Chapter 8. Hormones and Sex

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 41 - 60 of 2452

By Linda Carroll Women may have a harder time recovering from concussion, a new study suggests. Taiwanese researchers found women were more likely than men to continue to have memory deficits nearly three months after a mild traumatic brain injury, or mTBI, according to the study published in the journal Radiology. The findings provide "evidence that women may have greater risk for developing working memory impairment after mTBI and may have longer recovery time," said study coauthor Dr. Chi-Jen Chen, a professor at Taipei Medical University Shuang-Ho Hospital. "According to our preliminary results, more aggressive management should be initiated once mTBI is diagnosed in women, including close monitoring of symptoms, more aggressive pharmacological treatments, rehabilitation, as well as longer follow-up." Chen had noticed that almost twice as many women as men were showing up in her clinic after concussions. She wondered if there might be some kind of physical difference making concussions more severe in women. To determine whether there was a real effect, she and her colleagues rounded up 30 concussed patients and 30 non-brain-injured volunteers. Each group had equal numbers of men and women. The concussed patients were scanned shortly after doing a memory test with functional MRI twice: one month after their injury and again six weeks later. The volunteers were scanned once. All the study participants took neuropsychological tests designed to measure attention span, impulsivity, and deficits in working memory.

Keyword: Brain Injury/Concussion; Sexual Behavior
Link ID: 20852 - Posted: 04.28.2015

|By Julie Hecht Unlike porcupines, dogs are a relatively hands-on (actually, paws-on) species, both with one another and with us. YouTube has numerous videos of dogs essentially saying, “Just keep petting me, please. Yes, that’s it…more.” But this relationship is not one-sided. Many studies find that positive interactions between people and dogs can be beneficial for both species. Increases in β-endorphin (beta-endorphin), oxytocin and dopamine—neurochemicals associated with positive feelings and bonding—have been observed in both dogs and people after enjoyable interactions like petting, play and talking. Essentially, interacting with a dog, particularly a known dog, can have some of the same psychophysiological markers as when two emotionally attached people spend time together. But do certain types of interactions have an outsized impact? Dogs are incredibly attentive to human faces and, in some cases, even specific facial expressions. This seemingly routine, benign behavior—your dog turning to gaze on your beautiful face as you do his or hers—could actually hold a very important piece of the puzzle in our relationship with dogs, suggests a study published this week in Science. The new study, by Miho Nagasawa of Azabu University in Japan and colleagues, builds on Nagasawa’s previous work, published in Hormones and Behavior in 2009, that found owners and dogs sharing a long mutual gaze had higher levels of oxytocin in their urine than owners of dogs giving a shorter gaze. (Oxytocin, a humble peptide of nine amino acids that is sometimes called the “cuddle hormone,” has been implicated in social bonding and is instrumental to the cascade of hormonal changes leading up to and following birth.) Nagasawa and her colleagues concluded that their finding was “a manifestation of attachment behavior.” © 2015 Scientific American

Keyword: Hormones & Behavior; Emotions
Link ID: 20816 - Posted: 04.18.2015

Mothers may influence the mood and behaviour of their babies through their breast milk, researchers say. There's growing evidence that mother's milk doesn't just affect the growth of a baby's body "but also areas of their brain that shape their motivations, their emotions, and therefore their behavioural activity," says Katie Hinde, an assistant professor of human evolutionary biology at Harvard University. In a paper published in the journal Evolution, Medicine and Public Health, Hinde and two other researchers propose a way in which the composition of breast milk could influence a baby's brain and behaviour. If food is scarce or there are a lot of predators around, it may be better for a mother to have a baby that is calmer and focuses on growing rather than one that is very active and playful, Hinde told CBC Radio's Quirks & Quarks in an interview that airs Saturday. It may be possible to influence a baby's activity level by changing the composition of the milk to affect the bacteria in the infant's gut, she added. Breast milk contains a lot of sugars that infants can't digest, but that feed bacteria that live in human intestines. Those bacteria don't just help digest food, said Hinde. "They can release chemical signals that travel to the infant's brain and shape neurodevelopment." ©2015 CBC/Radio-Canada

Keyword: Development of the Brain; Sexual Behavior
Link ID: 20813 - Posted: 04.18.2015

