Chapter 16. None

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 2864

By Gary Stix In recent decades neuroscience has emerged as a star among the biological disciplines. But its enormous popularity as an academic career choice has been accompanied by a drop in the percentage of trained neuroscientists who actually work in academic research positions—largely because of a lack of funding. In 2014 the National Academies organized a workshop to ponder the question of whether this trend bodes well for the scientists-to-be who are now getting their Ph.D.s. The findings were published this summer in Neuron. Steven Hyman of the Broad Institute of the Massachusetts Institute of Technology and Harvard University, who helped to plan the workshop and was recently president of the Society for Neuroscience (SfN), welcomes the flood of doctoral students choosing the field but warns: “Insofar as talented young people are discouraged from academic careers by funding levels so low that they produce debilitating levels of competition or simply foreclose opportunities, the U.S. and the world are losing an incredibly precious resource.” Because there are not enough academic positions to go around, it is now the responsibility of professors to prepare students for alternative careers, says Huda Akil of the University of Michigan Medical School, lead author of the paper. “It's not just academia and industry” where trained neuroscientists can make contributions to society, says Akil, also a former SfN president: “It's nonprofits. It's social policy. It's science writing. It's man-machine interfaces. It's Big Data, or education, or any area where knowledge of the brain is relevant.” © 2016 Scientific American

Keyword: Miscellaneous
Link ID: 22564 - Posted: 08.17.2016

by Helen Thompson Some guys really know how to kill a moment. Among Mediterranean fish called ocellated wrasse (Symphodus ocellatus), single males sneak up on mating pairs in their nest and release a flood of sperm in an effort to fertilize some of the female’s eggs. But female fish may safeguard against such skullduggery through their ovarian fluid, gooey film that covers fish eggs. Suzanne Alonzo, a biologist at Yale University, and her colleagues exposed sperm from both types of males to ovarian fluid from female ocellated wrasse in the lab. Nesting males release speedier sperm in lower numbers (about a million per spawn), while sneaking males release a lot of slower sperm (about four million per spawn). Experiments showed that ovarian fluid enhanced sperm velocity and motility and favored speed over volume. Thus, the fluid gives a female’s chosen mate an edge in the race to the egg, the researchers report August 16 in Nature Communications. While methods to thwart unwanted sperm are common in species that fertilize within the body, evidence from Chinook salmon previously hinted that external fertilizers don’t have that luxury. However, these new results suggest otherwise: Some female fish retain a level of control over who fathers their offspring even after laying their eggs. Male ocellated wrasse come in three varieties: sneaky males (shown) that surprise mating pairs with sperm but don’t help raise offspring; nesting males that build algae nests and court females; and satellite males, which protect nests from sneakers but staying out of parenting. |© Society for Science & the Public 2000 - 2016

Keyword: Sexual Behavior; Evolution
Link ID: 22563 - Posted: 08.17.2016

By Marlene Cimons Former president Jimmy Carter, 91, told the New Yorker recently that 90 percent of the arguments he has with Rosalynn, his wife of 70 years, are about hearing. “When I tell her, ‘Please speak more loudly,’ she absolutely refuses to speak more loudly, or to look at me when she talks,” he told the magazine. In response, the former first lady, 88, declared that having to repeat things “drives me up the wall.” Yet after both went to the doctor, much to her surprise, “I found out it was me!” she said. “I was the one who was deaf.” Hearing loss is like that. It comes on gradually, often without an individual’s realizing it, and it prompts a range of social and health consequences. “You don’t just wake up with a sudden hearing loss,” says Barbara Kelley, executive director of the Hearing Loss Association of America. “It can be insidious. It can creep up on you. You start coping, or your spouse starts doing things for you, like making telephone calls.” An estimated 25 percent of Americans between ages 60 and 69 have some degree of hearing loss, according to the President’s Council of Advisors on Science and Technology. That percentage grows to more than 50 percent for those age 70 to 79, and to almost 80 percent of individuals older than 80. That’s about 30 million people, a number likely to increase as our population ages. Behind these statistics are disturbing repercussions such as social isolation and the inability to work, travel or be physically active.

