Chapter 16. None

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 1447

by Philippa Skett It's the strangest sweet tooth in the world. Birds lost the ability to taste sugars, but nectar-feeding hummingbirds re-evolved the capacity by repurposing receptors used to taste savoury food. To differentiate between tastes, receptors on the surface of taste buds on the tongue, known as T1Rs, bind to molecules in certain foods, triggering a neurological response. In vertebrates such as humans, a pair of these receptors – T1R2 and T1R3 – work together to deliver the sweet kick we experience from sugar. But Maude Baldwin at Harvard University and her colleagues found that birds don't have the genes that code for T1R2. They are found in lizards, though, suggesting that they were lost at some point during the evolution of birds or the dinosaurs they evolved from. But hummingbirds clearly can detect sugar: not only do they regularly sup on nectar, taste tests show they prefer sweet tasting foods over blander options. Now Baldwin and her team have worked out why: another pair of receptors – T1R1 and T1R3 – work together to detect sugar. Other vertebrates use T1R1 to taste savoury foods. It seems that in hummingbirds the proteins on the surface of the two receptors have been modified so that they respond to sugars instead. © Copyright Reed Business Information Ltd.

Keyword: Chemical Senses (Smell & Taste); Aggression
Link ID: 19983 - Posted: 08.22.2014

By ELEANOR LEW I was watching Diane Sawyer on the evening news, wondering how she manages year after year to look so young, when suddenly her face disappeared. Now you see. Now you don’t. One second. That’s all it took. A dense black inkblot shaped like a map of England and southern Norway suddenly blocked my view of Diane so that all I could see was her blond hair and shoulders. At first, I thought it was the television set. Changing channels didn’t bring her face back, nor did rubbing my eyes. “It’s permanent vision loss,” my ophthalmologist said. “Your optic nerve and retina buckled.” He drew a picture of the inside of my right eye, the affected one, and explained that my degenerative myopia, an inherited condition that is far less common than ordinary nearsightedness but still a leading cause of blindness worldwide, had caused my eyeball to elongate excessively. It looked like a house whose walls had been stretched so thin that the roof caved. The doctor didn’t say much else, didn’t make any recommendations for physical or occupational therapy, didn’t tell me to call him if I noticed any changes. I left his office shaken. “What if it happens in my other eye? What if…?” In the weeks that followed, I began to notice bizarre changes in my right eye. Frequent flashing lights, like a dying neon tube, sometimes flickering color or bright white light, so intense I swore I could hear them buzz. I observed my peripheral vision diminishing. England and Norway morphed into a large, bushy oak tree with a short and wide trunk. At a park, I came upon children playing. When I covered my good eye with my hand, I could see only a sliver of sky, and legs and shoes of children running in and out of the tree. I wrote off the psychedelic changes to the “buckling” and didn’t bother to call my ophthalmologist. But I was scared and needed help. © 2014 The New York Times Company

Keyword: Vision
Link ID: 19982 - Posted: 08.22.2014

By CARL ZIMMER Your body is home to about 100 trillion bacteria and other microbes, collectively known as your microbiome. Naturalists first became aware of our invisible lodgers in the 1600s, but it wasn’t until the past few years that we’ve become really familiar with them. This recent research has given the microbiome a cuddly kind of fame. We’ve come to appreciate how beneficial our microbes are — breaking down our food, fighting off infections and nurturing our immune system. It’s a lovely, invisible garden we should be tending for our own well-being. But in the journal Bioessays, a team of scientists has raised a creepier possibility. Perhaps our menagerie of germs is also influencing our behavior in order to advance its own evolutionary success — giving us cravings for certain foods, for example. “One of the ways we started thinking about this was in a crime-novel perspective,” said Carlo C. Maley, an evolutionary biologist at the University of California, San Francisco, and a co-author of the new paper. “What are the means, motives and opportunity for the microbes to manipulate us? They have all three.” The idea that a simple organism could control a complex animal may sound like science fiction. In fact, there are many well-documented examples of parasites controlling their hosts. Some species of fungi, for example, infiltrate the brains of ants and coax them to climb plants and clamp onto the underside of leaves. The fungi then sprout out of the ants and send spores showering onto uninfected ants below. How parasites control their hosts remains mysterious. But it looks as if they release molecules that directly or indirectly can influence their brains. © 2014 The New York Times Company

