Chapter 17. Learning and Memory

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1108

By Esther Hsieh Imagine you are enjoying your golden years, driving to your daily appointment for some painless brain zapping that is helping to stave off memory loss. That's the hope of a new study, in which people who learned associations (such as a random word and an image) after transcranial magnetic stimulation (TMS) were better able to learn more pairings days and weeks later—with no further stimulation needed. TMS uses a magnetic coil placed on the head to increase electrical signaling a few centimeters into the brain. Past studies have found that TMS can boost cognition and memory during stimulation, but this is the first to show that such gains can last even after the TMS regimen is completed. In the new study, which was published in Science, neuroscientists first used brain imaging to identify the associative memory network of 16 young, healthy participants. This network, based around the hippocampus, glues together things such as sights, places, sounds and time to form a memory, explains neuroscientist Joel Voss of Northwestern University, a senior author of the paper. Next, the researchers applied TMS behind the left ear of each participant for 20 minutes for five consecutive days to stimulate this memory network. To see if participants' associative memory improved, one day after the stimulation regimen finished they were tested for their ability to learn random words paired with faces. Subjects who had had TMS performed 33 percent better, compared with those who received placebo treatments, such as sham stimulation. © 2015 Scientific American

Keyword: Learning & Memory; Brain imaging
Link ID: 20977 - Posted: 05.25.2015

Athletes who lose consciousness after concussions may be at greater risk for memory loss later in life, a small study of retired National Football League players suggests. Researchers compared memory tests and brain scans for former NFL players and a control group of people who didn't play college or pro football. After concussions that resulted in lost consciousness, the football players were more likely to have mild cognitive impairment and brain atrophy years later. "Our results do suggest that players with a history of concussion with a loss of consciousness may be at greater risk for cognitive problems later in life," senior study author Munro Cullum, chief of neuropsychology at the University of Texas Southwestern Medical Center in Dallas, said by email. "We are at the early stages of understanding who is actually at risk at the individual level." Cullum and colleagues recruited 28 retired NFL players living in Texas: eight who were diagnosed with mild cognitive impairment and 20 who didn't appear to have any memory problems. They ranged in age from 36 to 79, and were an average of about 58 years old. All but three former athletes experienced at least one concussion, and they typically had more than three. Researchers compared these men to 27 people who didn't play football but were similar in age, education, and mental capacity to the retired athletes, including six with cognitive impairment. These men were 41 to 77 years old, and about 59 on average. ©2015 CBC/Radio-Canada

Keyword: Brain Injury/Concussion; Learning & Memory
Link ID: 20965 - Posted: 05.21.2015

By Susan Cosier Once a memory is lost, is it gone forever? Most research points to yes. Yet a study published in the online journal eLife now suggests that traces of a lost memory might remain in a cell's nucleus, perhaps enabling future recall or at least the easy formation of a new, related memory. The current theory accepted by neurobiologists is that long-term memories live at synapses, which are the spaces where impulses pass from one nerve cell to another. Lasting memories are dependent on a strong network of such neural connections; memories weaken or fade if the synapses degrade. In the new study, researchers at the University of California, Los Angeles, studied sea slugs' neurons in a cell culture dish. Over several days the neurons spontaneously formed a number of synapses. The scientists then administered the neurotransmitter serotonin to the neurons, causing them to create many more synapses—the same process by which a living creature would form a long-term memory. When they inhibited a memory-forming enzyme and checked the neurons after 48 hours, the number of synapses had returned to the initial number—but they were not the same individual synapses as before. Some of the original and some of the new synapses retracted to create the exact number the cells started with. The finding is surprising because it suggests that a nerve cell body “knows” how many synapses it is supposed to form, meaning it is encoding a crucial part of memory. The researchers also ran a similar experiment on live sea slugs, in which they found that a long-term memory could be totally erased (as gauged by its synapses being destroyed) and then re-formed with only a small reminder stimulus—again suggesting that some information was being stored in a neuron's body. © 2015 Scientific American

