggression
Link ID: 20191 - Posted: 10.11.2014

by Andy Coghlan Ten years after the death of everyone's favourite Superman, Christopher Reeve, his son Matthew Reeve is pushing ahead with a spine-tingling clinical trial You're planning a large study of a paralysis treatment that has already helped four young men. What will it entail? This study will include 36 people with spinal cord injuries who will be treated with epidural stimulation – a technique in which a device is used to apply electrical current to the spinal cord. If we see the same results as we did in the first four, this therapy could have a profound impact on thousands of people living with paralysis. It has the potential to become as commonplace as the pacemaker is for cardiac patients. How well has the treatment worked for the four men who have already received it? Prior to epidural stimulation, they had all suffered chronic injuries caused by completely severed spinal cords. All four have seen dramatic improvements, including the ability to voluntarily move their toes, feet, ankles and legs, and even stand at times, when the device is on. One unexpected bonus has been the return of autonomic function, such as bladder and bowel control and sexual function. From a quality-of-life point of view, this is the biggest improvement. Also unexpectedly, these autonomic functions continue in all four men even when the device is switched off, although they still need it to stand, move their legs and do exercises. © Copyright Reed Business Information Ltd.

Keyword: Movement Disorders; Aggression
Link ID: 20190 - Posted: 10.11.2014

by Laura Starecheski From the self-affirmations of Stuart Smalley on Saturday Night Live to countless videos on YouTube, saying nice things to your reflection in the mirror is a self-help trope that's been around for decades, and seems most often aimed at women. The practice, we're told, can help us like ourselves and our bodies more, and even make us more successful — allow us to chase our dreams! Impressed, but skeptical, I took this self-talk idea to one of the country's leading researchers on body image to see if it's actually part of clinical practice. David Sarwer is a psychologist and clinical director at the Center for Weight and Eating Disorders at the University of Pennsylvania. He says that, in fact, a mirror is one of the first tools he uses with some new patients. He stands them in front of a mirror and coaches them to use gentler, more neutral language as they evaluate their bodies. "Instead of saying, 'My abdomen is disgusting and grotesque,' " Sarwer explains, he'll prompt a patient to say, " 'My abdomen is round, my abdomen is big; it's bigger than I'd like it to be.' " The goal, he says, is to remove "negative and pejorative terms" from the patient's self-talk. The underlying notion is that it's not enough for a patient to lose physical weight — or gain it, as some women need to — if she doesn't also change the way her body looks in her mind's eye. This may sound weird. You're either a size 4 or a size 8, right? Not mentally, apparently. In a 2013 study from the Netherlands, scientists watched women with anorexia walk through doorways in a lab. The women, they noticed, turned their shoulders and squeezed sideways, even when they had plenty of room. © 2014 NPR

Keyword: Attention; Aggression
Link ID: 20178 - Posted: 10.08.2014

|By Tori Rodriguez Imagining your tennis serve or mentally running through an upcoming speech might help you perform better, studies have shown, but the reasons why have been unclear. A common theory is that mental imagery activates some of the same neural pathways involved in the actual experience, and a recent study in Psychological Science lends support to that idea. Scientists at the University of Oslo conducted five experiments investigating whether eye pupils adjust to imagined light as they do to real light, in an attempt to see whether mental imagery can trigger automatic neural processes such as pupil dilation. Using infrared eye-tracking technology, they measured the diameter of participants' pupils as they viewed shapes of varying brightness and as they imagined the shapes they viewed or visualized a sunny sky or a dark room. In response to imagined light, pupils constricted 87 percent as much as they did during actual viewing, on average; in response to imagined darkness, pupils dilated to 56 percent of their size during real perception. Two other experiments ruled out the possibility that participants were able to adjust their pupil size at will or that pupils were changing in response to mental effort, which can cause dilation. The finding helps to explain why imagined rehearsals can improve your game. The mental picture activates and strengthens the very neural circuits—even subconscious ones that control automated processes like pupil dilation—that you will need to recruit when it is time to perform. © 2014 Scientific American