Keyword: Hearing
Link ID: 22561 - Posted: 08.16.2016

By Sunpreet Singh Every day people are exposed to hours of artificial light from a variety of sources – computers, video games, office lights and, for some, 24-hour lighting in hospitals and nursing homes. Now new research in animals shows that excessive exposure to “light pollution” may be worse for health than previously known, taking a toll on muscle and bone strength. Researchers at Leiden University Medical Center in the Netherlands tracked the health of rats exposed to six months of continuous light compared to a control group of rats living under normal light-dark conditions — 12 hours of light, followed by 12 hours of dark. During the study, the rats exposed to continuous light had less muscle strength and developed signs of early-stage osteoporosis. They also got fatter and had higher blood glucose levels. Several markers of immune system health also worsened, according to the report published in the medical journal Current Biology. While earlier research has suggested excessive light exposure could affect cognition, the new research was surprising in that it showed a pronounced effect on muscles and bones. While it’s not clear why constant light exposure took a toll on the motor functions of the animals, it is known that light and dark cues influence a body’s circadian rhythms, which regulate many of the body’s physiological processes. “The study is the first of its kind to show markers of negatively-affected muscle fibers, skeletal systems and motor performances due to the disruption of circadian clocks, remarkably in only a few months,” said Chris Colwell, a psychiatry professor and sleep specialist at the University of California, Los Angeles, who was not part of the study. “They found that not only did motor performance go down on tests, but the muscles themselves just atrophied, and mice physically became weaker under just two months under these conditions.” © 2016 The New York Times Company

Keyword: Biological Rhythms
Link ID: 22556 - Posted: 08.13.2016

Ramin Skibba Scientists and medical researchers in the United States have been studying the health benefits and risks of marijuana for decades. But despite the increasing availability of legal marijuana, scientists have been forced to obtain the drug from a single source — the University of Mississippi in Oxford, which grows pot for research on a campus farm under a contract with the National Institute on Drug Abuse (NIDA). Now, the university’s monopoly is coming to an end. In an unexpected move, the US Drug Enforcement Administration (DEA) announced on 11 August that it will allow any institution to apply for permission to grow marijuana for research. Nature explains how the policy could transform the study of marijuana. Why do researchers want to study pot — and how do they get it? Researchers have been extracting cannabinoids — chemical compounds found in cannabis — and developing strains of varying strength to test whether they could alleviate chronic pain and treat or mitigate the effects of ailments such as seizures and other neurological disorders. Approved medical-marijuana consumers may buy pot from dispensaries in more than half the country, and recreational marijuana use is permitted in a few states. But researchers are limited to the handful of strains grown by the University of Mississippi farm. © 2016 Macmillan Publishers Limited

Keyword: Drug Abuse
Link ID: 22554 - Posted: 08.13.2016

By THE EDITORIAL BOARD Supporters of a saner marijuana policy scored a small victory this week when the Obama administration said it would authorize more institutions to grow marijuana for medical research. But the government passed up an opportunity to make a more significant change. The Drug Enforcement Administration on Thursday turned down two petitions — one from the governors of Rhode Island and Washington and the other from a resident of New Mexico — requesting that marijuana be removed from Schedule 1 of the Controlled Substances Act. Drugs on that list, which include heroin and LSD, are deemed to have no medical use; possession is illegal under federal law, and researchers have to jump through many hoops to obtain permission to study them and obtain samples to study. Having marijuana on that list is deeply misguided since many scientists and President Obama have said that it is no more dangerous than alcohol. Over the years, Congress and attorneys general have deferred to the expertise of the D.E.A., which is the part of the Justice Department that enforces the nation’s drug laws. So the D.E.A. has amassed extensive control over drug policy making. It determines who gets to grow marijuana for research and which scholars are allowed to study it, for example. It has strongly resisted efforts by scientists, state officials and federal lawmakers to reclassify marijuana by rejecting or refusing to acknowledge evidence that marijuana is not nearly as harmful as federal law treats it. Since 1968, the University of Mississippi has been the only institution allowed to grow the plant for research. This has severely limited availability. The D.E.A. now says that because researchers are increasingly interested in studying marijuana, it will permit more universities to grow the cannabis plant and supply it to researchers who have been approved to conduct studies on it. This should make it easier for researchers to obtain varieties of marijuana with varying concentrations of different compounds. © 2016 The New York Times Company

