Chapter 3. Neurophysiology: The Generation, Transmission, and Integration of Neural Signals

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.

Links 81 - 100 of 633

by Andy Coghlan Stimulating the brain with electrical signals can sharpen some of your faculties, but now it seems it can dim others at the same time. Transcranial electrical stimulation (TES), delivered by electrodes on the surface of the head, has been shown to double people's speed of learning. Now the first evidence has emerged that improvements in one aspect of learning might come at the expense of other abilities. Roi Cohen Kadosh of the University of Oxford, showed volunteers pairs of unfamiliar symbols. Each symbol had a secret numerical value, and the volunteers' task was to state – as quickly as possible while avoiding mistakes – which symbol in a pair had the bigger value. The correct answer was then displayed. Over six sessions in one week, it was possible to measure how quickly and efficiently the volunteers learned the value of each symbol. Second task In a second task, participants had to register which of each pair of symbols was physically larger, a measure of automatic thinking. "Automaticity is the skill of doing things without thinking about them, such as reading, driving or mounting stairs," says Cohen Kadosh, who conducted the experiment with Teresa Iucalano of the Stanford Cognitive and Systems Neuroscience Laboratory in Palo Alto, California. During the experiments, volunteers received TES to their posterior parietal cortex – vital for numerical learning – or their dorsolateral prefrontal cortex – vital for automaticity. Some unknowingly received a sham treatment. © Copyright Reed Business Information Ltd.

Keyword: Learning & Memory
Link ID: 17877 - Posted: 03.09.2013

By James Gallagher Health and science reporter, BBC News It may be possible to use a patient's own skin to repair the damage caused by multiple sclerosis (MS), which is currently incurable, say researchers. Nerves struggle to communicate in MS as their insulating covering is attacked by the immune system - causing fatigue and damaging movement. Animal tests, described in the journal Cell Stem Cell, have now used modified skin cells to repair the insulation. Experts said there was an "urgent need" for such therapies. Just like electrical wires, nerves have insulation - but instead of plastic, the body uses a protein called myelin. However, diseases that result in damage to the myelin, including MS, leave the nerves exposed and electrical signals struggle to travel round the body. A team of scientists at the University of Rochester Medical Center, in the US, used advances in stem-cell research to attempt to repair the myelin. They took a sample of human skin cells and converted it into stem cells, which are capable of becoming any other type of cell in the body. The next step was to transform the stem cells into immature versions of cells in the brain that produce myelin. When these cells had been injected into mice born without any myelin it had had a significant effect, said researchers. BBC © 2013

Keyword: Multiple Sclerosis; Aggression
Link ID: 17780 - Posted: 02.09.2013

The number of children being diagnosed with epilepsy has dropped dramatically in the UK over the past decade, figures show. A study of GP-recorded diagnoses show the incidence has fallen by as much as half. Researchers said fewer children were being misdiagnosed, but there had also been a real decrease in some causes of the condition. Other European countries and the US had reported similar declines, they added. Epilepsy is caused when the brain's normal electrical activity result in seizures. Data from more than 344,000 children showed that the annual incidence of epilepsy has fallen by 4-9% year on year between 1994 and 2008. Overall the number of children born between 2003-2005 with epilepsy was 33% lower then those born in 1994-96. When researchers looked in more detail and included a wider range of possible indicators of an epilepsy diagnosis the incidence dropped by 47%. Correct diagnosis Better use of specialist services and increased caution over diagnosing the condition explains some, but not all, of the decline in the condition, the researchers reported in Archives of Diseases in Childhood. Introduction of vaccines against meningitis and a drop in the number of children with traumatic brain injuries, both of which can cause epilepsy, has probably also contributed to falling cases, they added. BBC © 2013