By Virginia Morell Like many newborn mammals, baby mice cry to get their mother’s attention. But the mother doesn’t instinctively recognize these calls; she must learn the sounds of her offspring—just as human parents must learn the cries of their infants. Now, a team of researchers has discovered that the hormone oxytocin, which has been tied to trust and maternal bonding, holds the key to how this learning occurs. Only after oxytocin tweaks the brain of a female mouse does she respond with a mother’s concern and attentiveness to crying pups. “It’s an exciting study with implications that … could be helpful to certain disorders, such as autism,” says Larry Young, a neuroscientist at Emory University in Atlanta who was not involved in the work. To understand the role oxytocin plays in a mother mouse’s brain, scientists at New York University School of Medicine first investigated how female mice in general respond to the distress calls of baby mice. Pups emit ultrasonic cries when they are separated from the nest, which sometimes happens when a mother carries her babies to a new location. (Moms change nest locations regularly to elude predators.) When a mother hears these cries, she runs to the lost pup, picks it up, and carries it back to her nest. Other scientists have shown that moms respond even to the distress cries of pups that aren’t their own, readily approaching loudspeakers that broadcast the calls. Most virgin female mice, though, couldn’t care less; they seem completely indifferent to the pups’ cries for help. And yet, some virgin females that have either been housed with a mother and her litter or have been injected with oxytocin will retrieve crying infants. © 2015 American Association for the Advancement of Science.

Keyword: Hormones & Behavior; Sexual Behavior
Link ID: 20808 - Posted: 04.16.2015

By JAMES GORMAN Studies of hunters and gatherers — and of chimpanzees, which are often used as stand-ins for human ancestors — have cast bigger, faster and more powerful males in the hunter role. Now, a 10-year study of chimpanzees in Senegal shows females playing an unexpectedly big role in hunting and males, surprisingly, letting smaller and weaker hunters keep their prey. The results do not overturn the idea of dominant male hunters, said Jill D. Pruetz of Iowa State University, who led the study. But they may offer a new frame of reference on hunting, tools and human evolution. “We need to broaden our perspective,” she said. Among the 30 or so chimps Dr. Pruetz and her colleagues observed, called the Fongoli band, males caught 70 percent of the prey, mostly by chasing and running it down. But these chimps are very unusual in one respect. They are the only apes that regularly hunt other animals with tools — broken tree branches. And females do the majority of that hunting for small primates called bush babies. Craig Stanford, an anthropologist at the University of Southern California who has written extensively on chimp hunting and human evolution, said the research was “really important” because it solidified the evidence for chimps hunting with tools, which Dr. Pruetz had reported in earlier papers. It also clearly shows “the females are more involved than in other places,” he said, adding that it provides new evidence to already documented observations that female chimps are “much more avid tool users than males are.” All chimpanzees eat a variety of plant and animal foods, including insects like termites. And all chimpanzees eat some other animals. The most familiar examples of chimpanzee hunting are bands of the apes chasing red colobus monkeys through the trees in the rain forests of East Africa. © 2015 The New York Times Company

Keyword: Evolution; Sexual Behavior
Link ID: 20800 - Posted: 04.15.2015

Boer Deng Universities in the United States employ many more male scientists than female ones. Men are paid more, and in fields such as mathematics, engineering and economics, they hold the majority of top-level jobs. But in a sign of progress, a 13 April study finds that faculty members prefer female candidates for tenure-track jobs in science and engineering — by a ratio of two to one. That result, based on experiments involving hypothetical job seekers, held true regardless of the hirer’s gender, department, career status or university type, researchers report in the Proceedings of the National Academy of Sciences1. “We were shocked,” says Wendy Williams, a psychologist at Cornell University in Ithaca, New York, and a co-author of the study. With fellow Cornell psychologist Stephen Ceci, she surveyed 873 tenure-track faculty members in biology, psychology, economics and engineering at 371 US universities. One experiment presented participants with three hypothetical job candidates, of which two were identical except for their gender. Another experiment added descriptions of marital and parental status, to test whether underlying assumptions about gender choices affected hiring. “You don’t frequently see that level of attention and sophistication” in statistical analysis, says Robert Santos, vice-president of the American Statistical Association in Alexandria, Virginia. Nothing seemed to sway study participants’ preference for female job candidates. The authors say that this is interesting given their previous finding that a relatively low percentage of female PhDs in the social and biological sciences secure academic positions — in part because they are less likely than men to apply for these jobs. Other research suggests that in the physical sciences, women and men are just as likely to secure a tenure-track position within five years of earning a PhD. © 2015 Nature Publishing Group