Keyword: Learning & Memory
Link ID: 20958 - Posted: 05.20.2015

by Ashley Yeager This guest post is by SN's web producer Ashley Yeager, who can't remember ever not knowing how to swim. Sometimes my brother-in-law will scoop up my 2-year-old niece and fly her around like Superwoman. She’ll start kicking her legs and swinging her arms like she’s swimming — especially when we say, “paddle, paddle, paddle.” My niece, Baby D, loves the water. She often looks like one of the kids captured in famed photographer Seth Casteel’s new book, Underwater Babies. But she probably won’t remember her first trips to the pool — she was only a few months old when her mom first took her swimming. Part of my sister’s reasoning for such an early start was standard water safety. Every day in the United States, accidental drowning claims the lives of two children under the age of 14 years. Our family spends a lot of time at the pool and the beach, so making sure Baby D is protected is a priority. But there’s another reason my sister was keen to get Baby D to the pool. Loosely based on something our mother told us, it’s that learning to swim early in life may give kids a head start in developing balance, body awareness and maybe even language and math skills. Mom may have been right. A multi-year study released in 2012 suggests that kids who take swim lessons early in life appear to hit certain developmental milestones well before their nonswimming peers. In the study, Australian researchers surveyed about 7,000 parents about their children’s development and gave 177 kids aged 3 to 5 years standard motor, language, memory and attention tests. Compared with kids who didn’t spend much time in the water, kids who had taken swim lessons seemed to be more advanced at tasks like running and climbing stairs and standing on their tiptoes or on one leg, along with drawing, handling scissors and building towers out of blocks. © Society for Science & the Public 2000 - 2015.

Keyword: Development of the Brain; Learning & Memory
Link ID: 20955 - Posted: 05.20.2015

An octopus filmed off the coast of Kalaoa in Hawaii has shown that even cephalopods can get into a game of peekaboo. In the footage, shot last month by the GoPro camera of diver Timothy Ewing, the octopus bobs up and down behind a rock as a Ewing does the same in an effort to take the animal's picture. It's clear from the video that the octopus is wary of Ewing and his big, light-equipped camera — but the animal is also very curious. “Octopus are one of the more intelligent creatures in the ocean. Sometimes they are too curious for their own good. If you hide from them they will come out and look for you," the diver wrote in his online posting of the video. Ewing explained to CaliforniaDiver.com that the encounter wasn't limited to the time captured on his GoPro. "I was interacting with that octopus for about 10 minutes before I took the video," Ewing told CaliforniaDiver.com. "I normally mount my GoPro to my big camera housing, however I always carry a small tripod with me to use with the GoPro for stationary shots like this or selfie videos." The octopus, found worldwide in tropical, subtropical and temperate areas, is known for its smarts and striking ability to camouflage itself. When it feels threatened, pigment cells in its skin allow it to change color instantly to blend in with its surroundings. The animals can also adapt their skin texture and body posture to further match their background. © 2015 Discovery Communications, LLC.

Keyword: Learning & Memory; Intelligence
Link ID: 20954 - Posted: 05.20.2015

By James Gorman and Robin Lindsay Before human ancestors started making stone tools by chipping off flakes to fashion hand axes and other implements, their ancestors may have used plain old stones, as animals do now. And even that simple step required the intelligence to see that a rock could be used to smash open a nut or an oyster and the muscle control to do it effectively. Researchers have been rigorous in documenting every use of tools they have found find in animals, like crows, chimpanzees and dolphins. And they are now beginning to look at how tools are used by modern primates — part of the scientists’ search for clues about the evolution of the kind of delicate control required to make and use even the simplest hand axes. Monkeys do not exhibit human dexterity with tools, according to Madhur Mangalam of the University of Georgia, one of the authors of a recent study of how capuchin monkeys in Brazil crack open palm nuts. “Monkeys are working as blacksmiths,” he said, “They’re not working as goldsmiths.” But they are not just banging away haphazardly, either. Mr. Mangalam, a graduate student who is interested in “the evolution of precise movement,” reported in a recent issue of Current Biology on how capuchins handle stones. His adviser and co-author was Dorothy M. Fragaszy, the director of the Primate Behavior Laboratory at the university. Using video of the capuchins’ lifting rocks with both hands to slam them down on the hard palm nuts, he analyzed how high a monkey lifted a stone and how fast it brought it down. He found that the capuchins adjusted the force of a strike according to the condition of the nut after the previous strike. © 2015 The New York Times Company