Keyword: Drug Abuse
Link ID: 22553 - Posted: 08.13.2016

Ed Yong At the age of seven, Henry Gustav Molaison was involved in an accident that left him with severe epilepsy. Twenty years later, a surgeon named William Scoville tried to cure him by removing parts of his brain. It worked, but the procedure left Molaison unable to make new long-term memories. Everyone he met, every conversation he had, everything that happened to him would just evaporate from his mind. These problems revolutionized our understanding of how memory works, and transformed Molaison into “Patient H.M.”—arguably the most famous and studied patient in the history of neuroscience. That’s the familiar version of the story, but the one presented in Luke Dittrich’s new book Patient H.M.: A Story of Memory, Madness, and Family Secrets is deeper and darker. As revealed through Dittrich’s extensive reporting and poetic prose, Molaison’s tale is one of ethical dilemmas that not only influenced his famous surgery but persisted well beyond his death in 2008. It’s a story about more than just the life of one man or the root of memory; it’s also about how far people are willing to go for scientific advancement, and the human cost of that progress. And Dittrich is uniquely placed to consider these issues. Scoville was his grandfather. Suzanne Corkin, the scientist who worked with Molaison most extensively after his surgery, was an old friend of his mother’s. I spoke to him about the book and the challenges of reporting a story that he was so deeply entwined in. Most of this interview was conducted on July 19th. Following a New York Times excerpt published on August 7th, and the book’s release two weeks later, many neuroscientists have expressed “outrage” at Dittrich’s portrayal of Corkin. The controversy culminated in a statement from MIT, where Corkin was based, rebutting three allegations in the book. Dittrich has himself responded to the rebuttals, and at the end of this interview, I talk to him about the debate. © 2016 by The Atlantic Monthly Group.

Keyword: Learning & Memory
Link ID: 22552 - Posted: 08.13.2016

Like many students of neuroscience, I first learned of patient HM in a college lecture. His case was so strange yet so illuminating, and I was immediately transfixed. HM was unable to form new memories, my professor explained, because a surgeon had removed a specific part of his brain. The surgery froze him in time. HM—or Henry Molaison, as his name was revealed to be after his death in 2008—might be the most famous patient in the history of brain research. He is now the subject of the new book, Patient HM: A Story of Memory, Madness, and Family Secrets. An excerpt from the book in the New York Times Magazine, which details MIT neuroscientist Sue Corkin’s custody fight over HM’s brain after his death, has since sparked a backlash. Should you wish to go down that particular rabbit hole, you can read MIT’s response, the book author’s response to the response, and summaries of the back and forth. Why HM’s brain was worth fighting over should be obvious; he was probably the most studied individual in neuroscience while alive. But in the seven years since scientists sectioned HM’s brain into 2,401 slices, it has yielded surprisingly little research. Only two papers examining his brain have come out, and so far, physical examinations have led to no major insights. HM’s scientific potential remains unfulfilled—thanks to delays from the custody fight and the limitations of current neuroscience itself. Corkin, who made her career studying HM, confronted her complicated emotions about his death in her own 2013 book. She describes being “ecstatic to see his brain removed expertly from his skull.” Corkin passed away earlier this year.

Keyword: Learning & Memory
Link ID: 22551 - Posted: 08.13.2016

Rachel Ehrenberg Pulling consecutive all-nighters makes some brain areas groggier than others. Regions involved with problem solving and concentration become especially sluggish when sleep-deprived, a new study using brain scans reveals. Other areas keep ticking along, appearing to be less affected by a mounting sleep debt. The results might lead to a better understanding of the rhythmic nature of symptoms in certain psychiatric or neurodegenerative disorders, says study coauthor Derk-Jan Dijk. People with dementia, for instance, can be afflicted with “sundowning,” which worsens their symptoms at the end of the day. More broadly, the findings, published August 12 in Science, document the brain’s response to too little shut-eye. “We’ve shown what shift workers already know,” says Dijk, of the University of Surrey in England. “Being awake at 6 a.m. after a night of no sleep, it isn’t easy. But what wasn’t known was the remarkably different response of these brain areas.” The research reveals the differing effects of the two major factors that influence when you conk out: the body’s roughly 24-hour circadian clock, which helps keep you awake in the daytime and put you to sleep when it’s dark, and the body’s drive to sleep, which steadily increases the longer you’re awake. Dijk and collaborators at the University of Liege in Belgium assessed the cognitive function of 33 young adults who went without sleep for 42 hours. Over the course of this sleepless period, the participants performed some simple tasks testing reaction time and memory. The sleepy subjects also underwent 12 brain scans during their ordeal and another scan after 12 hours of recovery sleep. Throughout the study, the researchers also measured participants’ levels of the sleep hormone melatonin, which served as a way to track the hands on their master circadian clocks. |© Society for Science & the Public 2000 - 2016