Keyword: Epilepsy; Aggression
Link ID: 17751 - Posted: 02.04.2013

By R. Douglas Fields Imagine if your biggest health problem could be solved with the flip of a switch. Deep-brain stimulation (DBS) offers such a dramatic recovery for a range of neurological illnesses, including Parkinson's disease, epilepsy and major depression. Yet the metal electrodes implanted in the brain are too bulky to tap into intricate neural circuitry with precision and corrode in contact with tissue, so their performance degrades over time. Now neurophysiologists have developed a method of DBS that avoids these problems by using microscopic magnets to stimulate neurons. In experiments published in June 2012 in Nature Communications, neurophysiologist John T. Gale of the Cleveland Clinic and his colleague Giorgio Bonmassar, a physicist at Harvard Medical School and an expert on brain imaging, tested whether micromagnets (which are half a millimeter in diameter) could induce neurons from rabbit retinas to fire. They found that when they electrically energized a micromagnet positioned next to a neuron, it fired. In contrast to the electric currents induced by DBS, which excite neurons in all directions, magnetic fields follow organized pathways from pole to pole, like the magnetic field that surrounds the earth. The researchers found that they could direct the stimulus precisely to individual neurons, and even to particular areas of a neuron, by orienting the magnetic coil appropriately. “That may help us avoid the side effects we see in DBS,” Gale says, referring to, for instance, the intense negative emotions that are sometimes accidentally triggered when DBS is used to relieve motor problems in Parkinson's. © 2013 Scientific American

Keyword: Brain imaging; Aggression
Link ID: 17747 - Posted: 02.02.2013

by Carrie Arnold Studying the links between brain and behavior may have just gotten easier. For the first time, neuroscientists have found a way to watch neurons fire in an independently moving animal. Though the study was done in fish, it may hold clues to how the human brain works. "This technique will really help us understand how we make sense of the world and why we behave the way we do," says Martin Meyer, a neuroscientist at King's College London who was not involved in the work. The study was carried out in zebrafish, a popular animal model because they're small and easy to breed. More important, zebrafish larvae are transparent, which gives scientists an advantage in identifying the neural circuits that make them tick. Yet, under a typical optical microscope, neurons that are active and firing look much the same as their quieter counterparts. To see what neurons are active and when, neuroscientists have therefore developed a variety of indicators and dyes. For example, when a neuron fires, it is flooded with calcium ions, which can cause some of the dyes to light up. Still, the approach has limitations. Traditionally, Meyer explains, researchers would immobilize the head or entire body of a zebrafish larvae so that they could get a clearer picture of what was happening inside the brain. Even so, it was difficult to interpret neural activity for just a few neurons and over a short period of time. Researchers needed a better way to study the zebrafish brain in real time. © 2010 American Association for the Advancement of Science

Keyword: Brain imaging
Link ID: 17742 - Posted: 02.02.2013

The number of seizure patients in a northern Japanese fishing community devastated by the March 11, 2011 tsunami spiked in the weeks following the disaster, according to a Japanese study. The study, published in the journal Epilepsia, looked at 440 patient records from Kesennuma City Hospital, in a city that was devastated by the massive tsunami touched off by the 9.0 magnitude earthquake. Thirteen patients were admitted with seizures in the eight weeks after the disaster, but only one had been admitted in the two months before March 11. Previous research has linked stressful life-threatening disasters with an increased risk of seizures, but most case reports lacked clinical data with multiple patients. "We suggest that stress associated with life-threatening situations may enhance seizure generation," wrote lead author Ichiyo Shibahara, a staff neurosurgeon at Sendai Medical Center in northern Japan. But he added that stress itself is not a universal risk factor for seizures. "Most of the seizure patients had some sort of neurological disease before the earthquake," he said. His team examined medical records from patients admitted to the neurosurgery ward in the eight weeks before and after the March 11 disaster and compared them to the same time period each year between 2008 and 2010. In 2008, there were 11 seizure patients admitted between January 14 and May 15. In 2009, there were seven and in 2010, just four. © 2013

Keyword: Epilepsy; Aggression
Link ID: 17705 - Posted: 01.22.2013

A strong family history of seizures could increase the chances of having severe migraines, says a study in Epilepsia journal. Scientists from Columbia University, New York, analysed 500 families containing two or more close relatives with epilepsy. Their findings could mean that genes exist that cause both epilepsy and migraine. Epilepsy Action said it could lead to targeted treatments. Previous studies have shown that people with epilepsy are substantially more likely than the general population to have migraine headaches, but it was not clear whether that was due to a shared genetic cause. The researchers found that people with three or more close relatives with a seizure disorder were more than twice as likely to experience 'migraine with aura' than patients from families with fewer individuals with seizures. Migraine with aura is a severe headache preceded by symptoms such as seeing flashing lights, temporary visual loss, speech problems or numbness of the face. Dr Melodie Winawer, lead author of the study from Columbia University Medical Centre, said the findings had implications for epilepsy patients. "Our study demonstrates a strong genetic basis for migraine and epilepsy, because the rate of migraine is increased only in people who have close (rather than distant) relatives with epilepsy." BBC © 2013

