Chapter 16. None

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 1373

By GRETCHEN REYNOLDS Sleep is essential for good health, as we all know. But a new study hints that there may be an easy but unrealized way to augment its virtues: lower the thermostat. Cooler bedrooms could subtly transform a person’s stores of brown fat — what has lately come to be thought of as “good fat” — and consequently alter energy expenditure and metabolic health, even into daylight hours. Until recently, most scientists thought that adults had no brown fat. But in the past few years, scanty deposits — teaspoonfuls, really — of the tissue have been detected in the necks and upper backs in many adults. This is important because brown fat, unlike the more common white stuff, is metabolically active. Experiments with mice have shown that it takes sugar out of the bloodstream to burn calories and maintain core temperature. A similar process seems to take place in humans. For the new study, published in June in Diabetes, researchers affiliated with the National Institutes of Health persuaded five healthy young male volunteers to sleep in climate-controlled chambers at the N.I.H. for four months. The men went about their normal lives during the days, then returned at 8 every evening. All meals, including lunch, were provided, to keep their caloric intakes constant. They slept in hospital scrubs under light sheets. For the first month, the researchers kept the bedrooms at 75 degrees, considered a neutral temperature that would not prompt moderating responses from the body. The next month, the bedrooms were cooled to 66 degrees, a temperature that the researchers expected might stimulate brown-fat activity (but not shivering, which usually begins at more frigid temperatures). The following month, the bedrooms were reset to 75 degrees, to undo any effects from the chillier room, and for the last month, the sleeping temperature was a balmy 81 degrees. Throughout, the subjects’ blood-sugar and insulin levels and daily caloric expenditures were tracked; after each month, the amount of brown fat was measured. © 2014 The New York Times Company

Keyword: Obesity
Link ID: 19844 - Posted: 07.17.2014

by Richard Frackowiak "A GRASS roots effort is under way to stop the project... 'Mediocre science, terrible science policy,' begins the spirited letter..." The year was 1990 and the journal Science was reporting on what it called a "backlash" against the Human Genome Project. Given the furore this past week you could be forgiven for thinking these words were written about another big science initiative: the Human Brain Project (HBP). Less than a year into its planned 10-year lifetime, the project was publicly criticised in an open letter posted online on 7 July, signed by more than 150 scientists. At the time of writing a further 400 individuals have added their names. The Human Genome Project weathered its criticisms and reached its goal in 2003, birthing the entire field of genomics and opening new medical, scientific and commercial avenues along the way. The Human Brain Project will similarly overcome its own teething troubles and catalyse a methodological paradigm shift towards unified brain research that weaves together neuroscience, computing and medicine. The goal of the HBP is a comprehensive understanding of brain structure and function through the development and use of computing tools. This is popularly deemed a "simulation of the whole human brain" but we prefer the analogy "CERN for the brain" (after Europe's premier particle physics lab): a large facility for diverse experiments and sharing of knowledge with a common goal of unlocking the most complex structure in the known universe. This brings me to two of the criticisms in the open letter: the apparent lack of experimental neuroscience and data generation in the HBP, and the emphasis on information and communications technologies (ICT) in what is billed as a neuroscience project. I will address a third criticism regarding funding later on. © Copyright Reed Business Information Ltd.

Keyword: Brain imaging
Link ID: 19842 - Posted: 07.17.2014

By Jonathan Webb Science reporter, BBC News After leaders of the billion-euro Human Brain Project hit back at critics, six top neuroscientists have expressed "dismay" at their public response. Last week an open message, signed by over 600 researchers, said the HBP was "not on course", demanding a review. An official reply said HBP members were "saddened" by the protest but Prof Henry Markram, the project's chair, has labelled it a personal crusade. In a letter to Nature, the six authors call for a more "open-minded attitude". They did not sign the original protest letter, but are disappointed by the publicly reported stance of the HBP leadership. "Instead of acknowledging that there is a problem and genuinely seeking to address scientists' concerns, the project leaders seem to be of the opinion that the letter's 580 signatories [now over 600] are misguided," wrote Prof Richard Morris, an eminent neuroscientist from the University of Edinburgh, and five colleagues. The six correspondents describe themselves as "neuroscientists in Europe who care about the success of research projects large and small in our field". Prof Richard Frackowiak, a co-executive director of the HBP, told the BBC he "strongly objects" to the idea that the project leaders were dismissive. "We've taken this extremely seriously," he said. The HBP is one of two flagship technology projects (the other being graphene research) announced in January 2013 by the European Commission (EC). BBC © 2014