Keyword: Evolution; Learning & Memory
Link ID: 20952 - Posted: 05.19.2015

RACHEL MARTIN, HOST: For most of her life, Cole Cohen had a hard time with all kinds of things. She'd get lost all of the time. She couldn't do math to save her life. The whole concept of time was hard for her to grasp. Her parents took her to doctor after doctor, and there were all kinds of tests and experiments with medication, but no real diagnosis until she was 26 years old. Cole Cohen got her first MRI and finally, there was an explanation. There was a hole in her brain; a hole in her brain the size of a lemon. Her memoir, titled "Head Case," is a darkly funny exploration of what that discovery meant to her. Cole Cohen joins us now. Thanks so much for being with us. COLE COHEN: Thank you for having me, Rachel. MARTIN: Let's talk about what life was like before this revelation. I mentioned your propensity to get lost. We're not talking about being in a new place and getting confuses as a lot of us might do. You got lost in, like, big box stores that you had been to before. Can you describe that sensation, that feeling of not knowing where you are in a situation like that? COHEN: Yeah. I know that sensation every time I go grocery shopping. You know, you want to get a jar of peanut butter. You have a memory of where that jar of peanut butter is, and I just don't have that in my brain. I don't store that information. So it's like a discovery every time. MARTIN: I'd love for you to read an example of one of the symptoms. You have a hard time with numbers, even references to numbers. And you write about this in the book when you're taking driver's ed. Do you mind reading that bit? © 2015 NPR

Keyword: Learning & Memory
Link ID: 20942 - Posted: 05.18.2015

By JIM DWYER The real world of our memory is made of bits of true facts, surrounded by holes that we Spackle over with guesses and beliefs and crowd-sourced rumors. On the dot of 10 on Wednesday morning, Anthony O’Grady, 26, stood in front of a Dunkin’ Donuts on Eighth Avenue in Manhattan. He heard a ruckus, some shouts, then saw a police officer chase a man into the street and shoot him down in the middle of the avenue. Moments later, Mr. O’Grady spoke to a reporter for The New York Times and said the wounded man was in flight when he was shot. “He looked like he was trying to get away from the officers,” Mr. O’Grady said. Another person on Eighth Avenue then, Sunny Khalsa, 41, had been riding her bicycle when she saw police officers and the man. Shaken by the encounter, she contacted the Times newsroom with a shocking detail. “I saw a man who was handcuffed being shot,” Ms. Khalsa said. “And I am sorry, maybe I am crazy, but that is what I saw.” At 3 p.m. on Wednesday, the Police Department released a surveillance videotape that showed that both Mr. O’Grady and Ms. Khalsa were wrong. Contrary to what Mr. O’Grady said, the man who was shot had not been trying to get away from the officers; he was actually chasing an officer from the sidewalk onto Eighth Avenue, swinging a hammer at her head. Behind both was the officer’s partner, who shot the man, David Baril. And Ms. Khalsa did not see Mr. Baril being shot while in handcuffs; he is, as the video and still photographs show, freely swinging the hammer, then lying on the ground with his arms at his side. He was handcuffed a few moments later, well after he had been shot. © 2015 The New York Times Company

Keyword: Learning & Memory
Link ID: 20939 - Posted: 05.16.2015

By Jonathan Webb Science reporter, BBC News A cluster of cells in the brain of a fly can track the animal's orientation like a compass, a study has revealed. Fixed in place on top of a spherical treadmill, a fruit fly walked on the spot while neuroscientists peered into its brain using a microscope. Watching the neurons fire inside a donut-shaped brain region, they saw activity sweep around the ring to match the direction the animal was headed. Mammals have similar "head direction cells" but this is a first for flies. The findings are reported in the journal Nature. Crucially, the compass-like activity took place not only when the animal was negotiating a virtual-reality environment, in which screens gave the illusion of movement, but also when it was left in the dark. "The fly is using a sense of its own motion to pick up which direction it's pointed," said senior author Dr Vivek Jayaraman, from the Howard Hughes Medical Institute's Janelia Research Campus. In some other insects, such as monarch butterflies and locusts, brain cells have been observed firing in a way that reflects the animal's orientation to the pattern of polarised light in the sky - a "sun compass". But the newly discovered compass in the fly brain works more like the "head directions cells" seen in mammals, which rapidly set up a directional system for the animal based on landmarks in the surrounding scene. "A key thing was incorporating the fly's own movement," Dr Jayaraman told the BBC. "To see that its own motion was relevant to the functioning of this compass - that was something we could only see if we did it in a behaving animal." © 2015 BBC