Keyword: Obesity; Aggression
Link ID: 19981 - Posted: 08.20.2014

by Bethany Brookshire When a laboratory mouse and a house mouse come nose to nose for the first time, each one is encountering something it has never seen before. They are both Mus musculus. But the wild mouse is facing a larger, fatter, calmer and less aggressive version of itself that’s the result of brother-to-sister inbreeding for generations, resulting in mice that are almost completely genetically identical. Laboratory mice are incredibly valuable tools for research into diseases from Alzheimer’s to Zellweger syndrome. Scientists have a deep understanding of lab mouse DNA, and can use that knowledge to study how specific genes may control certain behaviors and underlie disease. But with all the inbreeding comes some traits that, while desirable in a lab mouse, may not reflect the behavior of an animal in the wild. So for some questions, and some behaviors, scientists might need something a bit wilder. A new study takes lab mice back to their roots and along the way uncovers a new gene function. Lea Chalfin and colleagues at the Weizmann Institute of Science in Rohovot, Israel, bred laboratory mice with wild mice for 10 generations. The result was a mouse with wild mouse genes and wild mouse behavior — with a few important lab mouse genes mixed in. The technique allows scientists to place specific mutations in a wild mouse. The results have interesting implications for studying the mouse species, and might provide some new ways to study human disease as well. Chalfin and her colleagues were especially interested in behaviors linked to female aggression. © Society for Science & the Public 2000 - 2013

Keyword: Aggression; Aggression
Link ID: 19980 - Posted: 08.20.2014

By James Gallagher Health editor, BBC News website Stimulating the part of the brain which controls movement may improve recovery after a stroke, research suggests. Studies showed firing beams of light into the brains of mice led to the animals moving further and faster than those without the therapy. The research, published in Proceedings of the National Academy of Science, could help explain how the brain recovers and lead to new treatments. The Stroke Association said the findings were interesting. Strokes can affect memory, movement and the ability to communicate. Brain cells die when their supply of oxygen and sugars is cut off by a blood clot. Stroke care is focused on rapid treatment to minimise the damage, but some recovery is possible in the following months as the brain rewires itself. The team at Stanford University School of Medicine investigated whether brain stimulation aided recovery in animal experiments. They used a technique called optogenetics to stimulate just the neurons in the motor cortex - the part of the brain responsible for voluntary movements - following a stroke. After seven days of stimulation, mice were able to walk further down a rotating rod than mice which had not had brain stimulation. After 10 days they were also moving faster. The researchers believe the stimulation is affecting how the wiring of the brain changes after a stroke. They detected higher levels of chemicals linked to the formation of new connections between brain cells. Lead researcher Prof Gary Steinberg said it was a struggle to give people drugs to protect brain cells in time as the "time window is very short". BBC © 2014

Keyword: Stroke
Link ID: 19979 - Posted: 08.20.2014

by Clare Wilson Figuring out how the brain works is enough to make your head spin. But now we seem to have a handle on how it gets its folded shape. The surface layer of the brain, or cortex, is also referred to as our grey matter. Mammals with larger brains have a more folded cortex, and the human brain is the most wrinkled of all, cramming as much grey matter into our skulls as possible. L. Mahadevan at Harvard University and his colleagues physically modelled how the brain develops in the embryo, using a layer of gel to stand in for the grey matter. This gel adhered to the top of a solid hemisphere of gel representing the white matter beneath. In the embryo, grey matter grows as neurons are created or others migrate to the cortex from the brain's centre. By adding a solvent to make the grey matter gel expand, the team mimicked how the cortex might grow in the developing brain. They didn't model what effect, if any, the skull would have had. Hills and valleys The team varied factors such as the stiffness of the gels and the depth of the upper layer to find a combination that led to similarly shaped wrinkles as those of the human brain, with smooth "hills" and sharply cusped "valleys". There are several theories about how the brain's folds form. These include the possibility that more neurons migrate to the hills, making them rise above the valleys, or that the valleys are pulled down by the axons – fibres that connect neurons to each other – linking highly interconnected parts of the brain together. © Copyright Reed Business Information Ltd.