Keyword: Brain imaging
Link ID: 19841 - Posted: 07.17.2014

|By Nidhi Subbaraman and SFARI.org A team at Duke University in Durham, North Carolina, is set to launch a $40 million clinical trial to explore stem cells from umbilical cord blood as a treatment for autism. But experts caution that the trial is premature. A $15 million grant from the Marcus Foundation, a philanthropic funding organization based in Atlanta, will bankroll the first two years of the five-year trial, which also plans to test stem cell therapy for stroke and cerebral palsy. The autism arm of the trial aims to enroll 390 children and adults. Joanne Kurtzberg, the trial’s lead investigator, has extensive experience studying the effectiveness of cord blood transplants for treating various disorders, such as leukemia and sickle cell anemia. Most recently, she showed that cord blood transplants can improve the odds of survival for babies deprived of oxygen at birth. A randomized trial of the approach for this condition is underway. “To really sort out if [stem] cells can treat these children, we need to do randomized, controlled trials that are well designed and well controlled, and that’s what we intend to do,” says Kurtzberg, professor of pediatrics and pathology at Duke. “We firmly believe we should be moving ahead in the clinic.” Early animal studies have shown that stem cells isolated from umbilical cord blood can stimulate cells in the spinal cord to regrow their myelin layers, and in doing so help restore connections with surrounding cells. Autism is thought to result from impaired connectivity in the brain. Because of this, some groups of children with the disorder may benefit from a stem cell transplant, Kurtzberg says. © 2014 Scientific American

Keyword: Autism; Aggression
Link ID: 19840 - Posted: 07.16.2014

By NICHOLAS BAKALAR The incidence of stroke in the United States has declined significantly over the past two decades, a new analysis has found. The decreases were apparent in people older than 65, the most common age group for stroke, and were similar in men and women and in blacks and whites. There were decreases in stroke deaths as well, but they were concentrated in younger research participants. The report appeared in JAMA. Researchers followed 14,357 people, ages 45 to 64 at the start of the study, from 1987 to 2011. After accounting for coronary heart disease, hypertension, diabetes, smoking, statin use and other factors, they found that the incidence of stroke decreased by about 50 percent over the period of the study, and stroke deaths by about 40 percent. Smoking cessation and better treatment of hypertension and high cholesterol accounted for part of the decrease, according to the senior author, Dr. Josef Coresh, a professor of epidemiology at the Johns Hopkins Bloomberg School of Public Health, and improved medical care and more rigorous control of risk factors probably helped as well. Increased diabetes prevalence, on the other hand, contributed to higher risk. “The decrease in stroke also suggests that there’s a decrease in smaller strokes that we may not detect,” he said, “and that would bode well for overall brain health and the potential for decreasing the risk of dementia with aging.” © 2014 The New York Times Company

Keyword: Stroke
Link ID: 19839 - Posted: 07.16.2014

Associated Press The rate of Alzheimer's disease and other dementias is falling in the United States and some other rich countries - good news about an epidemic that is still growing simply because more people are living to an old age, new studies show. An American over age 60 today has a 44 percent lower chance of developing dementia than a similar-aged person did roughly 30 years ago, the longest study of these trends in the U.S. concluded. Dementia rates also are down in Germany, a study there found. "For an individual, the actual risk of dementia seems to have declined," probably because of more education and control of health factors such as cholesterol and blood pressure, said Dr. Kenneth Langa. He is a University of Michigan expert on aging who discussed the studies Tuesday at the Alzheimer's Association International Conference in Copenhagen. The opposite is occurring in some poor countries that have lagged on education and health, where dementia seems to be rising. More than 5.4 million Americans and 35 million people worldwide have Alzheimer's, the most common form of dementia. It has no cure, and current drugs only temporarily ease symptoms. A drop in rates is a silver lining in the so-called silver tsunami - the expected wave of age-related health problems from an older population. Alzheimer's will remain a major public health issue, but countries where rates are dropping may be able to lower current projections for spending and needed services, experts said. © 2014 Hearst Communications, Inc.