Keyword: Sleep
Link ID: 22548 - Posted: 08.12.2016

By Sharon Begley, The Massachusetts Institute of Technology brain sciences department and, separately, a group of some 200 neuroscientists from around the world have written letters to The New York Times claiming that a book excerpt in the newspaper’s Sunday magazine this week contains important errors, misinterpretations of scientific disputes, and unfair characterizations of an MIT neuroscientist who did groundbreaking research on human memory. In particular, the excerpt contains a 36-volley verbatim exchange between author Luke Dittrich and MIT’s Suzanne Corkin in which she says that key documents from historic experiments were “shredded.” “Most of it has gone, is in the trash, was shredded,” Corkin is quoted as telling Dittrich before she died in May, explaining, “there’s no place to preserve it.” Destroying files related to historic scientific research would raise eyebrows, but Corkin’s colleagues say it never happened. “We believe that no records were destroyed and, to the contrary, that professor Corkin worked in her final days to organize and preserve all records,” said the letter that Dr. James DiCarlo, head of the MIT Department of Brain and Cognitive Sciences, sent to the Times late Tuesday. Even as Corkin fought advanced liver cancer, he wrote, “she instructed her assistant to continue to organize, label, and maintain all records” related to the research, and “the records currently remain within our department.” © 2016 Scientific American

Keyword: Learning & Memory
Link ID: 22546 - Posted: 08.11.2016

Mo Costandi The human brain is often said to be the most complex object in the known universe, and there’s good reason to believe that it is. That lump of jelly inside your head contains at least 80 billion nerve cells, or neurons, and even more of the non-neuronal cells called glia. Between them, they form hundreds of trillions of precise synaptic connections; but they all have moveable parts, and these connections can change. Neurons can extend and retract their delicate fibres; some types of glial cells can crawl through the brain; and neurons and glia routinely work together to create new connections and eliminate old ones. These processes begin before we are born, and occur until we die, making the brain a highly dynamic organ that undergoes continuous change throughout life. At any given moment, many millions of them are being modified in one way or another, to reshape the brain’s circuitry in response to our daily experiences. Researchers at Yale University have now developed an imaging technique that enables them to visualise the density of synapses in the living human brain, and offers a promising new way of studying how the organ develops and functions, and also how it deteriorates in various neurological and psychiatric conditions. The new method, developed in Richard Carson’s lab at Yale’s School of Engineering and Applied Sciences, is based on positron emission tomography (PET), which detects the radiation emitted by radioactive ‘tracers’ that bind to specific proteins or other molecules after being injected into the body. Until now, the density of synapses in the human brain could only be determined by autopsy, using antibodies that bind to and stain specific synaptic proteins, or electron microscopy to examine the fine structure of the tissue. © 2016 Guardian News and Media Limited

Keyword: Brain imaging
Link ID: 22545 - Posted: 08.11.2016

By Effy Redman “There is no one who has not smiled at least once,” writes Marianne LaFrance, a Yale University psychology professor, in her 2011 book “Lip Service: Smiles in Life, Death, Trust, Lies, Work, Memory, Sex and Politics.” Her book explores how smiling unifies us. Like breath, the smile is universal. We smile to connect, to forgive, to love. A smile is beauty, human. But I have never smiled. Not once. I was born with Moebius syndrome — a rare form of facial paralysis that results from damage in the womb to the sixth and seventh cranial nerves, which control the muscles of the face. I was born in Britain, on the same day in 1982 the country’s first test-tube twins were born. But while science has created medical miracles like test-tube babies, there’s little that doctors can do for someone with Moebius syndrome. Decades later, I still cannot smile. Or frown. Or do any of the infinite subtle and not-so-subtle things with my face that I see others in the world around me doing every day. Doctors describe people with Moebius as having a “mask-like expression.” And that is what strangers must see. A frozen face, eyes unblinking. My mouth always open, motionless, the left corner of my lips slightly lower than the right. Walking down the street, I can feel the touch of casual observers’ eyes. A child’s very first “social smile” usually occurs six to eight weeks after birth, eagerly awaited by new parents. Because, as an infant, my face remained so expressionless, when I began laughing it took my mother a while to realize that the sound I was making was laughter. At what point, I wonder, did I begin to compensate for the absence of my smile. © 2016 The New York Times Company