Keyword: Development of the Brain
Link ID: 19974 - Posted: 08.19.2014

Sara Reardon The National Science Foundation (NSF)’s role in the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative is starting to take shape. On 18 August, the NSF awarded 36 small grants totalling US$10.8 million to projects studying everything from electrodes that measure chemical and electronic signals to artificial intelligence programs to identify brain structures. The three agencies participating in the BRAIN Initiative have taken markedly different approaches. The Defense Advanced Research Projects Agency, which received $50 million this year for the neuroscience programme, is concentrating on prosthetics and treatments for brain disorders that affect veterans, such as post-traumatic stress disorder. It has already awarded multi-million dollar grants to several teams. The National Institutes of Health, which received $40 million this year, has put together a 146-page plan to map and observe the brain over the next decade, and will announce its first round of grant recipients next month. The NSF, by contrast, has cast a wider net. The agency sent an request in March for informal, two-page project ideas. The only criterion was that the projects somehow address the properties of neural circuits. The response was overwhelming, says James Deshler, deputy director of the NSF’s Division of Biological Infrastructure. The agency had expected to fund about 12 grants, but decided to triple that number after receiving nearly 600 applications. “People started finding money in different pockets,” Deshler says. The wide-ranging list of winning projects includes mathematical models that help computers recognize different parts and patterns in the brain, physical tools such as new types of electrodes, and other tools that integrate and link neural activity to behaviour. © 2014 Nature Publishing Group

Keyword: Development of the Brain; Aggression
Link ID: 19973 - Posted: 08.19.2014

|By Karen Hopkin They say that the nose knows. But it still gets its marching orders from the brain—at least when it comes to the lungs. Got that? Nose to brain to lungs. Because a new study shows that when people with asthma think they’re smelling something noxious, their airways become inflamed—even when the odor is harmless. The finding is in the Journal of Psychosomatic Research. [Cristina Jaén and Pamela Dalton, Asthma and odors: The role of risk perception in asthma exacerbation] Asthma attacks can be triggered by pollen, dust, harsh chemicals or scents. These environmental annoyances constrict the airways in the lung, making breathing difficult. In this study, researchers wanted to see whether an individual’s assumptions have any influence over this breathtaking series of events. So they exposed 17 asthma sufferers to a benign chemical that smells like roses for 15 minutes. Nine subjects were told the fragrance was a potential irritant, the other eight that it would be therapeutic. The results were as plain as the nose on your face: subjects who expected an irritant experienced inflammation. And those who were primed to be soothed had no adverse reactions—even if they were normally bothered by perfumes. The results suggest that a rose by any other name would smell as sweet. Or be as irritating as you expect it will. © 2014 Scientific American

Keyword: Chemical Senses (Smell & Taste)
Link ID: 19972 - Posted: 08.19.2014

Vaughan Bell For thousands of years, direct studies of the human brain required the dead. The main method of study was dissection, which needed, rather inconveniently for the owner, physical access to their brain. Despite occasional unfortunate cases where the living brain was exposed on the battlefield or the surgeon's table, corpses and preserved brains were the source of most of our knowledge. When brain scanning technologies were invented in the 20th century they allowed the structure and function of the brain to be shown in living humans for the first time. This was as important for neuroscientists as the invention of the telescope and the cadaver slowly faded into the background of brain research. But recently, scrutiny of the post-mortem brain has seen something of a revival, a resurrection you might say, as modern researchers have become increasingly interested in applying their new scanning technologies to the brains of the deceased. Forensic pathologists have the job of working out the cause and manner of death to present as legal evidence and have been partly responsible for this curious full circle. One of their main jobs is the autopsy, where the pathologist examines the body, inside and out, to assess its condition at the point of death. Although the traditional autopsy has many advantages, not least the microscopic examination of body tissue, there are drawbacks. One is that within some religions cutting up the dead body is seen as an infringement of human dignity and may delay burial beyond the customary period. The other is that an autopsy is a one-shot deal. If someone disagrees with the way it has been carried out or its interpretation, it is usually too late to do anything except re-examine photos or, on the rare occasions when they may have been kept, tissue samples. © 2014 Guardian News and Media Limited