Keyword: Learning & Memory
Link ID: 20933 - Posted: 05.14.2015

Thomas R. Clandinin & Lisa M. Giocomo An analysis reveals that fruit-fly neurons orient flies relative to cues in the insects' environment, providing evidence that the fly's brain contains a key component for drawing a cognitive map of the insect's surroundings. See Article p.186 Animals need accurate navigational skills as they go about their everyday lives. Many species, from ants to rodents, navigate on the basis of visual landmarks, and this is complemented by path integration, in which neuronal cues about the animal's own motion are used to track its location relative to a starting point. In mammals, these different types of navigation are integrated by neurons called head-direction cells1. In this issue, Seelig and Jayaraman2 (page 186) provide the first evidence that certain neurons in fruit flies have similar properties to head-direction cells, encoding information that orients the insects relative to local landmarks. Head-direction cells act as a neuronal compass that generates a cognitive map of an animal's environment. The activity of each head-direction cell increases as the animal faces a particular direction, with different cells preferentially responding to different directions1, 3. Rather than certain cells always responding to north, south and so on, the direction in which the cells fire is set up arbitrarily when the animal encounters new visual landmarks. The signals are then updated by self-motion cues as the animal navigates. Studying head-direction cells in mammals is challenging because of the complexity of the mammalian brain. By contrast, the small fly brain is a good model for studying neuronal activity. © 2015 Macmillan Publishers Limited.

Keyword: Learning & Memory
Link ID: 20932 - Posted: 05.14.2015

By Emily Underwood We’ve all heard how rats will abandon a sinking ship. But will the rodents attempt to save their companions in the process? A new study shows that rats will, indeed, rescue their distressed pals from the drink—even when they’re offered chocolate instead. They’re also more likely to help when they’ve had an unpleasant swimming experience of their own, adding to growing evidence that the rodents feel empathy. Previous studies have shown that rats will lend distressed companions a helping paw, says Peggy Mason, a neurobiologist at the University of Chicago in Illinois who was not involved in the work. In a 2011 study, for example, Mason and colleagues showed that if a rat is trapped in a narrow plastic tube, its unrestrained cagemate will work on the latch until it figures out how to spring the trap. Skeptics, however, have suggested that the rodents help because they crave companionship—not because their fellow rodents were suffering. The new study, by researchers at the Kwansei Gakuin University in Japan, puts those doubts to rest, Mason says. For their test of altruistic behavior, the team devised an experimental box with two compartments divided by a transparent partition. On one side of the box, a rat was forced to swim in a pool of water, which it strongly disliked. Although not at risk of drowning—the animal could cling to a ledge—it did have to tread water for up to 5 minutes. The only way the rodent could escape its watery predicament was if a second rat—sitting safe and dry on a platform—pushed open a small round door separating the two sides, letting it climb onto dry land. © 2015 American Association for the Advancement of Science

Keyword: Emotions; Learning & Memory
Link ID: 20923 - Posted: 05.13.2015

By Gareth Cook Much has been written on the wonders of human memory: the astounding feats of recall, the way memories shape our identity and are shaped by them, memory as a literary theme and a historical one. But what of forgetting? This is the topic of a new book by Douwe Draaisma, author of The Nostalgia Factory and a professor of the history of psychology at the University of Groningen. In Forgetting, Draaisma considers dreaming, amnesia, dementia and all of the ways that our minds — and lives — are shaped by memory’s opposite. He answered questions from Mind Matters editor Gareth Cook. What is your earliest memory and why, do you suppose, have you not forgotten it? Quite a few early memories in the Netherlands involve bicycles, and mine is no exception. I was two-and-a-half years old when my aunts walked my mother to the train station. They had taken a bike along to transport her bags. I was sitting on the back of the bike. Suddenly the whole procession came to a halt when my foot got caught between the spokes. I’m pretty sure this memory is accurate, since I had to see a doctor and there is a dated medical record. It’s a brief, snapshot-like memory, black-and-white. I don’t remember any pain, but I do remember the consternation among my mom and her sisters. Looking back on this memory from a professional perspective, I would say that it has the flash-like character typical for first memories from before age 3; ‘later’ first memories are usually a bit longer and more elaborate. It also fits the pattern of being about pain and danger. Roughly three in four first memories are associated with negative emotions. This may have an evolutionary origin: I never again had my foot between the spokes. And neither have any of my children. © 2015 Scientific American