Keyword: Sexual Behavior
Link ID: 20792 - Posted: 04.14.2015

by Bethany Brookshire In 2011, a group of scientists “turned mice gay.” The only issue is, of course, they didn’t. Rather, Yi Rao and colleagues at Peking University in Beijing, China, showed that male mice will cheerfully mount both male and female mice, as long as their brains are deficient in one chemical messenger: serotonin. The paper, published in Nature, received plenty of media coverage. Now, two other research groups report seemingly opposite findings: Male mice with no serotonin in their brains still prefer female mice to males. The researchers contend that serotonin is about social communication and impulsive behaviors, not sex. Mounting behavior aside, sexual preference in mice is not about “turning mice gay.” It never has been. Instead, it’s about the role that a single chemical can play in animal behavior. And it’s about what, exactly, those behaviors really mean. Serotonin serves as a messenger between cells. It plays important roles in mood. Serotonin-related drugs are used to treat some forms of migraine. And of course, serotonin plays a role in the psychedelic effects of recreational drugs such as hallucinogens. So when the Peking University group set out to show serotonin’s role in sexual preference, they attacked it from several angles. They used mice that had been genetically engineered to lack the brain cells that usually produce serotonin. They used a chemical to deplete serotonin in the brains of normal mice. And they created another strain of mice that lacked the enzyme that makes serotonin in the brain. © Society for Science & the Public 2000 - 2015

Keyword: Sexual Behavior
Link ID: 20787 - Posted: 04.11.2015

By Emily Underwood A splashy headline appeared on the websites of many U.K. newspapers this morning, claiming that men whose brothers or fathers have been convicted of a sex offense are “five times more likely to commit sex crimes than the average male” and that this increased risk of committing rape or molesting a child “may run in a family’s male genes.” The study, published online today in the International Journal of Epidemiology, analyzed data from 21,566 male sex offenders convicted in Sweden between 1973 and 2009 and concluded that genetics may account for at least 40% of the likelihood of committing a sex crime. (Women, who commit less than 1% of Sweden’s sexual offenses, were omitted from the analysis.) The scientists have suggested that the new research could be used to help identify potential offenders and target high-risk families for early intervention efforts. But independent experts—and even the researchers who led the work, to a certain degree—warn that the study has some serious limitations. Here are a few reasons to take its conclusions, and the headlines, with a generous dash of salt. Alternate explanations: Most studies point to early life experiences, such as childhood abuse, as the most important risk factor for becoming a perpetrator of abuse in adulthood. The new study, however, did not include any detail about the convicted sex criminals’ early life exposure to abuse. Instead, by comparing fathers with sons, and full brothers and half-brothers reared together or apart, the scientists attempted to tease out the relative contributions of shared environment and shared genes to the risk of sexual offending. Based on their analyses, the researchers concluded that shared environment accounted for just 2% of the risk of sexual offense, while genetics accounted for roughly 40%. Although there is likely some genetic contribution to sexual offending—perhaps related to impulsivity or sex drive—the group “may be overestimating the role of genes” because their assumptions were inaccurate, says Fred Berlin, a psychiatrist and sexologist at Johns Hopkins University in Baltimore, Maryland. © 2015 American Association for the Advancement of Science.