Keyword: Brain imaging
Link ID: 19970 - Posted: 08.18.2014

by Andy Coghlan Pioneering studies of post-mortem brain tissues have yielded the first evidence of a potential association between Alzheimer's disease and the epigenetic alteration of gene function. The researchers stress, however, that more research is needed to find out if the changes play a causal role in the disease or occur as a result of it. We already have some evidence that the risk of developing Alzheimer's might be elevated by poor diet, lack of exercise, and inflammatory conditions such as diabetes, obesity and clogging of blood vessels with fatty deposits. The new research hints that the lifestyle changes that raise Alzheimer's risk may be taking effect through epigenetic changes. The idea is strengthened by the fact that the brain tissue samples studied in the new work came from hundreds of people, many of whom had Alzheimer's when they died, and that a number of genes identified were found by two teams working independently, one in the UK and one in the US. "The results are compelling and consistent across four cohorts of patients taken across the two studies," says Jonathan Mill at the University of Exeter, who led the UK-based team. "It's illuminated new genetic pathways affecting the disease and, given the lack of success tackling Alzheimer's so far, new leads are going to be vital." "We can now focus our efforts on understanding how these genes are associated with the disease," says Philip De Jager of the Brigham and Women's Hospital in Boston, who headed the US team. © Copyright Reed Business Information Ltd.

Keyword: Alzheimers; Aggression
Link ID: 19969 - Posted: 08.18.2014

By Victoria Gill Science reporter, BBC News Scientists in Brazil have managed to eavesdrop on underwater "turtle talk". Their recordings have revealed that, in the nesting season, river turtles appear to exchange information vocally - communicating with each other using at least six different sounds. This included chatter recorded between females and hatchlings. The researchers say this is the first record of parental care in turtles. It shows they could be vulnerable to the effects of noise pollution, they warn. The results, published recently in the Journal Herpetologica, include recordings of the strange turtle talk. They reveal that the animals may lead much more socially complex lives than previously thought. The team, including researchers from the Wildlife Conservation Society (WCS) and the National Institute of Amazonian Research carried out their study on the Rio Trombetas in the Amazon between 2009 and 2011. They used microphones and underwater hydrophones to record more than 250 individual sounds from the animals. The scientists then analysed these vocalisations and divided them into six different types, correlating each category with a specific behaviour. Dr Camila Ferrara, of the WCS Brazil programme, told BBC News: "The [exact] meanings aren't clear... but we think they're exchanging information. "We think sound helps the animals to synchronise their activities in the nesting season," she said. The noises the animals made were subtly different depending on their behaviour. For example, there was a specific sound when adults were migrating through the river, and another when they gathered in front of nesting beaches. There was a different sound again made by adults when they were waiting on the beaches for the arrival of their hatchlings. BBC © 2014

Keyword: Animal Communication; Aggression
Link ID: 19968 - Posted: 08.18.2014

Ian Sample, science editor Scientists have prevented muscle wastage in mice with a form of muscular dystrophy by editing the faulty gene that causes the disease. The radical procedure could not be performed in humans, but researchers believe the work raises hopes for future gene-editing therapies to stop the disease from progressing in people. Duchenne muscular dystrophy is caused by mutations in a gene on the X chromosome and affects around one in 3,500 boys. Because girls have two X chromosomes they tend not to be affected, but can be carriers of the disease. The pivotal gene is used to make a protein called dystrophin which is crucial for muscle fibre strength. Without the protein, muscles in the body, including the heart and skeletal muscles, weaken and waste away. Most patients die by the age of 25 from breathing or heart problems. Researchers in the US used a powerful new gene-editing procedure called CRISPR to correct mutations in the dystrophin gene in mice that were destined to develop the disease. They extracted mouse embryos from their mothers and injected them with the CRISPR biological machinery, which found and corrected the faulty gene. After the injections, the mouse embryos were reimplanted in females and carried to term. Tests on the mice found that the therapy helped to restore levels of dystrophin, and that their skeletal muscle performed normally, even when only 17% of their cells contained corrected genes. The procedure could not be done in humans, but the proof-of-principle experiment demonstrates that correcting only a small proportion of cells could lead to a dramatic improvement for patients. © 2014 Guardian News and Media Limited