Keyword: Learning & Memory
Link ID: 20918 - Posted: 05.13.2015

By Simon Makin After wandering around an unfamiliar part of town, can you sense which direction to travel to get back to the subway or your car? If so, you can thank your entorhinal cortex, a brain area recently identified as being responsible for our sense of direction. Variation in the signals in this area might even explain why some people are better navigators than others. The new work adds to a growing understanding of how our brain knows where we are. Groundbreaking discoveries in this field won last year's Nobel Prize in Physiology or Medicine for John O'Keefe, a neuroscientist at University College London, who discovered “place cells” in the hippocampus, a brain region most associated with memory. These cells activate when we move into a specific location, so that groups of them form a map of the environment. O'Keefe shared the prize with his former students Edvard Moser and May-Britt Moser, both now at the Kavli Institute for Systems Neuroscience in Norway, who discovered “grid cells” in the entorhinal cortex, a region adjacent to the hippocampus. Grid cells have been called the brain's GPS system. They are thought to tell us where we are relative to where we started. A third type—head-direction cells, also found in the entorhinal region—fires when we face a certain direction (such as “toward the mountain”). Together these specialized neurons appear to enable navigation, but precisely how is still unclear. For instance, in addition to knowing which direction we are facing, we need to know which direction to travel. Little was known about how or where such a goal-direction signal might be generated in the brain until the new study. © 2015 Scientific American

Keyword: Learning & Memory
Link ID: 20915 - Posted: 05.13.2015

Jane Brody With people worldwide living longer, marketers are seizing on every opportunity to sell remedies and devices that they claim can enhance memory and other cognitive functions and perhaps stave off dementia as people age. Among them are “all-natural” herbal supplements like Luminene, with ingredients that include the antioxidant alpha lipoic acid, the purported brain stimulant ginkgo biloba, and huperzine A, said to increase levels of the neurotransmitter acetylcholine; brain-training games on computers and smartphones; and all manner of puzzles, including crosswords, sudoku and jigsaw, that give the brain a workout, albeit a sedentary one. Unfortunately, few such potions and gizmos have been proven to have a meaningful, sustainable benefit beyond lining the pockets of their sellers. Before you invest in them, you’d be wise to look for well-designed, placebo-controlled studies that attest to their ability to promote a youthful memory and other cognitive functions. Even the widely acclaimed value of doing crossword puzzles has been called into question, beyond its unmistakable benefit to one’s font of miscellaneous knowledge. Although there is some evidence that doing crosswords may help to delay memory decline, Molly Wagster, a neuroscientist at the National Institute on Aging, said they are best done for personal pleasure, not brain health. “People who have done puzzles all their lives have no particular cognitive advantage over anyone else,” she said. The institute is one of several scientific organizations sponsoring rigorous trials of ways to cash in on the brain’s lifelong ability to generate new cells and connections. One such trial, Advanced Cognitive Training for Independent and Vital Elderly, or Active, was a 10-year follow-up study of 2,832 cognitively healthy community-dwelling adults 65 and older. © 2015 The New York Times Company

Keyword: Learning & Memory; Alzheimers
Link ID: 20910 - Posted: 05.12.2015

Andrew Griffin Scientists have created an electronic memory cell that mimics the way that human brains work, potentially unlocking the possibility of the making bionic brains. The cell can process and store multiple bits of information, like the human brain. Scientists hope that developing it could make for artificial cells that simulate the brain’s processes, leading to treatments for neurological conditions and for replica brains that scientists can experiment on. The new cells have been likened to the difference between having an on-off light switch and a dimmer, or the difference between black and white pictures or those with full colour, including shade light and texture. While traditional memory cells for computers can only process one binary thing at a time, the new discovery allows for much more complex memory processes like those found in the brain. They are also able to retain previous information, allowing for artificial systems that have the extraordinary memory powers found in human beings. While the new discovery is a long way from leading to a bionic brain, the discovery is an important step towards the dense and fast memory cells that will be needed to imitate the human brain's processes. “This is the closest we have come to creating a brain-like system with memory that learns and stores analog information and is quick at retrieving this stored information,” Sharath Sriram, who led the project, said.