Keyword: Emotions
Link ID: 22542 - Posted: 08.11.2016

By CATHERINE SAINT LOUIS and MATT APUZZO The Obama administration is planning to remove a major roadblock to marijuana research, officials said Wednesday, potentially spurring broad scientific study of a drug that is being used to treat dozens of diseases in states across the nation despite little rigorous evidence of its effectiveness. The new policy is expected to sharply increase the supply of marijuana available to researchers. And in taking this step, the Obama administration is further relaxing the nation’s stance on marijuana. President Obama has said he views it as no more dangerous than alcohol, and the Justice Department has not stood in the way of states that have legalized the drug. For years, the University of Mississippi has been the only institution authorized to grow the drug for use in medical studies. This restriction has so limited the supply of marijuana federally approved for research purposes that scientists said it could often take years to obtain it and in some cases it was impossible to get. But soon the Drug Enforcement Administration will allow other universities to apply to grow marijuana, three government officials said. While 25 states have approved the medical use of marijuana for a growing list of conditions, including Parkinson’s, Crohn’s disease, Tourette’s syndrome, Alzheimer’s, lupus and rheumatoid arthritis, the research to back up many of those treatments is thin. The new policy could begin to change that. “It will create a supply of research-grade marijuana that is diverse, but more importantly, it will be competitive and you will have growers motivated to meet the demand of researchers,” said John Hudak, a senior fellow at the Brookings Institution. The new policy will be published as soon as Thursday in the federal register, according to the three officials, who have seen the policy but spoke on condition of anonymity because they were not authorized to discuss it. © 2016 The New York Times Company

Keyword: Drug Abuse
Link ID: 22539 - Posted: 08.11.2016

By Virginia Morell Fourteen years ago, a bird named Betty stunned scientists with her humanlike ability to invent and use tools. Captured from the wild and shown a tiny basket of meat trapped in a plastic tube, the New Caledonian crow bent a straight piece of wire into a hook and retrieved the food. Researchers hailed the observation as evidence that these crows could invent new tools on the fly—a sign of complex, abstract thought that became regarded as one of the best demonstrations of this ability in an animal other than a human. But a new study casts doubt on at least some of Betty’s supposed intuition. Scientists have long agreed that New Caledonian crows (Corvus moneduloides), which are found only on the South Pacific island of the same name, are accomplished toolmakers. At the time of Betty’s feat, researchers knew that in the wild these crows could shape either stiff or flexible twigs into tools with a tiny, barblike hook at one end, which they used to lever grubs from rotting logs. They also make rakelike tools from the leaves of the screw pine (Pandanus) tree. But Betty appeared to take things to the next level. Not only did she fashion a hook from a material she’d never previously encountered—a behavior not observed in the wild—she seemed to know she needed this specific shape to solve her particular puzzle. © 2016 American Association for the Advancement of Science. A