Keyword: Movement Disorders; Aggression
Link ID: 19966 - Posted: 08.16.2014

by Bethany Brookshire The clearish lump looks like some bizarre, translucent gummy candy that might have once been piña colada flavored. But this is something you definitely don’t want to eat. That see-through blob was once a mouse. In the Aug. 14 Cell, scientists at Caltech detail the difficult series of methods required to make small animals such as mice and rats completely translucent. Scientists have been trying to clear tissue for better observation since the 1800s, and, as with all science, the new techniques build on many previous experiments done in a variety of labs. The techniques make it possible to capture images both beautiful and gross. And the procedure will teach scientists more about anatomy than ever before. If you want to render an animal transparent, you first have to overcome a solid problem: lipids. This group includes molecules essential to life, such as fats, cholesterols, waxes and steroids. Lipids form the membranes that surround our cells, the hormones that make us grow and reproduce and much, much more. But lipids have a problem. You can’t see through them. So to render an organism transparent, you need to remove the lipids. Bin Yang and colleagues in Viviana Gradinaru’s lab at Caltech used detergents to dissolve the lipids. The technique is based on CLARITY, a method that Gradinaru helped to develop in Karl Deisseroth’s lab at Stanford. Scientists there rendered a mouse brain transparent using CLARITY. Gradinaru explains that for a clear organ, dissolving lipids alone alone isn’t enough. “Without lipids the tissue would just collapse, so we need to maintain the structure of the tissue,” she says. © Society for Science & the Public 2000 - 2013

Keyword: Brain imaging
Link ID: 19963 - Posted: 08.16.2014

By Kate Yandell Researchers have accumulated detailed knowledge of the neurons that drive male fruit flies’ mating behaviors. But the neurons that prompt females to respond—or not—to male overtures have been less-studied. Three papers published today (July 2) in Neuron and Current Biology begin to change that. They identify sets of neurons in female fruit flies that help process mating signals, modulate the insects’ receptivity to male courtship, and drive mating behavior. “These three groups independently identified important neuronal groups [that] are positioned in different points in the neuronal circuitry for regulating female receptivity,” said Daisuke Yamamoto, a behavioral geneticist at Tohoku University in Japan who was not involved in any of the studies. “We’ve had access to the male circuitry for a while now, and that’s turning out to be a really interesting way to study how behavior works,” said Jennifer Bussell, whose work as a PhD student at Rockefeller University contributed to the Current Biology paper. “Having that complementary circuit in the female can only provide more fodder for interesting experiments.” Female fruit flies’ mating behaviors depend on their reproductive state. They become receptive to mating as they mature, but become less receptive to males’ advances immediately after mating. If a female fruit fly is receptive to mating, she responds to male pheromones and courtship songs by engaging in a behavior called pausing, where she stops in her tracks near males so they can mount her and she opens her vaginal plates—hard coverings that protect her reproductive tract. © 1986-2014 The Scientist

Keyword: Sexual Behavior
Link ID: 19962 - Posted: 08.16.2014

By Jen Christiansen I threw down a bit of a challenge last month at the Association of Medical Illustrators Conference in Minnesota. But first, I had to—somewhat unexpectedly—accept some challenges presented by others. And face the reality that some of us simply do not have the constitution of an anatomist. I love classic anatomical illustrations such as the vintage works of Andreas Vesalius and the more modern stylings of Frank Netter. And on that front, this conference definitely delivered. Talks by Daniel Garrison and Francine Netter were drool-worthy, and I snapped photos of quickly advancing slides presented by W. Bruce Fye on the history of the illustrated heart, so I could reverse-image search them later and spend more time checking out the details and context. Videos of Robert Beverly Hale’s Art Students League lectures on anatomy charmed me (as presented by Glen Hintz), as well as new videos of clean architectural microstructures like the inner ear, presented by Robert Acland. I had to make myself walk quickly by one vendor table to avoid blowing my book budget for the year (and then some) on an impulse buy of Vesalius’ 1543 De Humani Corporis Fabrica, newly translated to English. But I averted my gaze when surgeons presented on the topic of facial transplantation and skull reconstruction. Shoot, I couldn’t even look at the screen through the entirety of a fascinating talk by Elizabeth Weissbrod and Valerie Henry on creating and using virtual and prosthetic simulations for military emergency response training. I avoided the hands-on human cadaveric dissection workshop sessions, telling myself and others that my travel schedule would simply not allow me to get to the Mayo Clinic in Rochester, Minn., early enough to participate or observe. © 2014 Scientific American