Keyword: Learning & Memory
Link ID: 20176 - Posted: 10.08.2014

By Sarah C. P. Williams If you sailed through school with high grades and perfect test scores, you probably did it with traits beyond sheer smarts. A new study of more than 6000 pairs of twins finds that academic achievement is influenced by genes affecting motivation, personality, confidence, and dozens of other traits, in addition to those that shape intelligence. The results may lead to new ways to improve childhood education. “I think this is going to end up being a really classic paper in the literature,” says psychologist Lee Thompson of Case Western Reserve University in Cleveland, Ohio, who has studied the genetics of cognitive skills and who was not involved in the work. “It’s a really firm foundation from which we can build on.” Researchers have previously shown that a person’s IQ is highly influenced by genetic factors, and have even identified certain genes that play a role. They’ve also shown that performance in school has genetic factors. But it’s been unclear whether the same genes that influence IQ also influence grades and test scores. In the new study, researchers at King’s College London turned to a cohort of more than 11,000 pairs of both identical and nonidentical twins born in the United Kingdom between 1994 and 1996. Rather than focus solely on IQ, as many previous studies had, the scientists analyzed 83 different traits, which had been reported on questionnaires that the twins, at age 16, and their parents filled out. The traits ranged from measures of health and overall happiness to ratings of how much each teen liked school and how hard they worked. © 2014 American Association for the Advancement of Science

Keyword: Genes & Behavior; Aggression
Link ID: 20170 - Posted: 10.07.2014

By LAWRENCE K. ALTMAN A British-American scientist and a pair of Norwegian researchers were awarded this year’s Nobel Prize in Physiology or Medicine on Monday for discovering “an inner GPS in the brain” that enables virtually all creatures to navigate their surroundings. John O’Keefe, 75, a British-American scientist, will share the prize of $1.1 million with May-Britt Moser, 51, and Edvard I. Moser, 52, only the second married couple to win a Nobel in medicine, who will receive the other half. The three scientists’ discoveries “have solved a problem that has occupied philosophers and scientists for centuries — how does the brain create a map of the space surrounding us and how can we navigate our way through a complex environment?” said the Karolinska Institute in Sweden, which chooses the laureates. The positioning system they discovered helps us know where we are, find our way from place to place and store the information for the next time, said Goran K. Hansson, secretary of the Karolinska’s Nobel Committee. The researchers documented that certain cells are responsible for the higher cognitive function that steers the navigational system. Dr. O’Keefe began using neurophysiological methods in the late 1960s to study how the brain controls behavior and sense of direction. In 1971, he discovered the first component of the inner navigational system in rats. He identified nerve cells in the hippocampus region of the brain that were always activated when a rat was at a certain location. © 2014 The New York Times Company

Keyword: Learning & Memory
Link ID: 20169 - Posted: 10.07.2014

By Gretchen Vogel Research on how the brain knows where it is has bagged the 2014 Nobel Prize in Physiology or Medicine, the Nobel Committee has announced from Stockholm. One half of the prize goes to John O'Keefe, director of the Sainsbury Wellcome Centre in Neural Circuits and Behaviour at University College London. The other is for a husband-wife couple: May-Britt Moser, who is director of the Centre for Neural Computation in Trondheim, and Edvard Moser, director of the Kavli Institute for Systems Neuroscience in Trondheim. "In 1971, John O´Keefe discovered the first component of this positioning system," the Nobel Committee says in a statement that was just released. "He found that a type of nerve cell in an area of the brain called the hippocampus that was always activated when a rat was at a certain place in a room. Other nerve cells were activated when the rat was at other places. O´Keefe concluded that these “place cells” formed a map of the room." "More than three decades later, in 2005, May‐Britt and Edvard Moser discovered another key component of the brain’s positioning system," the statement goes on to explain. "They identified another type of nerve cell, which they called “grid cells”, that generate a coordinate system and allow for precise positioning and pathfinding. Their subsequent research showed how place and grid cells make it possible to determine position and to navigate." © 2014 American Association for the Advancement of Science