Keyword: Intelligence; Evolution
Link ID: 22538 - Posted: 08.10.2016

Amy McDermott You’ve got to see it to be it. A heightened sense of red color vision arose in ancient reptiles before bright red skin, scales and feathers, a new study suggests. The finding bolsters evidence that dinosaurs probably saw red and perhaps displayed red color. The new finding, published in the Aug. 17 Proceedings of the Royal Society B, rests on the discovery that birds and turtles share a gene used both for red vision and red coloration. More bird and turtle species use the gene, called CYP2J19, for vision than for coloration, however, suggesting that its first job was in sight. “We have this single gene that has two very different functions,” says evolutionary biologist Nicholas Mundy of the University of Cambridge. Mundy’s team wondered which function came first: the red vision or the ornamentation. In evolution, what an animal can see is often linked with what others can display, says paleontologist Martin Sander of the University of Bonn in Germany, who did not work on the new study. “We’re always getting at color from these two sides,” he says, because the point of seeing a strong color is often reading visual signals. Scientists already knew that birds use CYP2J19 for vision and color. In bird eyes, the gene contains instructions for making bright red oil droplets that filter red light. Other forms of red color vision evolved earlier in other animals, but this form allows birds to see more shades of red than humans can. Elsewhere in the body, the same gene can code for pigments that stain feathers red. Turtles are the only other land vertebrates with bright red oil droplets in their eyes. But scientists weren’t sure if the same gene was responsible, Mundy says. |© Society for Science & the Public 2000 - 2016

Keyword: Vision; Evolution
Link ID: 22535 - Posted: 08.10.2016

By BENEDICT CAREY HOLYOKE, Mass. — Some of the voices inside Caroline White’s head have been a lifelong comfort, as protective as a favorite aunt. It was the others — “you’re nothing, they’re out to get you, to kill you” — that led her down a rabbit hole of failed treatments and over a decade of hospitalizations, therapy and medications, all aimed at silencing those internal threats. At a support group here for so-called voice-hearers, however, she tried something radically different. She allowed other members of the group to address the voice, directly: What is it you want? “After I thought about it, I realized that the voice valued my safety, wanted me to be respected and better supported by others,” said Ms. White, 34, who, since that session in late 2014, has become a leader in a growing alliance of such groups, called the Hearing Voices Network, or HVN. At a time when Congress is debating measures to extend the reach of mainstream psychiatry — particularly to the severely psychotic, who often end up in prison or homeless — an alternative kind of mental health care is taking root that is very much anti-mainstream. It is largely nonmedical, focused on holistic recovery rather than symptom treatment, and increasingly accessible through an assortment of in-home services, residential centers and groups like the voices network Ms. White turned to, in which members help one another understand each voice, as a metaphor, rather than try to extinguish it. For the first time in this country, experts say, psychiatry’s critics are mounting a sustained, broadly based effort to provide people with practical options, rather than solely alleging abuses like overmedication and involuntary restraint. “The reason these programs are proliferating now is society’s shameful neglect of the severely ill, which creates a vacuum of great need,” said Dr. Allen Frances, a professor emeritus of psychiatry at Duke University. © 2016 The New York Times Company

Keyword: Schizophrenia
Link ID: 22534 - Posted: 08.09.2016

BENEDICT CAREY As a boy growing up in Massachusetts, Luke Dittrich revered his grandfather, a brain surgeon whose home was full of exotic instruments. Later, he learned that he was not only a prominent doctor but had played a significant role in modern medical history. In 1953, at Hartford Hospital, Dr. William Scoville had removed two slivers of tissue from the brain of a 27-year-old man with severe epilepsy. The operation relieved his seizures but left the patient — Henry Molaison, a motor repairman — unable to form new memories. Known as H. M. to protect his privacy, Mr. Molaison went on to become the most famous patient in the history of neuroscience, participating in hundreds of experiments that have helped researchers understand how the brain registers and stores new experiences. By the time Mr. Dittrich was out of college — and after a year and a half in Egypt, teaching English — he had become fascinated with H. M., brain science and his grandfather’s work. He set out to write a book about the famous case but discovered something unexpected along the way. His grandfather was one of a cadre of top surgeons who had performed lobotomies and other “psycho-surgeries” on thousands of people with mental problems. This was not a story about a single operation that went wrong; it was far larger. The resulting book — “Patient H. M.: A Story of Memory, Madness, and Family Secrets,” to be published Tuesday — describes a dark era of American medicine through a historical, and deeply personal, lens. Why should scientists and the public know this particular story in more detail? The textbook story of Patient H. M. — the story I grew up with — presents the operation my grandfather performed on Henry as a sort of one-off mistake. It was not. Instead, it was the culmination of a long period of human experimentation that my grandfather and other leading doctors and researchers had been conducting in hospitals and asylums around the country. © 2016 The New York Times Company