Keyword: Learning & Memory; Robotics
Link ID: 20909 - Posted: 05.12.2015

Douwe Draaisma When we sleep, wrote English psychiatrist Havelock Ellis over a hundred years ago, we enter a ‘dim and ancient house of shadow’. We wander through its rooms, climb staircases, linger on a landing. Towards morning we leave the house again. In the doorway we look over our shoulders briefly and with the morning light flooding in we can still catch a glimpse of the rooms where we spent the night. Then the door closes behind us and a few hours later even those fragmentary memories we had when we woke have been wiped away. That is how it feels. You wake up and still have access to bits of the dream. But as you try to bring the dream more clearly to mind, you notice that even those few fragments are already starting to fade. Sometimes there is even less. On waking you are unable to shake off the impression that you have been dreaming; the mood of the dream is still there, but you no longer know what it was about. Sometimes you are unable to remember anything at all in the morning, not a dream, not a feeling, but later in the day you experience something that causes a fragment of the apparently forgotten dream to pop into your mind. No matter what we may see as we look back through the doorway, most of our dreams slip away and the obvious question is: why? Why is it so hard to hold on to dreams? Why do we have such a poor memory for them? In 1893, American psychologist Mary Calkins published her ‘Statistics of Dreams’, a numerical analysis of what she and her husband dreamed about over a period of roughly six weeks. They both kept candles, matches, pencil and paper in readiness on the bedside table. But dreams are so fleeting, Calkins wrote, that even reaching out for matches was enough to make them disappear. Still with an arm outstretched, she was forced to conclude that the dream had gone. © 2015 Salon Media Group, Inc

Keyword: Sleep; Learning & Memory
Link ID: 20894 - Posted: 05.06.2015

|By Michele Solis An individual with obsessive-compulsive disorder (OCD) is overcome with an urge to engage in unproductive habits, such as excessive hand washing or lock checking. Though recognizing these behaviors as irrational, the person remains trapped in a cycle of life-disrupting compulsions. Previous studies found that OCD patients have abnormalities in two different brain systems—one that creates habits and one that plays a supervisory role. Yet whether the anomalies drive habit formation or are instead a consequence of doing an action over and over remained unclear. To resolve this question, a team at the University of Cambridge monitored brain activity while people were actually forming new habits. Lapses in supervision are to blame, the researchers reported in a study published online in December 2014 in the American Journal of Psychiatry. They scanned 37 people with OCD and 33 healthy control subjects while they learned to avoid a mild shock by pressing on a foot pedal. Pressing the pedal became a habit for everyone, but people with OCD continued to press even when the threat of shock was over. Those with OCD showed abnormal activity in the supervisory regions important for goal-directed behavior but not in those responsible for habit formation. The finding suggests that shoring up the goal-directed systems through cognitive training might help people with OCD. The growing understanding of OCD's roots in the brain may also help convince individuals to engage in standard habit-breaking treatments, which expose a person to a trigger but prevent his or her typical response. “It's hard for people to not perform an action that their whole body is telling them to do,” says first author Claire Gillan, now at New York University. “So if you have an awareness that the habit is just a biological slip, then it makes OCD a lot less scary and something you can eventually control.” © 2015 Scientific American

Keyword: OCD - Obsessive Compulsive Disorder; Learning & Memory
Link ID: 20880 - Posted: 05.04.2015

