Chapter 14. Biological Rhythms, Sleep, and Dreaming

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1231

Ian Sample Science editor People who get too little sleep are more likely to catch a cold, according to US scientists who suspect that a good night’s sleep is crucial for the body’s immune defences. Those who slept six hours a night or less were four times more likely to catch a cold when they were exposed to the virus than people who spent more than seven hours a night asleep, their study found. The findings, reported in the journal Sleep, build on previous studies that suggest that the sleep-deprived are more susceptible to infectious diseases and recover more slowly when they do fall ill. “It goes beyond feeling groggy or irritable,” said Aric Prather, a health psychologist at the University of California in San Francisco. “Not getting enough sleep affects your physical health.” The scientists recruited 94 men and 70 women, with an average age of 30, for the study and subjected them to two months of health screening, interviews and questionnaires to establish their baseline stress levels, temperament and usage of alcohol and tobacco. The volunteers then spent a week wearing a wrist-mounted sleep sensor that tracked the duration and quality of their sleep each night. To see how well they fought off infections, the participants were taken to a hotel and given nasal drops containing the cold virus. Doctors monitored them closely for a week after, collecting mucus samples to work out if and when the virus took hold. © 2015 Guardian News and Media Limited

Keyword: Sleep; Neuroimmunology
Link ID: 21371 - Posted: 09.01.2015

By Jessica Schmerler In the modern age of technology it is not uncommon to come home after a long day at work or school and blow off steam by reading an e-book or watching television. Lately, however, scientists have been cautioning against using light-emitting devices before bed. Why? The light from our devices is “short-wavelength-enriched,” meaning it has a higher concentration of blue light than natural light—and blue light affects levels of the sleep-inducing hormone melatonin more than any other wavelength. Changes in sleep patterns can in turn shift the body’s natural clock, known as its circadian rhythm. Recent studies have shown that shifts in this clock can have devastating health effects because it controls not only our wakefulness but also individual clocks that dictate function in the body’s organs. In other words, stressors that affect our circadian clocks, such as blue-light exposure, can have much more serious consequences than originally thought. How did you become interested in the effects of light on sleep? Brainard: I was interested in the effects of light on animals as a teenager. I never planned to be a scientist—I wanted to be a writer! So I learned more about the topic out of pure curiosity. When I began my career as a journalist, I interviewed researchers on the topic who encouraged me to pursue a career in science. So I returned to school to get my doctorate and studied the effects of different wavelengths and intensities of light on rodents. I have exclusively studied the effects of light on humans for the past 30 years. © 2015 Scientific American

Keyword: Sleep; Biological Rhythms
Link ID: 21337 - Posted: 08.26.2015

By JOAN RAYMOND Rita Gunther McGrath, a Columbia Business School professor, is one of those business travelers who do not care about delays, cancellations or navigating a new location. What does concern her is the seeming inability to conquer jet lag, and the accompanying symptoms that leave her groggy, unfocused and feeling, she says, “like a dishrag.” “Jet lag has always been an issue for me,” says Ms. McGrath, who has been a business traveler for more than two decades and has dealt with itineraries that take her from New York to New Zealand to Helsinki to Hong Kong all within a matter of days. She has scoured the Internet for “jet lag cures,” and has tried preventing or dealing with the misery by avoiding alcohol, limiting light exposure or blasting her body with sunlight and “doing just about anything and everything that experts tell you to do,” Ms. McGrath said. “Jet lag is not conducive to the corporate environment,” she said. “There has to be some kind of help that actually works for those of us that travel a lot, but I sure can’t find it.” Although science is closer to understanding the basic biological mechanisms that make many travelers feel so miserable when crossing time zones, research has revealed that, at least for now, there is no one-size fits-all recommendation for preventing or dealing with the angst of jet lag. Recommendations to beat jet lag include adjusting sleep schedules, short-term use of medications to sleep or stay awake, melatonin supplements and light exposure timing, among others, said Col. Ian Wedmore, an emergency medicine specialist for the Army. © 2015 The New York Times Company