Keyword: Alzheimers
Link ID: 19838 - Posted: 07.16.2014

By PAULA SPAN What we really want, if we’re honest, is a pill or a shot that would allow us to stop worrying about ever sinking into dementia. Instead, what we’re hearing about preventing dementia is, in many ways, the same stuff we hear about preventing other kinds of illnesses. Healthy lifestyles. Behavioral modification. Stress reduction. At the Alzheimer’s Association International Conference in Copenhagen this week, researchers from Montefiore Medical Center and the Albert Einstein College of Medicine were among the scientists presenting findings that had little to do with amyloid in the brain and a lot to do with how people feel and act and cope with life. “A number of people have been interested in modifiable lifestyle factors for years,” said Richard Lipton, a neurologist at the college and director of the Einstein Aging Study, which has tracked cognition in elderly Bronx residents since the 1980s. But interest has increased lately, he said: “It’s at least in part a reflection of disappointing drug trials.” Medications have failed, over and over, to prevent or cure or substantially slow the ravages of dementing diseases. What else might help? Dr. Lipton and his colleagues, who monitor about 600 people aged 70 to 105, have been exploring the impact of stress. More specifically, they have been measuring “perceived stress,” a metric not so much about unpleasant things happening as how people respond to them. They use a scale based on the answers to 13 questions like, “In the past month, how often have you felt confident about your ability to handle your personal problems?” and “In the past month, how often have you felt difficulties were piling up so high you could not overcome them?” © 2014 The New York Times Company

Keyword: Alzheimers
Link ID: 19837 - Posted: 07.16.2014

Claudia M. Gold At the recent gubernatorial candidates forum on mental health, Martha Coakley repeated the oft-heard phrase that depression is like diabetes. Her motivation was good, the idea being to reduce the stigma of mental illness, and to offer "parity" or equal insurance coverage, for mental and physical illness. However, I am concerned that this phrase, and its companion, "ADHD is like diabetes," will, in fact, have the exact opposite effect. A recent New York Times op ed, The Trouble with Brain Science, helped me to put my finger on what is troubling about these statements. Psychologist Gary Marcus identifies the need for a bridge between neuroscience and psychology that does not currently exist. Diabetes is a disorder of insulin metabolism. Insulin is produced in the pancreas. The above analogies disregard the intimate intertwining of brain and mind. For the pancreas, there is no corresponding "mind" that exists in the realm of feelings and relationships. While there is some emerging evidence of the brain structures involved in the collection of symptoms named by the DSM (Diagnostic and Statistical Manual of Mental Disorders,) there are no known biological processes corresponding to depression, ADHD or any other diagnosis in the DSM. There is, however, a wealth of new evidence showing how brain structure and function changes in relationships. ©2014 Boston Globe Media Partners, LLC