Keyword: Epilepsy; Aggression
Link ID: 17657 - Posted: 01.07.2013

A simple eye test may offer a fast and easy way to monitor patients with multiple sclerosis (MS), medical experts say in the journal Neurology. Optical Coherence Tomography (OCT) is a scan that measures the thickness of the lining at the back of the eye - the retina. It takes a few minutes per eye and can be performed in a doctor's surgery. In a trial involving 164 people with MS, those with thinning of their retina had earlier and more active MS. The team of researchers from the Johns Hopkins University School of Medicine say larger trials with a long follow up are needed to judge how useful the test might be in everyday practice. The latest study tracked the patients' disease progression over a two-year period. Unpredictable disease Multiple sclerosis is an illness that affects the nerves in the brain and spinal cord causing problems with muscle movement, balance and vision. In MS, the protective sheath or layer around nerves, called myelin, comes under attack which, in turn, leaves the nerves open to damage. There are different types of MS - most people with the condition have the relapsing remitting type where the symptoms come and go over days, weeks or months. Usually after a decade or so, half of patients with this type of MS will develop secondary progressive disease where the symptoms get gradually worse and there are no or very few periods of remission. BBC © 2012

Keyword: Multiple Sclerosis; Aggression
Link ID: 17639 - Posted: 12.27.2012

By Laura Sanders A new computer simulation of the brain can count, remember and gamble. And the system, called Spaun, performs these tasks in a way that’s eerily similar to how people do. Short for Semantic Pointer Architecture Unified Network, Spaun is a crude approximation of the human brain. But scientists hope that the program and efforts like it could be a proving ground to test ideas about the brain. Several groups of scientists have been racing to construct a realistic model of the human brain, or at least parts of it. What distinguishes Spaun from other attempts is that the model actually does something, says computational neuroscientist Christian Machens of the Champalimaud Centre for the Unknown in Lisbon, Portugal. At the end of an intense computational session, Spaun spits out instructions for a behavior, such as how to reproduce a number it’s been shown. “And of course, that’s why the brain is interesting,” Machens says. “That’s what makes it different from a plant.” Like a digital Frankenstein’s monster, Spaun was cobbled together from bits and pieces of knowledge gleaned from years of basic brain research. The behavior of 2.5 million nerve cells in parts of the brain important for vision, memory, reasoning and other tasks forms the basis of the new system, says Chris Eliasmith of the University of Waterloo in Canada, coauthor of the study, which appears in the Nov. 30 Science. © Society for Science & the Public 2000 - 2012

Keyword: Robotics
Link ID: 17557 - Posted: 12.01.2012

High-resolution real-time images show in mice how nerves may be damaged during the earliest stages of multiple sclerosis. The results suggest that the critical step happens when fibrinogen, a blood-clotting protein, leaks into the central nervous system and activates immune cells called microglia. "We have shown that fibrinogen is the trigger," said Katerina Akassoglou, Ph.D., an associate investigator at the Gladstone Institute for Neurological Disease and professor of neurology at the University of California, San Francisco, and senior author of the paper published online in Nature Communications. Multiple sclerosis, or MS, is thought to be an autoimmune disease in which cells that normally protect the body against infections attack nerve cells in the brain and spinal cord, often leading to problems with vision, muscle strength, balance and coordination, thinking and memory. Typically during MS, the immune cells destroy myelin, a protective sheath surrounding nerves, and eventually leading to nerve damage. The immune attack also causes leaks in the blood-brain barrier, which normally separates the brain from potentially harmful substances in the blood. "Dr. Akassoglou has focused on the role of the blood-brain barrier leak in MS and has discovered that leakage of the blood clotting protein fibrinogen can trigger brain inflammation," said Ursula Utz, Ph.D., M.B.A., a program director at NIH's National Institute of Neurological Disorders and Stroke (NINDS). Microglia are cells traditionally thought to control immunity in the nervous system. Previous studies suggested that leakage of fibrinogen activates microglia.