Keyword: Biological Rhythms
Link ID: 21333 - Posted: 08.25.2015

Jon Hamilton More than 50 million adults in the U.S. have a disorder such as insomnia, restless leg syndrome or sleep apnea, according to an Institute of Medicine report. And it's now clear that a lack of sleep "not only increases the risk of errors and accidents, it also has adverse effects on the body and brain," according to Charles Czeisler, chief of the division of sleep and circadian disorders at Brigham and Women's hospital in Boston. Research in the past couple of decades has shown that a lack of sleep increases a person's risk for cardiovascular disease, diabetes, infections, and maybe even Alzheimer's disease. Yet most sleep disorders go untreated. Michael Arnott, of Cambridge, Massachusetts, says he used to have terrible trouble staying awake on long drives. Sleep specialists discovered he has obstructive sleep apnea, though not for the most common reasons — he isn't overweight, and doesn't smoke or take sedatives. "I would get groggy and feel like I've got to keep talking, open the window," Arnott says. His wife, Mary White, says being a passenger on those drives could be scary. "All of a sudden there'd be a change in the speed and I'd look over, and his eyes would be starting to close," she remembers. White thought her husband might have sleep apnea, which interferes with breathing. But Arnott was in denial. He figured he was free of most risk factors for apnea. He wasn't overweight, he didn't smoke or take sedatives, and he has always stayed in great shape. So his wife took the initiative. "I asked him to see a doctor and he wouldn't," she says. In 2012, though, White persuaded him to take part in a sleep research study that paid for his participation, and took place at a sleep lab in Boston –not too far from the couple's home in Cambridge. © 2015 NPR

Keyword: Sleep
Link ID: 21330 - Posted: 08.24.2015

Mo Costandi The human brain can be compared to something like a big, bustling city. It has workers, the neurons and glial cells which co-operate with each other to process information; it has offices, the clusters of cells that work together to achieve specific tasks; it has highways, the fibre bundles that transfer information across long distances; and it has centralised hubs, the densely interconnected nodes that integrate information from its distributed networks. Like any big city, the brain also produces large amounts of waste products, which have to be cleared away so that they do not clog up its delicate moving parts. Until very recently, though, we knew very little about how this happens. The brain’s waste disposal system has now been identified. We now know that it operates while we sleep at night, just like the waste collectors in most big cities, and the latest research suggests that certain sleeping positions might make it more efficient. Waste from the rest of the body is cleared away by the lymphatic system, which makes and transports a fluid called lymph. The lymphatic system is an important component of the immune system. Lymph contains white blood cells that can kill microbes and mop up their remains and other cellular debris. It is carried in branching vessels to every organ and body part, and passes through them, via the spaces between their cells, picking up waste materials. It is then drained, filtered, and recirculated. The brain was thought to lack lymphatic vessels altogether, and so its waste disposal system proved to be far more elusive. Several years ago, however, Maiken Nedergaard of the University of Rochester Medical Center and colleagues identified a system of hydraulic “pipes” running alongside blood vessels in the mouse brain. Using in vivo two-photon imaging to trace the movements of fluorescent markers, they showed that these vessels carry cerebrospinal fluid around the brain, and that the fluid enters inter-cellular spaces in the brain tissue, picking up waste on its way. © 2015 Guardian News and Media Limited

Keyword: Sleep
Link ID: 21327 - Posted: 08.22.2015

By Catherine Saint Louis People who work 55 hours or more per week have a 33 percent greater risk of stroke and a 13 percent greater risk of coronary heart disease than those working standard hours, researchers reported on Wednesday in the Lancet. The new analysis includes data on more than 600,000 individuals in Europe, the United States and Australia, and is the largest study thus far of the relationship between working hours and cardiovascular health. But the analysis was not designed to draw conclusions about what caused the increased risk and could not account for all relevant confounding factors. “Earlier studies have pointed to heart attacks as a risk of long working hours, but not stroke,” said Dr. Urban Janlert, a professor of public health at Umea University in Sweden, who wrote an accompanying editorial. “That’s surprising.” Mika Kivimaki, a professor of epidemiology at University College London, and his colleagues combined the results of multiple studies and tried to account for factors that might skew the results. In addition to culling data from published studies, the researchers also compiled unpublished information from public databases and asked authors of previous work for additional data. Dr. Steven Nissen, the chief of cardiovascular medicine at the Cleveland Clinic, found the methodology unconvincing. “It’s based upon exclusively observational studies, many of which were unpublished,” and some never peer-reviewed, he said. Seventeen studies of stroke included 528,908 men and women who were tracked on average 7.2 years. Some 1,722 nonfatal and deadly strokes were recorded. After controlling for smoking, physical activity and high blood pressure and cholesterol, the researchers found a one-third greater risk of stroke among those workers who reported logging 55 or more hours weekly, compared with those who reported working the standard 35 to 40 hours. © 2015 The New York Times Company