Keyword: Depression
Link ID: 19836 - Posted: 07.16.2014

By BENEDICT CAREY The 8-year-old juggling a soccer ball and the 48-year-old jogging by, with Japanese lessons ringing from her earbuds, have something fundamental in common: At some level, both are wondering whether their investment of time and effort is worth it. How good can I get? How much time will it take? Is it possible I’m a natural at this (for once)? What’s the percentage in this, exactly? Scientists have long argued over the relative contributions of practice and native talent to the development of elite performance. This debate swings back and forth every century, it seems, but a paper in the current issue of the journal Psychological Science illustrates where the discussion now stands and hints — more tantalizingly, for people who just want to do their best — at where the research will go next. The value-of-practice debate has reached a stalemate. In a landmark 1993 study of musicians, a research team led by K. Anders Ericsson, a psychologist now at Florida State University, found that practice time explained almost all the difference (about 80 percent) between elite performers and committed amateurs. The finding rippled quickly through the popular culture, perhaps most visibly as the apparent inspiration for the “10,000-hour rule” in Malcolm Gladwell’s best-selling “Outliers” — a rough average of the amount of practice time required for expert performance. Scientists begin to shed light on the placenta, an important organ that we rarely think of; virtual reality companies work out the kinks in their immersive worlds; research shows that practice may not be as important as once thought. The new paper, the most comprehensive review of relevant research to date, comes to a different conclusion. Compiling results from 88 studies across a wide range of skills, it estimates that practice time explains about 20 percent to 25 percent of the difference in performance in music, sports and games like chess. In academics, the number is much lower — 4 percent — in part because it’s hard to assess the effect of previous knowledge, the authors wrote. © 2014 The New York Times Company

Keyword: Learning & Memory
Link ID: 19835 - Posted: 07.15.2014

By Lizzie Wade It probably won’t come as a surprise that smoking a joint now and then will leave you feeling … pretty good, man. But smoking a lot of marijuana over a long time might do just the opposite. Scientists have found that the brains of pot abusers react less strongly to the chemical dopamine, which is responsible for creating feelings of pleasure and reward. Their blunted dopamine responses could leave heavy marijuana users living in a fog—and not the good kind. After high-profile legalizations in Colorado, Washington, and Uruguay, marijuana is becoming more and more available in many parts of the world. Still, scientific research on the drug has lagged. Pot contains lots of different chemicals, and scientists don’t fully understand how those components interact to produce the unique effects of different strains. Its illicit status in most of the world has also thrown up barriers to research. In the United States, for example, any study involving marijuana requires approval from four different federal agencies, including the Drug Enforcement Administration. One of the unanswered questions about the drug is what, exactly, it does to our brains, both during the high and afterward. Of particular interest to scientists is marijuana’s effect on dopamine, a main ingredient in the brain’s reward system. Pleasurable activities such as eating, sex, and some drugs all trigger bursts of dopamine, essentially telling the brain, “Hey, that was great—let’s do it again soon.” Scientists know that drug abuse can wreak havoc on the dopamine system. Cocaine and alcohol abusers, for example, are known to produce far less dopamine in their brains than people who aren’t addicted to those drugs. But past studies had hinted that the same might not be true for those who abuse marijuana. © 2014 American Association for the Advancement of Science

Keyword: Drug Abuse
Link ID: 19832 - Posted: 07.15.2014

By Neuroskeptic An entertaining paper just out in Frontiers in Systems Neuroscience offers a panoramic view of the whole of neuroscience: Enlarging the scope: grasping brain complexity The paper is remarkable not just for its content but also for its style. Some examples: How does the brain work? This nagging question is an habitué from the top ten lists of enduring problems in Science’s grand challenges. Grasp this paradox: how is one human brain – a chef d’oeuvre of complexity honed by Nature – ever to reach such a feast as to understand itself? Where one brain may fail at this notorious philosophical riddle, may be a strong and diversely-skilled army of brains may come closer. Or It remains an uneasy feeling that so much of Brain Science is built upon the foundation of a pair of neurons, outside the context of their networks, and with two open-ended areas of darkness at either of their extremities that must be thought of as the entire remainder of the organism’s brain (and body). And my favorite: As humans tend to agree, increased size makes up for smarter brains (disclosure: both authors are human) I love it. I’m not sure I understand it, though. The authors, Tognoli and Kelso, begin by framing a fundamental tension between directed information transfer and neural synchrony, pointing out that neurons firing perfectly in synch with each other could not transfer information between themselves.