Keyword: Multiple Sclerosis; Aggression
Link ID: 17549 - Posted: 11.28.2012

Published by drrubidium Out-of-control libido or drug habit? Take Nervine. Nervous, excitable, wakeful, or restless? Take Nervine. Over-the-counter Nervine wasn't a wonder drug, just a cocktail of the oldest class of sedatives - inorganic bromides. Nervine contained the most commonly used bromides - sodium bromide (NaBr), potassium bromide (KBr), and ammonium bromide (NH4Br). These particular bromides were once so popular that only aspirin sold better. The use of bromides to treat "nerves" was so prevalent that 'bromide' entered the lexicon of common speech. Instead of "calm down", people were instructed to "take a bromide". Instead of calling someone a 'bore', the term 'bromide' was a used to denote "a commonplace or tiresome person". Bromides may owe their sedative effect to a family connection. The element bromine is in the same chemical family as the element chlorine – the halogens. Being a chemical family, chlorine and bromine have similar properties. Both form single, negatively charged ions (monovalent anions) via oxidation-reduction reactions - chloride (Cl-) and bromide (Br-). Chloride is found in nearly all of our cells, having its own set cell membrane-crossing highways (chlorine channel). The regulated flow of chloride (as hydrated chloride) across neuron membranes is key to communication between neurons. Being family and all, bromide (as hydrated bromide) can travel along chloride's highways. But hydrated bromide is a teeny bit smaller than hydrated chloride, allowing hydrated bromide to get into cells faster than hydrated chloride. A flood of anions, such as bromide or chloride, into a neuron makes it more negative than it would be at rest, a state called 'hyperpolarization'. It's hard for other neutrons to stimulate - talk to - hyperpolarized neurons. Less neuron stimulation can translate to a feeling of calm. Thirty-Seven Copyright © 2012

Keyword: Drug Abuse
Link ID: 17535 - Posted: 11.26.2012

A substance made by the body when it uses fat as fuel could provide a new way of treating epilepsy, experts hope. Researchers in London who have been carrying out preliminary tests of the fatty acid treatment, report their findings in Neuropharmacology journal. They came up with the idea because of a special diet used by some children with severe, drug resistant epilepsy to help manage their condition. The ketogenic diet is high in fat and low in carbohydrate. The high fat, low carbohydrate diet is thought to mimic aspects of starvation by forcing the body to burn fats rather than carbohydrates. Although often effective, the diet has attracted criticism, as side-effects can be significant and potentially lead to constipation, hypoglycaemia, retarded growth and bone fractures. By pinpointing fatty acids in the ketogenic diet that are effective in controlling epilepsy, researchers hope they can develop a pill for children and adults that could provide similar epilepsy control without the side-effects. In early trials, the scientists, from Royal Holloway and University College London, say they have identified fatty acids that look like good candidates for the job. They found that not only did some of the fatty acids outperform a regular epilepsy medication called valproate in controlling seizures in animals, they also had fewer side-effects. BBC © 2012

Keyword: Epilepsy; Aggression
Link ID: 17533 - Posted: 11.24.2012

By David Pogue Okay, great: we can control Our phones with speech recognition and our television sets with gesture recognition. But those technologies don't work in all situations for all people. So I say, forget about those crude beginnings; what we really want is thought recognition. As I found out during research for a recent NOVA episode, it mostly appears that brain-computer interface (BCI) technology has not advanced very far just yet. For example, I tried to make a toy helicopter fly by thinking “up” as I wore a $300 commercial EEG headset. It barely worked. Such “mind-reading” caps are quick to put on and noninvasive. They listen, through your scalp, for the incredibly weak remnants of electrical signals from your brain activity. But they're lousy at figuring out where in your brain they originated. Furthermore, the headset software didn't even know that I was thinking “up.” I could just as easily have thought “goofy” or “shoelace” or “pickle”—whatever I had thought about during the 15-second training session. There are other noninvasive brain scanners—magnetoencephalography, positron-emission tomography and near-infrared spectroscopy, and so on—but each also has its trade-offs. Of course, you can implant sensors inside someone's skull for the best readings of all; immobilized patients have successfully manipulated computer cursors and robotic arms using this approach. Still, when it comes to controlling everyday electronics, brain surgery might be a tough sell. © 2012 Scientific American,