Keyword: Stroke; Stress
Link ID: 21323 - Posted: 08.22.2015

Helen Thomson Modafinil is the world’s first safe “smart drug”, researchers at Harvard and Oxford universities have said, after performing a comprehensive review of the drug. They concluded that the drug, which is prescribed for narcolepsy but is increasingly taken without prescription by healthy people, can improve decision- making, problem-solving and possibly even make people think more creatively. While acknowledging that there was limited information available on the effects of long-term use, the reviewers said that the drug appeared safe to take in the short term, with few side effects and no addictive qualities. Modafinil has become increasingly common in universities across Britain and the US. Prescribed in the UK as Provigil, it was licensed in 2002 for use as a treatment for narcolepsy - a brain disorder that can cause a person to suddenly fall asleep at inappropriate times or to experience chronic pervasive sleepiness and fatigue. Used without prescription, and bought through easy-to-find websites, modafinil is what is known as a smart drug - used primarily by people wanting to improve their focus before an exam. A poll of Nature journal readers suggested that one in five have used drugs to improve focus, with 44% stating modafinil as their drug of choice. But despite its increasing popularity, there has been little consensus on the extent of modafinil’s effects in healthy, non-sleep-disordered humans. A new review of 24 of the most recent modafinil studies suggests that the drug has many positive effects in healthy people, including enhancing attention, improving learning and memory and increasing something called “fluid intelligence” - essentially our capacity to solve problems and think creatively. © 2015 Guardian News and Media Limited

Keyword: ADHD; Sleep
Link ID: 21318 - Posted: 08.20.2015

Your body may be still, but as you dream, your eyes can flicker manically. The rapid eye movement stage of sleep is when we have our most vivid dreams – but do our flickering eyes actually “see” anything? It is a question psychologists have been asking since REM sleep was first described in the 1950s, says Yuval Nir at Tel Aviv University in Israel. “The idea was that we scan an imaginary scene,” says Nir. “It’s an intuitive idea, but it has been very difficult to provide evidence for it.” Until now, much of the evidence has been anecdotal, says Nir. “People who were woken up when their eyes were moving from left to right would say they were dreaming about tennis, for example,” he says. More evidence comes from a previous study that monitored the sleep of people who have a disorder that means they often physically act out their dreams. Their eye movements matched their actions around 80 per cent of the time – a man dreaming about smoking, for example, appeared to look at a dream ashtray as he put out a cigarette. But most of the REM sleep these people had was not accompanied by body movements, making it hard to know for sure. And other researchers have argued that the eye flickers can’t be linked to “seeing” anything because rapid eye movements happen in both fetuses and people who are blind – neither group would have experience of vision and so wouldn’t be expected to move their eyes to follow an object, for example. © Copyright Reed Business Information Ltd.

Keyword: Sleep
Link ID: 21290 - Posted: 08.12.2015

By Jane E. Brody Barrett Treadway, now 3½, has never been the best of sleepers, but her sleep grew increasingly worse in the last year and a half. She gets up several times a night, often climbs into her parents’ bed and creates havoc with their nights. “We’ve known for a long time that she snores, but until a mother-daughter trip in May when we shared a bed, I didn’t realize that this was not simply snoring,” her mother, Laura, told me. “She repeatedly stopped breathing, then started again with a loud snort that often woke her up and kept me up all night.” Barrett has sleep apnea, a condition most often diagnosed in adults and usually associated with obesity. But neither of those attributes describes Barrett, who is young and lithe, although the condition is somewhat more common in overweight children. In most cases, the problem results when, during sleep, the child’s airway is temporarily obstructed by enlarged tonsils or adenoids or both — lymphoid tissues in the back of the throat — hence the name obstructive sleep apnea. When breathing stops for 10 or more seconds, the rising blood level of carbon dioxide prompts the brain to take over and restart breathing, typically accompanied by a loud snore or snort. Rarely, a child may have what is called central sleep apnea, in which the brain temporarily fails to signal the muscles that control breathing. Experts say that between 1 percent and 3 percent of children have sleep apnea that, if untreated, can disrupt far more than a family’s restful nights. Affected children simply do not get enough restorative sleep to assure normal development. If not corrected, the condition can result in hyperactivity and attention problems in school that are often mistaken for attention deficit hyperactivity disorder (A.D.H.D.) and sometimes mistreated with a stimulant that only makes matters worse. © 2015 The New York Times Company