Keyword: Consciousness
Link ID: 19829 - Posted: 07.15.2014

One in three cases of Alzheimer's disease worldwide is preventable, according to research from the University of Cambridge. The main risk factors for the disease are a lack of exercise, smoking, depression and poor education, it says. Previous research from 2011 put the estimate at one in two cases, but this new study takes into account overlapping risk factors. Alzheimer's Research UK said age was still the biggest risk factor. Writing in The Lancet Neurology, the Cambridge team analysed population-based data to work out the main seven risk factors for Alzheimer's disease. These are: Diabetes Mid-life hypertension Mid-life obesity Physical inactivity Depression Smoking Low educational attainment They worked out that a third of Alzheimer's cases could be linked to lifestyle factors that could be modified, such as lack of exercise and smoking. The researchers then looked at how reducing these factors could affect the number of future Alzheimer's cases. They found that by reducing each risk factor by 10%, nearly nine million cases of the disease could be prevented by 2050. In the UK, a 10% reduction in risk factors would reduce cases by 8.8%, or 200,000, by 2050, they calculated. BBC © 2014

Keyword: Alzheimers
Link ID: 19824 - Posted: 07.14.2014

By Fredrick Kunkle A simple test of a person’s ability to identify odors and noninvasive eye exams might someday help doctors learn whether their patients are at risk of Alzheimer’s disease, according to research to be presented Sunday. With Alzheimer’s disease growing fast among the world’s aging population, researchers are increasingly focused on the search for new ways to detect and treat the brain-killing disease in its earliest stages. In two separate studies on the connection between dementia and sense of smell, teams of researchers found that a decreased ability to detect odors in older people, as determined by a common scratch-and-sniff test, could point to brain cell loss and the onset of dementia. In two other studies, researchers showed that noninvasive eye exams also might offer a way to identify Alzheimer’s in its early stages. The findings — which are to be presented at the Alzheimer’s Association International Conference in Copenhagen on Sunday — raise hopes that doctors could develop simple, inexpensive diagnostic tools that would hunt down reliable biomarkers of a disease that affects more than 5 million people in the United States. Alzheimer’s is a progressive and incurable disease that begins in areas of the brain associated with memory. It is the leading cause of dementia in older people, usually striking after the age of 65. It robs people of their cognitive abilities, speech and, ultimately, their identities. Eventually, it shuts down the most basic body functions, resulting in death.

Keyword: Alzheimers
Link ID: 19823 - Posted: 07.14.2014

Posted by alison abbott Cautious efforts to restore unity to the billion-euro Human Brain Project have begun. Both the European Commission and the project’s leaders have now responded to a scorching open letter in which angry neuroscientists condemn the flagship project, and pledge to boycott it. Signed by 156 top neuroscientists, including many research institute directors in Europe, the letter was sent on 7 July to the European Commission, which is funding the project’s first phase. It expresses concern about both the scientific approach in the neuroscience arm of the project, which aims to simulate brain function in supercomputers, and the general project management. The letter makes a series of demands for changes that it claims are needed to make the management and governance of the Human Brain Project more transparent and representative of the scientific views of the whole community. Since it was sent, a further 408 neuroscientists have added their signatures. On 10 July, the European Commission sent a bland statement to Nature, stating that “it is too early to draw conclusions on the success or failure of the project”, given that it has only been running for nine months. The Commission’s response also says that a “divergence of views” is not unusual in large-scale projects, particularly at their beginnings and that the Commission will “continue to engage with all partners in this ambitious project”. © 2014 Macmillan Publishers Limited