Keyword: Aggression; Genes & Behavior
Link ID: 20779 - Posted: 04.10.2015

Drawing on the widest survey of sexual behaviour since the Kinsey Report, David Spiegelhalter, in his book Sex By Numbers, answers key questions about our private lives. Here he reveals how Kinsey’s contested claim that 10% of us are gay is actually close to the mark For a single statistic to be the primary propaganda weapon for a radical political movement is unusual. Back in 1977, the US National Gay Task Force (NGTF) was invited into the White House to meet President Jimmy Carter’s representatives – a first for gay and lesbian groups. The NGTF’s most prominent campaigning slogan was “we are everywhere”, backed up by the memorable statistical claim that one in 10 of the US population was gay – this figure was deeply and passionately contested. So where did Bruce Voeller, a scientist who was a founder and first director of the NGTF, get this nice round 10% from? To find out, we have to delve back into Alfred Kinsey’s surveys in 1940s America, which were groundbreaking at the time but are now seen as archaic in their methods: he sought out respondents in prisons and the gay underworld, made friends with them and, over a cigarette, noted down their behaviours using an obscure code. Kinsey did not believe that sexual identity was fixed and simply categorised, and perhaps his most lasting contribution was his scale, still used today, in which individuals are rated from exclusively heterosexual to exclusively homosexual on a scale of 0 to 6. Kinsey’s headline finding was that “at least 37% of the male population has some homosexual experience between the beginning of adolescence and old age”, meaning physical contact to the point of orgasm. © 2015 Guardian News and Media Limited

Keyword: Sexual Behavior
Link ID: 20760 - Posted: 04.06.2015

by Alison George Misguided notions about our sexual appetites are missing the bigger picture and making people unhappy, says Emily Nagoski Why is there no such thing as a sex drive? A drive is a motivational system to deal with life-or-death issues, like hunger or being too cold. You're not going to die if you don't have sex. But biologists might say that if you don't reproduce, that is a form of death Yes. That's the argument that was used when desire was being added to the way sexual dysfunctions were diagnosed in the 1970s, to justify the framing of sexual desire as a drive. But when it comes to sex, there just isn't any physical evidence of a drive mechanism. So what's going on? If sex is a drive then desire should be spontaneous, like a hunger. When you see a sexy person or have a stray sexy thought, it activates an internal craving or urge for sex. That's called "spontaneous desire". It feels like it comes out of the blue. But there is another way of experiencing desire which is also healthy and normal, called "responsive desire", where your interest only emerges in response to arousal. So, your partner comes over and starts kissing your neck and you're like, "oh, right, sex, that's a good idea". Do you think an absence of spontaneous desire is normal? Yes. If our metaphor for desire is hunger, if you are never hungry for food there will be dire consequences and that's clearly a disorder, right? That's a medical problem that needs to be fixed. But not experiencing spontaneous hunger for sex doesn't have dire consequences; it is not a medical disorder. I think the reason we expect everyone to have spontaneous desire is because that's how most men experience it. © Copyright Reed Business Information Ltd

Keyword: Sexual Behavior
Link ID: 20759 - Posted: 04.06.2015

Hannah Devlin, science correspondent They may stop short of singing The Bells of Saint Mary’s, as demonstrated by the mouse organ in Monty Python, but scientists have discovered that male mice woo females with ultrasonic songs. The study shows for the first time that mouse song varies depending on the context and that male mice have a specific style of vocalisation reserved for when they smell a female in the vicinity. In turn, females appear to be more interested in this specific style of serenade than other types of squeak that male mice produce. “It was surprising to me how much change occurs to these songs in different social contexts, when the songs are thought to be innate,” said Erich Jarvis, who led the work at Duke University in North Carolina. “It is clear that the mouse’s ability to vocalise is a lot more limited than a songbird’s or human’s, and yet it’s remarkable that we can find these differences in song complexity.” The findings place mice in an elite group of animal vocalisers, that was once thought to be limited to birds, whales, and some primates. Mouse song is too high-pitched for the human ear to detect, but when listened to at a lower frequency, it sounds somewhere between birdsong and the noise of clean glass being scrubbed. The Duke University team recorded the male mice when they were roaming around their cages, when they were exposed to the smell of female urine and when they were placed in the presence of a female mouse. They found that males sing louder and more complex songs when they smell a female but don’t see her. By comparison, the songs were longer and simpler when they were directly addressing their potential mate, according to the findings published in Frontiers of Behavioural Neuroscience. © 2015 Guardian News and Media Limited