Keyword: Robotics
Link ID: 17518 - Posted: 11.21.2012

By Maggie Fox, NBC News Researchers trying to find a way to treat multiple sclerosis think they’ve come up with an approach that could not only help patients with MS, but those with a range of so-called autoimmune diseases, from type-1 diabetes to psoriasis, and perhaps even food allergies. So far it’s only worked in mice, but it has worked especially well. And while mice are different from humans in many ways, their immune systems are quite similar. “If this works, it is going to be absolutely fantastic,” said Bill Heetderks, who directs outside research at the National Institute of Biomedical Imaging and Bioengineering, part of the National Institutes of Health, which helped pay for the research. “Even if it doesn’t work, it’s going to be another step down the road.” In autoimmune disease, the body’s immune cells mistakenly attack and destroy healthy tissue. In MS, it’s the fatty protective sheath around the nerves; in type-1 or juvenile diabetes it’s cells in the pancreas that make insulin; in rheumatoid arthritis it’s tissue in the joint. Currently, the main treatment is to suppress the immune system, an approach that can leave patients vulnerable to infections and cancer. The new treatment re-educates the immune cells so they stop the attacks. The approach uses tiny little balls called nanoparticles made of the same material used to make surgical sutures that dissolve harmlessly in the body. They’re attached to little bits of the protein that the immune cells are attacking, the researchers report in Sunday’s issue of the journal Nature Biotechnology. © 2012

Keyword: Multiple Sclerosis; Aggression
Link ID: 17508 - Posted: 11.19.2012

Sandrine Ceurstemont, editor, New Scientist TV Improving your mathematical skills could now be as easy as playing a Kinect video game in a hat. In preliminary tests of the system, developed by Roi Cohen Kadosh and colleagues from the University of Oxford, participants were better with numbers after just two days of training. In this video, our technology features editor Sally Adee gives the game a go while testing a new cap that wirelessly delivers electrical brain stimulation. The device is controlled by a computer, which controls things like the duration of the zapping. Although it can stimulate various brain regions, in this case it sends current to the right parietal cortex. "The parietal region is involved in numerical understanding," says Cohen Kadosh. "So amplifying the function of this region should lead to a better performance." So far, the team has shown that brain stimulation while doing computer-based mathematics exercises helped maintain better mathematical skills in adults even six months later. But Cohen Kadosh thinks that the Kinect game is much more promising as a training tool because it's fun and engaging. By requiring a player to represent a fraction by moving their body to position it on a line, the gameplay also integrates three key components linked to mathematical ability: numerical understanding, the ability to perceive the spatial relationship of visual representations and embodiment. Cohen Kadosh believes this enhances the training. © Copyright Reed Business Information Ltd

Keyword: Intelligence; Aggression
Link ID: 17500 - Posted: 11.17.2012

By James Gallagher Health and science reporter, BBC News Adding "calm down" genes to hyperactive brain cells has completely cured rats of epilepsy for the first time, say UK researchers. They believe their approach could help people who cannot control their seizures with drugs. The study, published in the journal Science Translation Medicine, used a virus to insert the new genes into a small number of neurons. About 50 million people have epilepsy worldwide. However, drugs do not work for up to 30% of them. The alternatives include surgery to remove the part of the brain that triggers a fit or to use electrical stimulation. The brain is alive with electrical communication with individual neurons primed to fire off new messages. However, if a group of neurons become too excited they can throw the whole system into chaos leading to an epileptic seizure. Researchers at University College London have developed two ways of manipulating the behaviour of individual cells inside the brain in order to prevent those seizures. Both use viruses injected into the brain to add tiny sections of DNA to the genetic code of just a few thousand neurons. One method boosts the brain cells' natural levels of inhibition in order to calm them down. This treatment is a form of gene therapy, a field which is often criticised for failing to deliver on decades of promise. BBC © 2012