Keyword: Sleep; Development of the Brain
Link ID: 21224 - Posted: 07.27.2015

By Karen Weintraub Can I ever re-pay my sleep debt? (I estimate it at 15 years of poor sleep.) It is unclear whether you can make up a long-term sleep debt, because most studies have looked at the effects of sleep loss and recovery only over a few nights or weeks, said Dr. Matt T. Bianchi, the chief of the division of sleep medicine at Massachusetts General Hospital and an assistant professor of neurology at Harvard Medical School. Simulated driving performance and reaction times are affected by just one sleepless night, research has shown. There’s no doubt that sleeping just four hours a night catches up to people within a few nights, leading to impairments of attention, learning and memory and worse performance in school and at work. And making up for lost sleep over the weekend doesn’t work. Five brief nights quickly add up to a shortfall of 20 hours, but people don’t sleep more than five to 10 extra hours to compensate, Dr. Bianchi said. “The interpretation has been you can’t pay off your sleep debt, you just carry it with you,” though it’s also possible that people don’t sleep an extra 20 hours because they don’t need it, Dr. Bianchi said. He cited research by Jim Horne of Loughborough University in Britain showing that a timely nap of less than 20 minutes can equate to an extra hour of nighttime sleep. Different people need somewhat different amounts of sleep, but anything less than six hours a night is definitely not enough, said Dr. Charles Czeisler, a professor of sleep medicine at Harvard. In one sleep study, people were brought into a lab and required to stay in bed for 14 hours a day. They slept 10 to 12 hours a night at first, Dr. Czeisler said. Then they gradually slept less over the next few weeks until they stabilized at about 8.4 hours per night. © 2015 The New York Times Company

Keyword: Sleep
Link ID: 21223 - Posted: 07.27.2015

By Christie Wilcox Venomous cone snails have been a gift to biomedical researchers. Over the past 50 years, scientists have isolated compounds from these predatory marine animals that do everything from stop pain to protect cells during a heart attack. Now, researchers have isolated a cone snail compound that does something unexpected: It puts mice to sleep. All of these compounds belong to a group of ion channels modifiers known as conotoxins. In the wild, the snails use these toxins for capturing prey, and typically when researchers inject them into mice, the rodents either have no response or become paralyzed. In the new study, published this month in Toxicon, researchers isolated and sequenced 14 novel peptide toxins from the venom of the cobweb cone, Conus araneosus (pictured above with its dissected venom gland). When they injected five of them into mice, one put the rodents to sleep for several hours, whereas the others had no effect. The team says the discovery expands the range of therapeutic uses for conotoxins, and could lead to drugs to treat sleep disorders. © 2015 American Association for the Advancement of Science

Keyword: Sleep; Neurotoxins
Link ID: 21215 - Posted: 07.25.2015

By Karen Weintraub Can I ever re-pay my sleep debt? (I estimate it at 15 years of poor sleep.) It is unclear whether you can make up a long-term sleep debt, because most studies have looked at the effects of sleep loss and recovery only over a few nights or weeks, said Dr. Matt T. Bianchi, the chief of the division of sleep medicine at Massachusetts General Hospital and an assistant professor of neurology at Harvard Medical School. Simulated driving performance and reaction times are affected by just one sleepless night, research has shown. There’s no doubt that sleeping just four hours a night catches up to people within a few nights, leading to impairments of attention, learning and memory and worse performance in school and at work. And making up for lost sleep over the weekend doesn’t work. Five brief nights quickly add up to a shortfall of 20 hours, but people don’t sleep more than five to 10 extra hours to compensate, Dr. Bianchi said. “The interpretation has been you can’t pay off your sleep debt, you just carry it with you,” though it’s also possible that people don’t sleep an extra 20 hours because they don’t need it, Dr. Bianchi said. He cited research by Jim Horne of Loughborough University in Britain showing that a timely nap of less than 20 minutes can equate to an extra hour of nighttime sleep. Different people need somewhat different amounts of sleep, but anything less than six hours a night is definitely not enough, said Dr. Charles Czeisler, a professor of sleep medicine at Harvard. © 2015 The New York Times Company