Keyword: Hearing; Sexual Behavior
Link ID: 20751 - Posted: 04.02.2015

Sara Reardon A new study finds that children's cognitive skills are linked to family income. The stress of growing up poor can hurt a child’s brain development starting before birth, research suggests — and even very small differences in income can have major effects on the brain. Researchers have long suspected that children’s behaviour and cognitive abilities are linked to their socioeconomic status, particularly for those who are very poor. The reasons have never been clear, although stressful home environments, poor nutrition, exposure to industrial chemicals such as lead and lack of access to good education are often cited as possible factors. In the largest study of its kind, published on 30 March in Nature Neuroscience1, a team led by neuroscientists Kimberly Noble from Columbia University in New York City and Elizabeth Sowell from Children's Hospital Los Angeles, California, looked into the biological underpinnings of these effects. They imaged the brains of 1,099 children, adolescents and young adults in several US cities. Because people with lower incomes in the United States are more likely to be from minority ethnic groups, the team mapped each child’s genetic ancestry and then adjusted the calculations so that the effects of poverty would not be skewed by the small differences in brain structure between ethnic groups. The brains of children from the lowest income bracket — less than US$25,000 — had up to 6% less surface area than did those of children from families making more than US$150,000, the researchers found. In children from the poorest families, income disparities of a few thousand dollars were associated with major differences in brain structure, particularly in areas associated with language and decision-making skills. Children's scores on tests measuring cognitive skills, such as reading and memory ability, also declined with parental income. © 2015 Nature Publishing Group,

Keyword: Development of the Brain; Stress
Link ID: 20741 - Posted: 03.31.2015

By Anna Azvolinsky Differences in male and female rodent sexual behaviors are programmed during brain development, but how exactly this occurs is not clear. In the preoptic area (POA) of the brain—a region necessary for male sex behavior—the female phenotype results from repression of male-linked genes by DNA methylation, according to a study published today (March 30) in Nature Neuroscience. There is very little known about how the brain is masculinized—and even less about how it is feminized—even though the question has been studied for more than 50 years, said Bridget Nugent, study author and now a postdoctoral fellow at the University of Pennsylvania. These sex differences in the brain are programmed toward the end of fetal development, through to one week after birth in rodents. In males, testicular hormones drive masculinization of the brain; this was thought to occur by direct induction of gene expression by hormone-associated transcription factors. Because a feminized brain occurred in the absence of ovarian hormone signals, most researchers assumed that the female brain and behavior was a sort of default state, programmed during development when no male hormones are present. But the downstream mechanisms of how hormones can modify gene expression were not previously known. “This study reveals that DNA methylation plays an important role in regulating sexual differentiation,” said Nirao Shah, who also studies the neural basis for sex-specific behaviors at the University of California, San Francisco, but was not involved with the work. © 1986-2015 The Scientist

Keyword: Sexual Behavior; Epigenetics
Link ID: 20740 - Posted: 03.31.2015

Nicholette Zeliadt, One afternoon in October 2012, a communication therapist from Manchester visited the home of Laura and her three children. Laura sat down at a small white table in a dimly lit room to feed her 10-month-old daughter, Bethany, while the therapist set up a video camera to record the pair’s every movement. (Names of research participants have been changed to protect privacy.) Bethany sat quietly in her high chair, nibbling on macaroni and cheese. She picked up a slimy noodle with her tiny fingers, looked up at Laura and thrust out her hand. “Oh, Mommy’s going to have some, yum,” Laura said. “Clever girl!” Bethany beamed a toothy grin at her mother and let out a brief squeal of laughter, and then turned her head to peer out the window as a bus rumbled by. “Oh, you can hear the bus,” Laura said. “Can you say ‘bus?’” “Bah!” Bethany exclaimed. “Yeah, bus!” Laura said. This ordinary domestic moment, immortalized in the video, is part of the first rigorous test of a longstanding idea: that the everyday interactions between caregiver and child can shape the course of autism1. The dynamic exchanges with a caregiver are a crucial part of any child’s development. As Bethany and her mother chatter away, responding to each other’s glances and comments, for example, the little girl is learning how to combine gestures and words to communicate her thoughts. In a child with autism, however, this ‘social feedback loop’ might go awry. An infant who avoids making eye contact, pays little attention to faces and doesn’t respond to his or her name gives parents few opportunities to engage. The resulting lack of social interaction may reinforce the baby’s withdrawal, funneling into a negative feedback loop that intensifies mild symptoms into a full-blown disorder. © 2015 Guardian News and Media Limited