Keyword: Learning & Memory
Link ID: 20163 - Posted: 10.06.2014

Alison Abbott The fact that Edvard and May-Britt Moser have collaborated for 30 years — and been married for 28 — has done nothing to dull their passion for the brain. They talk about it at breakfast. They discuss its finer points at their morning lab meeting. And at a local restaurant on a recent summer evening, they are still deep into a back-and-forth about how their own brains know where they are and will guide them home. “Just to walk there, we have to understand where we are now, where we want to go, when to turn and when to stop,” says May-Britt. “It's incredible that we are not permanently lost.” If anyone knows how we navigate home, it is the Mosers. They shot to fame in 2005 with their discovery of grid cells deep in the brains of rats. These intriguing cells, which are also present in humans, work much like the Global Positioning System, allowing animals to understand their location. The Mosers have since carved out a niche studying how grid cells interact with other specialized neurons to form what may be a complete navigation system that tells animals where they are going and where they have been. Studies of grid cells could help to explain how memories are formed, and why recalling events so often involves re-envisioning a place, such as a room, street or landscape. While pursuing their studies, the two scientists have become a phenomenon. Tall and good-looking, they operate like a single brain in two athletic bodies in their generously funded lab in Trondheim, Norway — a remote corner of northern Europe just 350 kilometres south of the Arctic Circle. They publish together and receive prizes as a single unit — most recently, the Nobel Prize in Physiology or Medicine, which they won this week with their former supervisor, neuroscientist John O’Keefe at University College London. In 2007, while still only in their mid-40s, they won a competition by the Kavli Foundation of Oxnard, California, to build and direct one of only 17 Kavli Institutes around the world. The Mosers are now minor celebrities in their home country, and their institute has become a magnet for other big thinkers in neuroscience. “It is definitely intellectually stimulating to be around them,” says neurobiologist Nachum Ulanovsky from the Weizmann Institute of Science in Rehovot, Israel, who visited the Trondheim institute for the first time in September. © 2014 Nature Publishing Grou

Keyword: Learning & Memory
Link ID: 20162 - Posted: 10.06.2014

By ALINA TUGEND MANY workers now feel as if they’re doing the job of three people. They are on call 24 hours a day. They rush their children from tests to tournaments to tutoring. The stress is draining, both mentally and physically. At least that is the standard story about stress. It turns out, though, that many of the common beliefs about stress don’t necessarily give the complete picture. MISCONCEPTION NO. 1 Stress is usually caused by having too much work. While being overworked can be overwhelming, research increasingly shows that being underworked can be just as challenging. In essence, boredom is stressful. “We tend to think of stress in the original engineering way, that too much pressure or too much weight on a bridge causes it to collapse,” said Paul E. Spector, a professor of psychology at the University of South Florida. “It’s more complicated than that.” Professor Spector and others say too little to do — or underload, as he calls it — can cause many of the physical discomforts we associate with being overloaded, like muscle tension, stomachaches and headaches. A study published this year in the journal Experimental Brain Research found that measurements of people’s heart rates, hormonal levels and other factors while watching a boring movie — men hanging laundry — showed greater signs of stress than those watching a sad movie. “We tend to think of boredom as someone lazy, as a couch potato,” said James Danckert, a professor of neuroscience at the University of Waterloo in Ontario, Canada, and a co-author of the paper. “It’s actually when someone is motivated to engage with their environment and all attempts to do so fail. It’s aggressively dissatisfying.” © 2014 The New York Times Company

Keyword: Stress; Aggression
Link ID: 20161 - Posted: 10.04.2014

by Michael Marshall When we search for the seat of humanity, are we looking at the wrong part of the brain? Most neuroscientists assume that the neocortex, the brain's distinctive folded outer layer, is the thing that makes us uniquely human. But a new study suggests that another part of the brain, the cerebellum, grew much faster in our ape ancestors. "Contrary to traditional wisdom, in the human lineage the cerebellum was the part of the brain that accelerated its expansion most rapidly, rather than the neocortex," says Rob Barton of Durham University in the UK. With Chris Venditti of the University of Reading in the UK, Barton examined how the relative sizes of different parts of the brain changed as primates evolved. During the evolution of monkeys, the neocortex and cerebellum grew in tandem, a change in one being swiftly followed by a change in the other. But starting with the first apes around 25 million years ago through to chimpanzees and humans, the cerebellum grew much faster. As a result, the cerebellums of apes and humans contain far more neurons than the cerebellum of a monkey, even if that monkey were scaled up to the size of an ape. "The difference in ape cerebellar volume, relative to a scaled monkey brain, is equal to 16 billion extra neurons," says Barton. "That's the number of neurons in the entire human neocortex." © Copyright Reed Business Information Ltd.