Neuroscientists have discovered brain circuitry for encoding positive and negative learned associations in mice. After finding that two circuits showed opposite activity following fear and reward learning, the researchers proved that this divergent activity causes either avoidance or reward-driven behaviors. Funded by the National Institutes of Health, they used cutting-edge optical-genetic tools to pinpoint these mechanisms critical to survival, which are also implicated in mental illness. “This study exemplifies the power of new molecular tools that can push and pull on the same circuit to see what drives behavior,” explained Thomas R. Insel, M.D., director of NIH’s National Institute of Mental Health (NIMH). “Improved understanding of how such emotional memory works holds promise for solving mysteries of brain circuit disorders in which these mechanisms are disrupted.” NIMH grantee Kay Tye, Ph.D. External Web Site Policy, Praneeth Namburi and Anna Beyeler, Ph.D., of the Massachusetts Institute of Technology (MIT), Cambridge, and colleagues, report their findings April 29, 2015 in the journal Nature. Prior to the new study, scientists suspected involvement of the circuits ultimately implicated, but were stumped by a seeming paradox. A crossroads of convergent circuits in an emotion hub deep in the brain, thebasolateral amygdala, seem to be involved in both fear and reward learning, but how one brain region could orchestrate such opposing behaviors – approach and avoidance – remained an enigma. How might signals find the appropriate path to follow at this fork in the road?

Keyword: Learning & Memory; Emotions
Link ID: 20866 - Posted: 04.30.2015

Pete Etchells Over the past few years, there seems to have been a insidious pandemic of nonsense neuroscientific claims creeping into the education system. In 2013, the Wellcome Trust commissioned a series of surveys of parents and teachers, asking about various types of educational tools or teaching methods, and the extent to which they believe they have a basis in neuroscience. Worryingly, 76% of teachers responded that they used learning styles in their teaching, and a further 19% responded that they either use, or intend to use, left brain/right brain distinctions to help inform learning methods. Both of these approaches have been thoroughly debunked, and have no place in either neuroscience or education. In October last year, I reported on another study that showed that in the intervening time, things hadn’t really improved – 91% of UK teachers in that survey believed that there were differences in the way that students think and learn, depending on which hemisphere of the brain is ‘dominant’. And despite lots of great attempts to debunk myths about the brain, they still seem to persist and take up residence as ‘commonplace’ knowledge, being passed onto children as if they are fact. When I wrote about an ATL proposal to train teachers in neuroscience – a well-intended idea, but ultimately grounded in nonsense about left brain/right brain myths – I commented at the end that we need to do more to bring teachers and neuroscientists together, to discuss whether neuroscience has a relevant role in informing the way we teach students. Now, a new initiative funded by the Wellcome Trust is aiming to just that. © 2015 Guardian News and Media Limited

Keyword: Learning & Memory; Development of the Brain
Link ID: 20845 - Posted: 04.25.2015

By Felicity Muth One of the first things I get asked when I tell people that I work on bee cognition (apart from ‘do you get stung a lot?’) is ‘bees have cognition?’. I usually assume that this question shouldn’t be taken literally otherwise it would mean that whoever was asking me this thought that there was a possibility that bees didn’t have cognition and I had just been making a terrible mistake for the past two years. Instead I guess this question actually means ‘please tell me more about the kind of cognitive abilities bees have, as I am very much surprised to hear that bees can do more than just mindlessly sting people’. So, here it is: a summary of some of the more remarkable things that bees can do with their little brains. In the first part of two articles on this topic, I introduce the history and basics of bee learning. In the second article, I go on to discuss the more advanced cognitive abilities of bees. The study of bee cognition isn’t a new thing. Back in the early 1900s the Austrian scientist Karl von Frisch won the Nobel Prize for his work with honeybees (Apis mellifera). He is perhaps most famous for his research on their remarkable ability to communicate through the waggle dance but he also showed for the first time that honeybees have colour vision and learn the colours of the flowers they visit. Appreciating how he did this is perhaps the first step to understanding everything we know about bee cognition today. Before delving into the cognitive abilities of bees it’s important to think about what kinds of abilities a bee might need, given the environment she lives in (all foraging worker bees are female). Bees are generalists, meaning that they don’t have to just visit one particular flower type for food (nectar and pollen), but can instead visit hundreds of different types. However, not all flowers are the same. © 2015 Scientific American,

Keyword: Learning & Memory; Evolution
Link ID: 20831 - Posted: 04.22.2015