Keyword: Epilepsy; Aggression
Link ID: 17482 - Posted: 11.13.2012

Seizures during childhood fever are usually benign, but when prolonged, they can foreshadow an increased risk of epilepsy later in life. Now a study funded by the National Institutes of Health suggests that brain imaging and recordings of brain activity could help identify the children at highest risk. The study reveals that within days of a prolonged fever-related seizure, some children have signs of acute brain injury, abnormal brain anatomy, altered brain activity, or a combination. "Our goal has been to develop biomarkers that will tell us whether or not a particular child is at risk for epilepsy. This could in turn help us develop strategies to prevent the disorder," said study investigator Shlomo Shinnar, M.D., Ph.D. Dr. Shinnar is a professor of neurology, pediatrics and epidemiology and the Hyman Climenko Professor of Neuroscience Research at Montefiore Medical Center, Albert Einstein College of Medicine, New York City. Seizures that occur during the course of a high fever, known as febrile seizures, affect 3 to 4 percent of all children. Most such children recover rapidly and do not suffer long-term health consequences. However, having one or more prolonged febrile seizures in childhood is known to increase the risk of subsequent epilepsy. Some experts estimate that the risk of later epilepsy is 30-40 percent following febrile status epilepticus (FSE), a seizure or series of seizures that can last from 30 minutes to several hours. "While the majority of children fully recover from febrile status epilepticus, some will go on to develop epilepsy. We have no way of knowing yet who they will be," Dr. Shinnar said.

Keyword: Epilepsy; Aggression
Link ID: 17469 - Posted: 11.08.2012

By James Gallagher Health and science reporter, BBC News A new drug is the "most effective" treatment for relapsing-remitting multiple sclerosis, say UK researchers. During MS the body's immune system turns on its own nerves causing debilitating muscle problems. Researchers at the University of Cambridge say a cancer drug, which wipes out and resets the immune system, has better results than other options. However, there is concern that a drugs company is about to increase the cost of the drug as a result. Around 100,000 people in the UK have multiple sclerosis. When the condition is diagnosed most will have a form of the disease know as relapsing-remitting MS, in which the symptoms can almost disappear for a time, before suddenly returning. Built from scratch The researchers tested a leukaemia drug, alemtuzumab, which had shown benefits for MS in small studies. In leukaemia, a blood cancer, it controls the excess production of white blood cells. In MS patients, the dose eliminates the immune cells entirely, forcing a new immune system to be built from scratch which should not attack the nerves. Two trials, published in the Lancet medical journal, compared the effectiveness of alemtuzumab with a first-choice drug, interferon beta-1a. BBC © 2012

Keyword: Multiple Sclerosis; Aggression
Link ID: 17450 - Posted: 11.03.2012

By Laura Sanders A genetic tweak makes it easier to see neurons at work in living, breathing animals. The method, described in the Oct. 18 Neuron, capitalizes on a property of a busy neuron: When the cell fires, calcium ions flood in. Using an altered version of the protein GFP that lights up when calcium is present in a mouse’s brain, neuroscientist Guoping Feng of MIT and colleagues could see smell-sensing neurons respond to an odor, and movement neurons light up during walking. Q. Chen et al. Imaging Neural Activity Using Thy1-GCaMP Transgenic Mice. Neuron. Vol. 76, October 18,2012, p. 297. doi: 10.1016/j.neuron.2012.07.011. [Go to] © Society for Science & the Public 2000 - 2012

Keyword: Brain imaging
Link ID: 17435 - Posted: 10.30.2012

David Cyranoski More than a decade of research hinting that magnesium supplements might boost your brain power is finally being put to the test in a small clinical trial. The research, led by biopharmaceutical company Magceutics of Hayward, California, began testing the ability of its product Magtein to boost magnesium ion (Mg2+) levels in the brain earlier this month. The trial will track whether the ions can decrease anxiety and improve sleep quality, as well as following changes in the memory and cognitive ability of participants. But critics caution that the trial in just 50 people is too small to draw definitive conclusions. Neuroscientist Guosong Liu of the Massachusetts Institute of Technology in Cambridge, who founded Magceutics, plans eventually to test whether Magtein can be used to treat a wider range of conditions, including attention deficit hyperactivity disorder (ADHD) and Alzheimer’s disease. But Liu knows that it will be difficult to convince other scientists that something as simple as a magnesium supplement can have such profound effects. It is almost “too good to be true”, he says. Many scientists contacted by Nature agreed with that sentiment. One clinical researcher cautioned against “over-excitement about a magic drug for a major disorder”. And others wonder whether the study will even be able to prove anything conclusively. “I am very sceptical that the proposed trial will provide the answer to the question being tested,” says Stephen Ferguson, a biochemist at the University of Western Ontario in London, Ontario. © 2012 Nature Publishing Group

Keyword: Learning & Memory; Aggression
Link ID: 17430 - Posted: 10.27.2012