Keyword: Brain imaging
Link ID: 19821 - Posted: 07.14.2014

Sara Reardon For chimps, nature and nurture appear to contribute equally to intelligence. Smart chimpanzees often have smart offspring, researchers suggest in one of the first analyses of the genetic contribution to intelligence in apes. The findings, published online today in Current Biology1, could shed light on how human intelligence evolved, and might even lead to discoveries of genes associated with mental capacity. A team led by William Hopkins, a psychologist at Georgia State University in Atlanta, tested the intelligence of 99 chimpanzees aged 9 to 54 years old, most of them descended from the same group of animals housed at the Yerkes National Primate Research Center in Atlanta. The chimps faced cognitive challenges such as remembering where food was hidden in a rotating object, following a human’s gaze and using tools to solve problems. A subsequent statistical analysis revealed a correlation between the animals' performance on these tests and their relatedness to other chimpanzees participating in the study. About half of the difference in performance between individual apes was genetic, the researchers found. In humans, about 30% of intelligence in children can be explained by genetics; for adults, who are less vulnerable to environmental influences, that figure rises to 70%. Those numbers are comparable to the new estimate of the heritability of intelligence across a wide age range of chimps, says Danielle Posthuma, a behavioural geneticist at VU University in Amsterdam, who was not involved in the research. “This study is much overdue,” says Rasmus Nielsen, a computational biologist at the University of California, Berkeley. “There has been enormous focus on understanding heritability of intelligence in humans, but very little on our closest relatives.” © 2014 Nature Publishing Group

Keyword: Intelligence; Aggression
Link ID: 19820 - Posted: 07.12.2014

By Jules Wellinghoff A simple change in electric charge may make the difference between someone getting the medicine they need and a trip to the emergency room—at least if a new study bears out. Researchers investigating the toxicity of particles designed to ferry drugs inside the body have found that carriers with a positive charge on their surface appear to cause damage if they reach the brain. These particles, called micelles, are one type of a class of materials known as nanoparticles. By varying properties such as charge, composition, and attached surface molecules, researchers can design nanoparticles to deliver medicine to specific body regions and cell types—and even to carry medicine into cells. This ability allows drugs to directly target locations they would otherwise be unable to, such as the heart of tumors. Researchers are also looking at nanoparticles as a way to transport drugs across the blood-brain barrier, a wall of tightly connected cells that keeps most medication out of the brain. Just how safe nanoparticles in the brain are, however, remains unclear. So Kristina Bram Knudsen, a toxicologist at the National Research Centre for the Working Environment in Copenhagen, and colleagues tested two types of micelles, which were made from different polymers that gave the micelles either a positive or negative surface charge. They injected both versions, empty of drugs, into the brains of rats, and 1 week later they checked for damage. Three out of the five rats injected with the positively charged micelles developed brain lesions. The rats injected with the negatively charged micelles or a saline control solution did not suffer any observable harm from the injections, the team will report in an upcoming issue of Nanotoxicology. © 2014 American Association for the Advancement of Science

Keyword: Neurotoxins
Link ID: 19819 - Posted: 07.12.2014

By Dominic Basulto It turns out that the human brain may not be as mysterious as it has always seemed to be. Researchers at George Washington University, led by Mohamad Koubeissi, may have found a way to turn human consciousness on and off by targeting a specific region of the brain with electrical currents. For brain researchers, unlocking the mystery of human consciousness has always been viewed as one of the keys for eventually building an artificial brain, and so this could be a big win for the future of brain research. What the researchers did was deliver a serious of high frequency electrical impulses to the claustrum region of the brain in a woman suffering from epilepsy. Before the electric shocks, the woman was capable of writing and talking. During the electric shocks, the woman faded out of consciousness, and started staring blankly into space, incapable of even the most basic sensory functions. Even her breathing slowed. As soon as the electrical shocks stopped, the woman immediately regained her sensory skills with no memory of the event. The researchers claim that this test case is evidence of being able to turn consciousness on and off. Granted, there’s a lot still to be done. That George Washington test, for example, has only been successfully performed on one person. And that woman had already had part of her hippocampus removed, so at least one researcher says the whole experiment must be interpreted carefully. There have been plenty of scientific experiments that have been “one and done,” so it remains to be seen whether these results can be replicated again.