Keyword: Autism
Link ID: 20733 - Posted: 03.30.2015

By BONNIE ROCHMAN Reasons Why I Shouldn’t Have to Go Tonight: If I wanted to talk about it, I would. / It’s my body. / It’s a waste of time. / It’s a waste of money. / I know what I need to know. / It sounds pretty stupid to me. PLEASE DON’T MAKE ME GO. I DON’T WANT TO GO. The plea came from Leah Likin, a fifth grader. It was addressed to her mother, who had registered both of them for a two-part course on puberty called “For Girls Only.” The missive, which included additional objections, failed: Mother took daughter anyway. But Leah had plenty of company, peers who shared her resistance, their arms crossed, their eyes downcast. Last year, the course, which is split into sessions for preteen boys and girls and held mostly in and around Seattle, and also in the Bay Area, pulled in 14,000 attendees. They heard about it from their pediatricians, or through word of mouth. The creator of the course, Julie Metzger, has been trying for nearly three decades to turn what’s so often at best a blush-inducing experience — the “facts of life” talk — into a candid dialogue between parents and children. In the mid-1980s, she was a graduate student at the University of Washington School of Nursing when she reviewed survey data on how women had learned about menarche, or the onset of menstruation, for her master’s thesis. Most reported getting information from gym class or their mothers. “You can picture those conversations lasting from 10 seconds to 10 hours,” Metzger says. “And I thought, Wouldn’t it be interesting if you actually had a class where you sit with your parents and hear these things from someone? What if that class were fun and funny and interactive?” Metzger, who is 56 and vigorous, with flushed cheeks and blue eyes, says she has always been comfortable talking about sexuality; her father was a urologist, her mother a nurse. “Hand me a microphone,” she says. “I get so into this topic that I can make myself cry in front of the class, and it’s real.” © 2015 The New York Times Company

Keyword: Sexual Behavior
Link ID: 20722 - Posted: 03.26.2015

By Camilla Turner It is one of life’s most enduring mysteries. A question that music, poetry, myth and legend has, for thousands of years, tried but failed to answer. However, we may now be a step closer to discovering what love is, thanks to a scientific study that has obtained the first empirical evidence of love-related alterations in the brain. A team of researchers from universities in China and New York used MRI scans to track the physical effects of love on the brain and has pieced together a “love map” of the human mind. The study found that several areas of the brain showed increased activity in those who were in love, including in the parts of the brain linked to reward and motivation. The researchers said their results shed light on the “underlying mechanisms of romantic love” and would pave the way for a brain scan that could act as a “love test”. Scientists recruited 100 students from Southwest University in Chongqing, China, who were divided into three groups according to their relationship status: an “in-love” group, comprised of those who were in love at the time; an “ended-love” group, who had recently ended loving relationships; and a “single” group, who had never been in love. Participants were told not to think of anything while their brains were scanned, so that researchers could monitor the differences between the brains of students in all three groups. © Copyright of Telegraph Media Group Limited 2015

Keyword: Sexual Behavior
Link ID: 20692 - Posted: 03.17.2015

by Penny Sarchet For some of us, it might have been behind the bikeshed. Not so the African cotton leafworm moth (Spodoptera littoralis), which can choose any one of a vast number of plant species to mate on. But these moths remember their first time, returning to the same species in search of other mates. In the wild, this moth feeds and mates on species from as many as 40 different plant families. That much choice means there's usually something available to eat, but selecting and remembering the best plants is tricky. So, recalling what you ate as a larva, or where you first copulated, may help narrow down which plants provide better quality food or are more likely to attract other potential mates. Magali Proffit and David Carrasco of the Swedish University of Agricultural Sciences in Alnarp and their colleagues have discovered that this moth's first mating experience shapes its future preferences. These moths have an innate preference for cotton plants over cabbage. But when the researchers made them mate for the first time on cabbage, the moths later showed an increased preference for mating or laying eggs on this plant. Further experiments revealed that moths didn't just favour plants they were familiar with, even in combination with a sex pheromone – mating had to be involved. © Copyright Reed Business Information Ltd.