Keyword: Evolution; Aggression
Link ID: 20160 - Posted: 10.04.2014

|By Daisy Yuhas Do we live in a holographic universe? How green is your coffee? And could drinking too much water actually kill you? Before you click those links you might consider how your knowledge-hungry brain is preparing for the answers. A new study from the University of California, Davis, suggests that when our curiosity is piqued, changes in the brain ready us to learn not only about the subject at hand, but incidental information, too. Neuroscientist Charan Ranganath and his fellow researchers asked 19 participants to review more than 100 questions, rating each in terms of how curious they were about the answer. Next, each subject revisited 112 of the questions—half of which strongly intrigued them whereas the rest they found uninteresting—while the researchers scanned their brain activity using functional magnetic resonance imaging (fMRI). During the scanning session participants would view a question then wait 14 seconds and view a photograph of a face totally unrelated to the trivia before seeing the answer. Afterward the researchers tested participants to see how well they could recall and retain both the trivia answers and the faces they had seen. Ranganath and his colleagues discovered that greater interest in a question would predict not only better memory for the answer but also for the unrelated face that had preceded it. A follow-up test one day later found the same results—people could better remember a face if it had been preceded by an intriguing question. Somehow curiosity could prepare the brain for learning and long-term memory more broadly. The findings are somewhat reminiscent of the work of U.C. Irvine neuroscientist James McGaugh, who has found that emotional arousal can bolster certain memories. But, as the researchers reveal in the October 2 Neuron, curiosity involves very different pathways. © 2014 Scientific American

Keyword: Learning & Memory; Aggression
Link ID: 20159 - Posted: 10.04.2014

By John Bohannon The victim peers across the courtroom, points at a man sitting next to a defense lawyer, and confidently says, "That's him!" Such moments have a powerful sway on jurors who decide the fate of thousands of people every day in criminal cases. But how reliable is eyewitness testimony? A new report concludes that the use of eyewitness accounts need tighter control, and among its recommendations is a call for a more scientific approach to how eyewitnesses identify suspects during the classic police lineup. For decades, researchers have been trying to nail down what influences eyewitness testimony and how much confidence to place in it. After a year of sifting through the scientific evidence, a committee of psychologists and criminologists organized by the U.S. National Research Council (NRC) has now gingerly weighed in. "This is a serious issue with major implications for our justice system," says committee member Elizabeth Phelps, a psychologist at New York University in New York City. Their 2 October report, Identifying the Culprit: Assessing Eyewitness Identification, is likely to change the way that criminal cases are prosecuted, says Elizabeth Loftus, a psychologist at the University of California, Irvine, who was an external reviewer of the report. As Loftus puts it, "just because someone says something confidently doesn't mean it's true." Jurors can't help but find an eyewitness’s confidence compelling, even though experiments have shown that a person's confidence in their own memory is sometimes undiminished even in the face of evidence that their memory of an event is false. © 2014 American Association for the Advancement of Science.

Keyword: Learning & Memory
Link ID: 20157 - Posted: 10.04.2014

Helen Thomson You'll have heard of Pavlov's dogs, conditioned to expect food at the sound of a bell. You might not have heard that a scarier experiment – arguably one of psychology's most unethical – was once performed on a baby. In it, a 9-month-old, at first unfazed by the presence of animals, was conditioned to feel fear at the sight of a rat. The infant was presented with the animal as someone struck a metal pole with a hammer above his head. This was repeated until he cried at merely the sight of any furry object – animate or inanimate. The "Little Albert" experiment, performed in 1919 by John Watson of Johns Hopkins University Hospital in Baltimore, Maryland, was the first to show that a human could be classically conditioned. The fate of Albert B has intrigued researchers ever since. Hall Beck at the Appalachian State University in Boone, North Carolina, has been one of the most tenacious researchers on the case. Watson's papers stated that Albert B was the son of a wet nurse who worked at the hospital. Beck spent seven years exploring potential candidates and used facial analysis to conclude in 2009 that Little Albert was Douglas Merritte, son of hospital employee Arvilla. Douglas was born on the same day as Albert and several other points tallied with Watson's notes. Tragically, medical records showed that Douglas had severe neurological problems and died at an early age of hydrocephalus, or water on the brain. According to his records, this seems to have resulted in vision problems, so much so that at times he was considered blind. © Copyright Reed Business Information Ltd.