Keyword: Brain imaging
Link ID: 19957 - Posted: 08.14.2014

|By Melinda Wenner Moyer For most people, “fat,” particularly the kind that bulges under the skin, is a four-letter word. It makes our thighs jiggle; it lingers despite our torturous attempts to eliminate it. Too much of it increases our risk for heart disease and type 2 diabetes (the most common form of the condition). For decades researchers have looked for ways to reduce our collective stores of fat because they seemed to do more harm than good. But biology is rarely that simple. In the late 2000s several research groups independently discovered something that shattered the consensus about the absolute dangers of body fat. Scientists had long known that humans produce at least two types of fat tissue—white and brown. Each white fat cell stores energy in the form of a single large, oily droplet but is otherwise relatively inert. In contrast, brown fat cells contain many smaller droplets, as well as chestnut-colored molecular machines known as mitochondria. These organelles in turn burn up the droplets to generate heat. Babies, who have not yet developed the ability to shiver to maintain their body temperature, rely on thermogenic deposits of brown fat in the neck and around the shoulders to stay warm. Yet investigators assumed that all brown fat disappears during childhood. The new findings revealed otherwise. Adults have brown fat, too. Suddenly, people started throwing around terms like holy grail to describe the promise of brown fat to combat obesity. The idea was appealingly simple: if researchers could figure out how to incite the body to produce extra brown fat or somehow rev up existing brown fat, a larger number of calories would be converted into heat, reducing deposits of white fat in the process. © 2014 Scientific American

Keyword: Obesity
Link ID: 19953 - Posted: 08.13.2014

By GRETCHEN REYNOLDS Regular exercise may alter how a person experiences pain, according to a new study. The longer we continue to work out, the new findings suggest, the greater our tolerance for discomfort can grow. For some time, scientists have known that strenuous exercise briefly and acutely dulls pain. As muscles begin to ache during a prolonged workout, scientists have found, the body typically releases natural opiates, such as endorphins, and other substances that can slightly dampen the discomfort. This effect, which scientists refer to as exercise-induced hypoalgesia, usually begins during the workout and lingers for perhaps 20 or 30 minutes afterward. But whether exercise alters the body’s response to pain over the long term and, more pressing for most of us, whether such changes will develop if people engage in moderate, less draining workouts, have been unclear. So for the new study, which was published this month in Medicine & Science in Sports & Exercise, researchers at the University of New South Wales and Neuroscience Research Australia, both in Sydney, recruited 12 young and healthy but inactive adults who expressed interest in exercising, and another 12 who were similar in age and activity levels but preferred not to exercise. They then brought all of them into the lab to determine how they reacted to pain. Pain response is highly individual and depends on our pain threshold, which is the point at which we start to feel pain, and pain tolerance, or the amount of time that we can withstand the aching, before we cease doing whatever is causing it. © 2014 The New York Times Company