Keyword: Consciousness
Link ID: 19817 - Posted: 07.12.2014

Adults with extreme obesity have increased risks of dying at a young age from cancer and many other causes including heart disease, stroke, diabetes, and kidney and liver diseases, according to results of an analysis of data pooled from 20 large studies of people from three countries. The study, led by researchers from the National Cancer Institute (NCI), part of the National Institutes of Health, found that people with class III (or extreme) obesity had a dramatic reduction in life expectancy compared with people of normal weight. The findings appeared July 8, 2014, in PLOS Medicine. “While once a relatively uncommon condition, the prevalence of class III, or extreme, obesity is on the rise. In the United States, for example, six percent of adults are now classified as extremely obese, which, for a person of average height, is more than 100 pounds over the recommended range for normal weight,” said Cari Kitahara, Ph.D., Division of Cancer Epidemiology and Genetics, NCI, and lead author of the study. “Prior to our study, little had been known about the risk of premature death associated with extreme obesity.” In the study, researchers classified participants according to their body mass index (BMI), which is a measure of total body fat and is calculated by dividing a person’s weight in kilograms by their height in meters squared. The 20 studies that were analyzed included adults from the United States, Sweden and Australia. These groups form a major part of the NCI Cohort Consortium, which is a large-scale partnership that identifies risk factors for cancer death. After excluding individuals who had ever smoked or had a history of certain diseases, the researchers evaluated the risk of premature death overall and the risk of premature death from specific causes in more than 9,500 individuals who were class III obese and 304,000 others who were classified as normal weight.

Keyword: Obesity
Link ID: 19812 - Posted: 07.10.2014

Associated Press Scientists at the Massachusetts Institute of Technology are developing an audio reading device to be worn on the index finger of people whose vision is impaired, giving them affordable and immediate access to printed words. The so-called FingerReader, a prototype produced by a 3-D printer, fits like a ring on the user's finger, equipped with a small camera that scans text. A synthesized voice reads words aloud, quickly translating books, restaurant menus and other needed materials for daily living, especially away from home or office. Reading is as easy as pointing the finger at text. Special software tracks the finger movement, identifies words and processes the information. The device has vibration motors that alert readers when they stray from the script, said Roy Shilkrot, who is developing the device at the MIT Media Lab. For Jerry Berrier, 62, who was born blind, the promise of the FingerReader is its portability and offer of real-time functionality at school, a doctor's office and restaurants. "When I go to the doctor's office, there may be forms that I want to read before I sign them," Berrier said. He said there are other optical character recognition devices on the market for those with vision impairments, but none that he knows of that will read in real time. Berrier manages training and evaluation for a federal program that distributes technology to low-income people in Massachusetts and Rhode Island who have lost their sight and hearing. He works from the Perkins School for the Blind in Watertown, Mass. Developing the gizmo has taken three years of software coding, experimenting with various designs and working on feedback from a test group of visually impaired people. Much work remains before it is ready for the market, Shilkrot said, including making it work on cell phones. © 2014 Hearst Communications, Inc.

Keyword: Vision; Aggression
Link ID: 19811 - Posted: 07.10.2014

The modern idea of stress began on a rooftop in Canada, with a handful of rats freezing in the winter wind. This was 1936 and by that point the owner of the rats, an endocrinologist named Hans Selye, had become expert at making rats suffer for science. "He would subject them to extreme temperatures, make them go hungry for long periods, or make them exercise a lot," the medical historian says. "Then what he would do is kill the rats and look at their organs." What was interesting to Selye was that no matter how different the tortures he devised for the rats were — from icy winds to painful injections — when he cut them open to examine their guts it appeared that the physical effects of his different tortures were always the same. "Almost universally these rats showed a particular set of signs," Jackson says. "There would be changes particularly in the adrenal gland. So Selye began to suggest that subjecting an animal to prolonged stress led to tissue changes and physiological changes with the release of certain hormones, that would then cause disease and ultimately the death of the animal." And so the idea of stress — and its potential costs to the body — was born. But here's the thing: The idea of stress wasn't born to just any parent. It was born to Selye, a scientist absolutely determined to make the concept of stress an international sensation. © 2014 NPR

Keyword: Stress
Link ID: 19809 - Posted: 07.09.2014