Keyword: Learning & Memory
Link ID: 22531 - Posted: 08.09.2016

By Julia Shaw Every memory you have ever had is chock-full of errors. I would even go as far as saying that memory is largely an illusion. This is because our perception of the world is deeply imperfect, our brains only bother to remember a tiny piece of what we actually experience, and every time we remember something we have the potential to change the memory we are accessing. I often write about the ways in which our memory leads us astray, with a particular focus on ‘false memories.’ False memories are recollections that feel real but are not based on actual experience. For this particular article I invited a few top memory researchers to comment on what they wish everyone knew about their field. First up, we have Elizabeth Loftus from the University of California, Irvine, who is one of the founders of the area of false memory research, and is considered one of the most ‘eminent psychologists of the 20th century.’ Elizabeth Loftus says you need independent evidence to corroborate your memories. According to Loftus: “The one take home message that I have tried to convey in my writings, and classes, and in my TED talk is this: Just because someone tells you something with a lot of confidence and detail and emotion, it doesn't mean it actually happened. You need independent corroboration to know whether you're dealing with an authentic memory, or something that is a product of some other process.” Next up, we have memory scientist Annelies Vredeveldt from the Vrije Universiteit Amsterdam, who has done fascinating work on how well we remember when we recall things with other people. © 2016 Scientific American,

Keyword: Learning & Memory
Link ID: 22530 - Posted: 08.09.2016

By TATIANA SCHLOSSBERG Need a laugh? Get online and take a look at videos of baby Japanese macaques smiling as they sleep. Their faces twitch, usually just on one side and for less than a second. A lip curls, a nose wrinkles — as if they were hairy, wry elves. Newborn Japanese macaques -- like humans and chimpanzees -- were found to make facial expressions called "spontaneous smiles." Watch the full video. Credit Kyoto University Primate Research Institute Maybe you don’t laugh, maybe you just smile back — O.K., fine. But you may owe that smile to the human version of this infant’s facial spasm. Some scientists suspect spontaneous smiles in these monkeys echo the development of our own expressions. Scientists from the Primate Research Institute at Kyoto University in Japan have observed these spontaneous smiles in Japanese macaques for the first time, according to a new study published in the journal Primates. Spontaneous smiles have previously been observed in infant humans and chimpanzees, but this is the first time they have been seen in another primate species. The scientists watched seven macaque monkeys for an average of 44 minutes, during which the monkeys happened to fall asleep. During REM sleep, each of the monkeys spontaneously smiled at least once, for a little less than a second on average. All told, the seven monkeys smiled 58 times, mostly on the left side of their faces. Human and macaque infants alike primarily smile on one side of their faces. But after two months, human babies begin to smile bilaterally. Around the same time, they also begin to offer up “social smiles,” indicating to others a feeling of happiness. According to the study, scientists think that the earliest spontaneous smiles are key to the development of the zygomaticus major muscle, which is responsible for moving your lips up or to the side, allowing you to smile, among other things. Spontaneous smiles in these monkeys echo the development of our own expressions. Watch the full video.

Keyword: Emotions; Evolution
Link ID: 22529 - Posted: 08.09.2016

Seth Stephens-Davidowitz Feeling worried? These days, much of America is. Over the past eight years, Google search rates for anxiety have more than doubled. They are higher this year than they have been in any year since Google searches were first tracked in 2004. So far, 2016 has been tops for searches for driving anxiety, travel anxiety, separation anxiety, anxiety at work, anxiety at school and anxiety at home. Americans have also become increasingly terrified of the morning. Searches for “anxiety in the morning” have risen threefold over the past decade. But this is nothing compared with the fear of night. Searches for “anxiety at night” have risen ninefold. For years, I have confidently pontificated on topics that I think are important but that I have little experience of — child abuse, racism, sexism, sex. Now I am ready to tackle a topic I actually know something about. Over the past few weeks, I’ve taken a break from worrying about my own anxiety to studying our country’s. While I am not sure I totally nailed down why anxiety seems to have risen so much during the Obama era, I did learn a lot. The places where anxiety is highest are not where I would have expected. When I was growing up, if you had asked me which people were the most anxious, I would have said New York Jews. And a decade of interacting with our country’s urban intelligentsia, Jewish and otherwise, has confirmed that pretty much all of us are a neurotic mess. © 2016 The New York Times Company

Keyword: Stress
Link ID: 22528 - Posted: 08.08.2016