Keyword: Pain & Touch
Link ID: 19952 - Posted: 08.13.2014

By EDWARD LARKIN and IRENE HURFORD PHILADELPHIA — A FEW months ago, a patient came to our hospital, seeking help. One of us, Edward, was on the team that treated him. He was pleasant, if slightly withdrawn, and cogent. He was a college graduate in his 20s and had recently been fired from his job as a high school math teacher, because of unexpected absences. He had come to believe that government agents were conspiring against him, and he had taken to living out of a truck and sleeping in different parking lots. By the time he came to us, he was exhausted. A diagnosis became clear: he had schizophrenia. We admitted him to the hospital, and after a few days, with his symptoms under control, we released him. Unfortunately, we prescribed a medication for him that could cause significant, permanent harm, instead of an equally effective drug with milder side effects — all because he was uninsured. Schizophrenia, which affects 1 percent of the population and emerges in the late teens to early 20s, is deeply misunderstood. People who suffer from it are often suspected of being dangerous, but this is not usually the case, and antipsychotic drugs are very effective. Our patient was exactly the kind of person who, with the right treatment, could have weakened the stigma surrounding schizophrenia. Antipsychotic drugs fall into two classes: the older ones, like Haldol, and newer ones, like Abilify and Latuda. Both classes are equally effective at treating some of the worst symptoms of schizophrenia, specifically the hallucinations, delusions and paranoia that cause social alienation. (They’re not effective for treating “negative symptoms,” like low motivation.) But the older drugs can cause a multitude of serious side effects, including a potentially devastating one called tardive dyskinesia. This condition involves unsettling, animalistic smacking and wagging of the lips and tongue. At its extreme, it can affect the entire body. It occurs in 20 percent or more of patients who take the drugs long-term, and it tends to start so mildly that patients can’t identify it in time to stop taking the drugs. It is often irreversible. © 2014 The New York Times Company

Keyword: Schizophrenia
Link ID: 19950 - Posted: 08.13.2014

By MICHAEL CIEPLY and BROOKS BARNES LOS ANGELES — Peering through his camera at Robin Williams in 2012, the cinematographer John Bailey thought he glimpsed something not previously evident in the comedian’s work. They were shooting the independent film “The Angriest Man in Brooklyn,” and Mr. Williams was playing a New York lawyer who, facing death, goes on a rant against the injustice and banality of life. His performance, Mr. Bailey said Tuesday, was a window into the “Swiftian darkness of Robin’s heart.” The actor, like his character, was raging against the storm. That defiance gave way on Monday to the personal demons that had long tormented Mr. Williams. With his suicide at age 63, Mr. Williams forever shut the window on a complicated soul that was rarely visible through the cracks of an astonishingly intact career. Given his well-publicized troubles with depression, addiction, alcoholism and a significant heart surgery in 2009, Mr. Williams should have had a résumé filled with mysterious gaps. Instead, he worked nonstop. At the very least — if his life had followed the familiar script of troubled actors — there would have been whispers of on-set antics: lateness, forgotten lines, the occasional flared temper. Not so with Mr. Williams. “He was ready to work, he was the first one on the set,” said Mr. Bailey, speaking of Mr. Williams’s contribution to “The Angriest Man in Brooklyn,” of which he was the star. “Robin was always 1,000 percent reliable,” said a senior movie agent, speaking on the condition of anonymity to conform to the wishes of Mr. Williams’s family. “He was almost impossibly high functioning.” As Hollywood struggled on Tuesday to understand how Mr. Williams — effervescent in the extreme — could take his own life, authorities released details of his death. A clothed Mr. Williams hanged himself with a belt from a door frame in his bedroom in Tiburon, Calif., according to Lt. Keith Boyd, assistant deputy chief coroner for Marin County. © 2014 The New York Times Company

Keyword: Depression
Link ID: 19948 - Posted: 08.13.2014

Jia You Premature babies are more likely to produce piercing cries than their full-term peers are, researchers report online today in Biology Letters. Scientists have studied infant crying as a noninvasive way to assess how well a baby’s nervous system develops. Previous research of full-term babies indicates that an abnormally high pitch is associated with disturbances in an infant’s metabolism and neurological development. The team recorded spontaneous crying in preterm babies and full-term babies of the same age and compared the pitch of their sobs. They found that preterm babies whimper in a shriller voice, but not because they are smaller in size or grew at a slower rate in their mothers’ wombs. Instead, the researchers suspect the high pitch could reflect lower levels of activities in a premature baby’s vagal nerve, which extends from the brain stem to the abdomen. Vagal nerve activities are believed to decrease tension in the vocal cords, thus producing a lower pitch. Previous studies show that giving preterm babies massage therapies can stimulate their vagal activities, improve their ingestion, and help them gain weight. © 2014 American Association for the Advancement of Science

Keyword: Development of the Brain
Link ID: 19946 - Posted: 08.13.2014