Keyword: Sleep
Link ID: 21214 - Posted: 07.25.2015

by Bethany Brookshire For some of us, a weekly case of the Mondays isn’t just because of traffic, work pileups or our soulless office space. It’s because we had to get up early, and sleeping in on the weekend was so incredibly glorious. Besides, because we slept in on Sunday, we didn’t get to the gym until the afternoon, we cooked a late dinner for a friend and then we couldn’t fall asleep at all and so stayed up playing around on the Internet. OK, maybe that’s just me. But you get the general idea. Our obligations — work, family and friends — often don’t line up with when our bodies want to sleep. Scientists call this phenomenon social jetlag. And it may make for more than just miserable Mondays. Social jetlag may also be associated with wider waistlines. As we learn more about how our body clocks work, it might help to think about how our own schedules can shift. Some of us love late nights and can’t help glaring at those who hop out of bed for a 5 a.m. workout (again, maybe that’s just me). But in fact our chronotypes aren’t a result of willpower. Instead they fall in a natural curve. About two-thirds of people are neutral, but a few fall at each end of the spectrum, rising extra early, or staying up until the wee hours. But even those in the middle are still getting up a little bit too early and staying up a little bit too late. We try to make up for it on days off, sleeping in or falling asleep early for a few extra hours of rest. But the result of that shift in sleep schedule? Jetlag. “It’s the equivalent of taking a flight one direction every Friday and going back every Sunday,” says Michael Parsons, a behavioral geneticist at the Medical Research Council Harwell in England. © Society for Science & the Public 2000 - 2015

Keyword: Sleep; Obesity
Link ID: 21197 - Posted: 07.21.2015

By James Gallagher Health editor, BBC News website Irregular sleeping patterns have been "unequivocally" shown to lead to cancer in tests on mice, a study suggests. The report, in Current Biology, lends weight to concerns about the damaging impact of shift work on health. The researchers said women with a family risk of breast cancer should never work shifts, but cautioned that further tests in people were needed. The data also indicated the animals were 20% heavier despite eating the same amount of food. Studies in people have often suggested a higher risk of diseases such as breast cancer in shift workers and flight attendants. One argument is disrupting the body's internal rhythm - or body clock - increases the risk of disease. However, the link is uncertain because the type of person who works shifts may also be more likely to develop cancer due to factors such as social class, activity levels or the amount of vitamin D they get. Mice prone to developing breast cancer had their body clock delayed by 12 hours every week for a year. Normally they had tumours after 50 weeks - but with regular disruption to their sleeping patterns, the tumours appeared eight weeks earlier. The report said: "This is the first study that unequivocally shows a link between chronic light-dark inversions and breast cancer development." Interpreting the consequences for humans is fraught with difficulty, but the researchers guesstimated the equivalent effect could be an extra 10kg (1st 8lb) of body weight or for at-risk women getting cancer about five years earlier. "If you had a situation where a family is at risk for breast cancer, I would certainly advise those people not to work as a flight attendant or to do shift work," one of the researchers, Gijsbetus van der Horst, from the Erasmus University Medical Centre, in the Netherlands, said. © 2015 BBC.