Keyword: Emotions; Aggression
Link ID: 20156 - Posted: 10.04.2014

By Fredrick Kunkle Years ago, many scientists assumed that a woman’s heart worked pretty much the same as a man’s. But as more women entered the male-dominated field of cardiology, many such assumptions vanished, opening the way for new approaches to research and treatment. A similar shift is underway in the study of Alzheimer’s disease. It has long been known that more women than men get the deadly neurodegenerative disease, and an emerging body of research is challenging the common wisdom as to why. Although the question is by no means settled, recent findings suggest that biological, genetic and even cultural influences may play heavy roles. Of the more than 5 million people in the United States who have been diagnosed with Alzheimer’s, the leading cause of dementia, two-thirds are women. Because advancing age is considered the biggest risk factor for the disease, researchers largely have attributed that disparity to women’s longer life spans. The average life expectancy for women is 81 years, compared with 76 for men. Yet “even after taking age into account, women are more at risk,” said Richard Lipton, a physician who heads the Einstein Aging Study at Albert Einstein College of Medicine in New York. With the number of Alzheimer’s cases in the United States expected to more than triple by 2050, some researchers are urging a greater focus on understanding the underlying reasons women are more prone to the disease and on developing gender-specific treatments. .

Keyword: Alzheimers; Aggression
Link ID: 20155 - Posted: 10.04.2014

By Smitha Mundasad Health reporter, BBC News Measuring people's sense of smell in later life could help doctors predict how likely they are to be alive in five years' time, a PLOS One study suggests. A survey of 3,000 adults found 39% with the poorest sense of smell were dead within five years - compared to just 10% who identified odours correctly. Scientists say the loss of smell sense does not cause death directly, but may be an early warning sign. They say anyone with long-lasting changes should seek medical advice. Researchers from the University of Chicago asked a representative sample of adults between the ages of 57-85 to take part in a quick smell test. The assessment involved identifying distinct odours encased on the tips of felt-tip pens. The smells included peppermint, fish, orange, rose and leather. Five years later some 39% of adults who had the lowest scores (4-5 errors) had passed away, compared with 19% with moderate smell loss and just 10% with a healthy sense of smell (0-1 errors). And despite taking issues such as age, nutrition, smoking habits, poverty and overall health into account, researchers found those with the poorest sense of smell were still at greatest risk. Lead scientist, Prof Jayant Pinto, said: "We think loss of the sense of smell is like the canary in the coal mine. BBC © 2014

Keyword: Chemical Senses (Smell & Taste); Aggression
Link ID: 20149 - Posted: 10.02.2014

By Fredrick Kunkle Here’s something to worry about: A recent study suggests that middle-age women whose personalities tend toward the neurotic run a higher risk of developing Alzheimer’s disease later in life. The study by researchers at the University of Gothenburg in Sweden followed a group of women in their 40s, whose disposition made them prone to anxiety, moodiness and psychological distress, to see how many developed dementia over the next 38 years. In line with other research, the study suggested that women who were the most easily upset by stress — as determined by a commonly used personality test — were two times more likely to develop Alzheimer’s disease than women who were least prone to neuroticism. In other words, personality really is — in some ways — destiny. “Most Alzheimer’s research has been devoted to factors such as education, heart and blood risk factors, head trauma, family history and genetics,” study author Lena Johansson said in a written statement. “Personality may influence the individual’s risk for dementia through its effect on behavior, lifestyle or reactions to stress.” The researchers cautioned that the results cannot be extrapolated to men because they were not included in the study and that further work is needed to determine possible causes for the link. The study, which appeared Wednesday in the American Academy of Neurology’s journal, Neurology, examined 800 women whose average age in 1968 was 46 years to see whether neuroticism — which involves being easily distressed and subject to excessive worry, jealousy or moodiness — might have a bearing on the risk of dementia.

Keyword: Alzheimers; Aggression
Link ID: 20148 - Posted: 10.02.2014