Keyword: Sexual Behavior; Learning & Memory
Link ID: 20665 - Posted: 03.09.2015

By Nicholas Weiler Killer whales wouldn’t get far without their old ladies. A 9-year study of orcas summering off the southern tip of Vancouver Island in the Pacific Northwest finds that menopausal females usually lead their families to find salmon, particularly when the fish are scarce. Older females’ years of foraging experience may help their clans survive in years of famine, an evolutionary benefit that could explain why—like humans—female orcas live for decades past their reproductive prime. “Menopause is a really bizarre trait. Evolutionarily it doesn’t make sense,” says biologist Lauren Brent of the University of Exeter in the United Kingdom, who led the new study. Most animals keep having babies until they drop, part of the evolutionary drive to spread their genes as widely as possible. Only female humans, pilot whales, and killer whales are known to go through menopause: At a certain age, they stop reproducing, but continue to lead long, productive lives. Like humans, female killer whales stop giving birth by about 40, but can live into their 90s. Anthropologists have proposed a controversial explanation for menopause in humans: that grandmothers contribute to their genetic legacies by helping their children and grandchildren survive and reproduce. In hunter-gatherer and other societies, elders find extra food, babysit, and remember tribal lore about how to live through floods, famines, and other hardships. According to the “grandmother hypothesis,” this contribution is so valuable that it helped spur the evolution of women’s long postreproductive lives. Orcas too depend on their elders: Adult killer whales’ mortality rates skyrocket after their elderly mothers die. But how the menopausal whales might help their children survive was not clear, Brent says. © 2015 American Association for the Advancement of Science.

Keyword: Hormones & Behavior; Sexual Behavior
Link ID: 20662 - Posted: 03.07.2015

By David Masci Potential Republican presidential candidate Dr. Ben Carson made news earlier this week when he said that being gay is a “choice,” but when it comes to public opinion, polls show that Americans remain divided over whether “nature” or “nurture” is ultimately responsible for sexual orientation. Four-in-ten Americans (42%) said that being gay or lesbian is “just the way some choose to live,” while a similar share (41%) said that “people are born gay or lesbian,” according to the most recent Pew Research Center poll on the issue, conducted in 2013. Fewer U.S. adults (8%) said that people are gay or lesbian due to their upbringing, while another one-in-ten (9%) said they didn’t know or declined to give a response. People with the most education are the most likely to say that gays and lesbians were born that way. Indeed, 58% of Americans with a postgraduate degree say that people are born gay or lesbian, compared with just 35% of those with a high school diploma or less. The percentage of all Americans who believe that people are born gay or lesbian has roughly doubled (from 20% to 41%) since 1985, when the question was asked in a Los Angeles Times survey. More than three decades of Gallup polls also show a considerable rise in the view that being gay or lesbian is a product of “nature” rather than “nurture.” But the most recent survey, in 2014, still finds that the nation remains split in its feelings on the origins of sexual orientation. Copyright 2015 Pew Research Center

Keyword: Sexual Behavior
Link ID: 20658 - Posted: 03.07.2015

Tristram Wyatt This Valentine’s Day, like every year, there was a rash of stories in the news about sexy smells and pheromones. You could be forgiven for thinking that human ‘sex pheromones’, in particular the ‘male molecule’ androstadienone, were well established: countless ‘human pheromones’ websites sell it and there are tens of apparently scientific studies on androstadienone published in science journals. These studies are cited hundreds of times and have ended up being treated as fact in books on sexual medicine and even commentary on legislation. The birth place of the pheromone myth was a 1991 conference in Paris sponsored by a US corporation, EROX, which had an interest in patenting androstadienone and another molecule - estratetraenol, from women - as ‘human pheromones’. Unwittingly, leading mammalian olfaction scientists lent the conference credibility. Slotted into the programme and conference proceedings was the short ‘study-zero’ paper on the ‘Effect of putative pheromones on the electrical activity of the human vomeronasal organ and olfactory epithelium’. To my surprise, the authors gave no details at all of how these molecules had been extracted, identified, and tested in bioassays - all routinely required steps in the exhaustive process before any molecule can be shown to be a species-wide chemical signal, a pheromone. Instead there was just a footnote: ‘These putative pheromones were supplied by EROX Corporation’. The missing, essential details were never published. (The claim by EROX-sponsored scientists that adult humans have a functioning vomeronasal organ, against all the evidence, is a story for another day). © 2015 Guardian News and Media Limited

Keyword: Chemical Senses (Smell & Taste); Sexual Behavior
Link ID: 20646 - Posted: 03.04.2015