Keyword: Sleep; Neuroimmunology
Link ID: 21196 - Posted: 07.21.2015

Austin Frakt It’s a Catch-22 that even those with a common cold experience: Illness disrupts sleep. Poor sleep makes the symptoms of the illness worse. What’s true for a cold also holds for more serious conditions that co-occur with insomnia. Depression, post-traumatic stress disorder, alcohol dependence, fibromyalgia, cancer and chronic pain often give rise to insomnia, just as sleeplessness exacerbates the symptoms of these diseases. Historically, insomnia was considered a symptom of other diseases. Today it is considered an illness in its own right and recognized as an amplifier of other mental and physical ailments. When a person is chronically tired, pain can be more painful, depression deeper, anxiety heightened. What should doctors address first, insomnia or the co-occurring condition? How about both at the same time? A new study suggests that a therapy that improves sleep also reduces symptoms of other illnesses that often disrupt it. The study published in JAMA Internal Medicine examined the effect of cognitive behavioral therapy for insomnia in patients with serious mental and physical conditions. As its name suggests, C.B.T.-I. is a treatment that works through the mind. As I wrote about a few weeks ago, the therapy treats insomnia without medications, combining good sleep hygiene techniques with more consistent wake times, relaxation techniques and positive sleep attitudes and thoughts. Several clinical trials have shown that C.B.T.-I. provides as good or better relief of symptoms of insomnia than prescription drugs, with improvements in sleep that are more durable. C.B.T.-I. can usually be delivered relatively inexpensively through an online course costing about $40. Compared with those who didn’t receive C.B.T.-I., patients who did increased the time asleep in bed by about 12 percentage points, fell asleep about 25 minutes faster and decreased the amount of time awake in the middle of the night by about 45 minutes, according to Jade Wu, lead study author and a Boston University doctoral student in psychology. © 2015 The New York Times Company

Keyword: Sleep
Link ID: 21181 - Posted: 07.18.2015

By Tori Rodriguez Many studies have examined the effects of sufficient versus insufficient sleep on mental health. A new study, published in February in the Journal of Youth and Adolescence, takes a more nuanced look, attempting to determine just how much each hour less per night really costs—where teenagers are concerned. The researchers surveyed an ethnically diverse sample of 27,939 suburban high school students in Virginia. Although teenagers need about nine hours of sleep a night on average, according to the National Institutes of Health, only 3 percent of students reported getting that amount, and 20 percent of participants indicated that they got five hours or less. The average amount reported was 6.5 hours every weekday night. After controlling for background variables such as family status and income, the researchers determined that each hour of lost sleep was associated with a 38 percent increase in the odds of feeling sad and hopeless, a 42 percent increase in considering suicide, a 58 percent increase in suicide attempts and a 23 percent increase in substance abuse. These correlational findings do not prove that lack of sleep is causing these problems. Certainly the reverse can be true: depression and anxiety can cause insomnia. “But the majority of the research evidence supports the causal direction being lack of sleep leading to problems rather than the other way around,” says study co-author Adam Winsler, a psychology professor at George Mason University. © 2015 Scientific American

Keyword: Sleep; Development of the Brain
Link ID: 21174 - Posted: 07.16.2015

Tina Hesman Saey The Earth has rhythm. Every 24 hours, the planet pirouettes on its axis, bathing its surface alternately in sunlight and darkness. Organisms from algae to people have evolved to keep time with the planet’s light/dark beat. They do so using the world’s most important timekeepers: daily, or circadian, clocks that allow organisms to schedule their days so as not to be caught off guard by sunrise and sunset. A master clock in the human brain appears to synchronize sleep and wake with light. But there are more. Circadian clocks tick in nearly every cell in the body. “There’s a clock in the liver. There’s a clock in the adipose [fat] tissue. There’s a clock in the spleen,” says Barbara Helm, a chronobiologist at the University of Glasgow in Scotland. Those clocks set sleep patterns and meal times. They govern the flow of hormones and regulate the body’s response to sugar and many other important biological processes (SN: 4/10/10, p. 22). Having timekeepers offers such an evolutionary advantage that species have developed them again and again throughout history, many scientists say. But as common and important as circadian clocks have become, exactly why such timepieces arose in the first place has been a deep and abiding mystery. Many scientists favor the view that multiple organisms independently evolved their own circadian clocks, each reinventing its own wheel. Creatures probably did this to protect their fragile DNA from the sun’s damaging ultraviolet rays. But a small group of researchers think otherwise. They say there had to be one mother clock from which all others came. That clock evolved to shield the cell from oxygen damage or perhaps provide other, unknown advantages. © Society for Science & the Public 2000 - 2015

Keyword: Biological Rhythms; Evolution
Link ID: 21171 - Posted: 07.15.2015

By Maria Konnikova This is the third piece in a three-part series on sleep. Read part one, on falling asleep, and part two, on sleeping and dreaming. Did you get enough sleep last night? Are you feeling fully awake, like your brightest, smartest, and most capable self? This, unfortunately, is a pipe dream for the majority of Americans. “Most of us are operating at suboptimal levels basically always,” the Harvard neurologist and sleep medicine physician Josna Adusumilli told me. Fifty to seventy million Americans, Adusumilli says, have chronic sleep disorders. In a series of conversations with sleep scientists this May, facilitated by a Harvard Medical School Media Fellowship, I learned that the consequences of lack of sleep are severe. While we all suffer from sleep inertia (a general grogginess and lack of mental clarity), the stickiness of that inertia depends largely on the quantity and quality of the sleep that precedes it. If you’re fully rested, sleep inertia dissipates relatively quickly. But, when you’re not, it can last far into the day, with unpleasant and even risky results. Many of us have been experiencing the repercussions of inadequate sleep since childhood. Judith Owens, the director of the Center for Pediatric Sleep Disorders at Boston Children’s Hospital, has been studying the effects of school start times on the well-being of school-age kids—and her conclusions are not encouraging. Most adults are fine with about eight hours of sleep, but toddlers need around thirteen hours, including a daytime nap. Teens need around nine and a half hours; what’s more, they tend to be night owls, whose ideal circadian rhythm has them going to bed and waking up late. As schools have pushed their start times earlier and earlier—a trend that first started in the sixties, Owens says—the health effects on students have been severe.

Keyword: Sleep
Link ID: 21165 - Posted: 07.14.2015

By Nicholas Bakalar A short nap could reduce impulsive behavior and improve the ability to withstand frustration, a small study suggests. Researchers studied 40 people aged 18 to 50. After three nights of normal sleep, the participants took computer-based tests of frustration tolerance — which consisted of trying to complete an impossible task — and completed questionnaires on sleepiness, mood and impulsivity. Then they were randomly assigned to take an hour’s nap, or to watch a nature video. At the end of the process, they were tested again. The study appears in Personality and Individual Differences. Before the nap period, everyone spent about the same amount of time on the unsolvable task, but afterward nappers, who all reported having slept at least part of the time, spent significantly more time working at it than they had before their nap, while non-nappers gave up sooner. Nappers also rated their behavior as less impulsive than non-nappers. The lead author, Jennifer R. Goldschmied, a doctoral student at the University of Michigan, acknowledged that the sample is small, involved mainly college students and may not be applicable to other populations. The sleep calculations also did not use electronic devices to precisely measure sleep and wakefulness. Still, she said, “These results are valuable and have put us on the route to understanding how we can utilize naps. Now people are starting to understand how powerful short bursts of sleep can be.” © 2015 The New York Times Company

Keyword: Sleep; Emotions
Link ID: 21156 - Posted: 07.11.2015

By David Robson William’s internal clock is eternally jammed at 13:40 on 14 March 2005 – right in the middle of a dentist appointment. A member of the British Armed Forces, he had returned to his post in Germany the night before after attending his grandfather’s funeral. He had gym in the morning, where he played volleyball for 45 minutes. He then entered his office to clear a backlog of emails, before heading to the dentist’s for root-canal surgery. “I remember getting into the chair and the dentist inserting the local anaesthetic,” he tells me. After that? A complete blank. It is as if all new memories are being written in invisible ink that slowly disappears. Since then, he has been unable to remember almost anything for longer than 90 minutes. So while he can still tell me about the first time he met the Duke of York for a briefing at the Ministry of Defence, he can’t even remember where he’s living now; he wakes up every morning believing he is still in Germany in 2005, waiting to visit the dentist. Without a record of new experiences, the passing of time means nothing to him. Today, he only knows that there is a problem because he and his wife have written detailed notes on his smartphone, in a file labelled “First thing – read this”. It is as if all new memories are being written in invisible ink that slowly disappears. How could minor dental work have affected his brain in such a profound way? This real-life medical mystery offers a rare glimpse at the hidden depths of the brain’s workings. © 2015 BBC.

Keyword: Learning & Memory
Link ID: 21137 - Posted: 07.06.2015