Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 22684

Emotions are a cognitive process that relies on “higher-order states” embedded in cortical (conscious) brain circuits; emotions are not innately programmed into subcortical (nonconscious) brain circuits, according to a potentially earth-shattering new paper by Joseph LeDoux and Richard Brown. The February 2017 paper, “A Higher-Order Theory of Emotional Consciousness,” was published online today ahead of print in the journal Proceedings of the National Academy of Sciences. This paper was written by neuroscience legend Joseph LeDoux of New York University and Richard Brown, professor of philosophy at the City University of New York's LaGuardia College. Joseph LeDoux has been working on the link between emotion, memory, and the brain since the 1990s. He's credited with putting the amygdala in the spotlight and making this previously esoteric subcortical brain region a household term. LeDoux founded the Emotional Brain Institute (EBI). He’s also a professor in the Departments of Psychiatry and Child and Adolescent Psychiatry at NYU Langone Medical Center. Why Is This New Report From LeDoux and Brown Significant? In the world of cognitive neuroscience, there's an ongoing debate about the interplay between emotional states of consciousness (or feelings) within cortical and subcortical brain regions. (Most experts believe that cortical brain regions house “thinking” neural circuits within the cerebral cortex. Subcortical brain regions are considered to be housed in “non-thinking” neural circuits beneath the 'thinking cap' of the cerebral cortex.) © 1991-2017 Sussex Publishers, LLC

Keyword: Emotions
Link ID: 23249 - Posted: 02.18.2017

By Timothy Revell It can be difficult to communicate when you can only move your eyes, as is often the case for people with ALS (also known as motor neurone disease). Microsoft researchers have developed an app to make talking with your eyes easier, called GazeSpeak. GazeSpeak runs on a smartphone and uses artificial intelligence to convert eye movements into speech, so a conversation partner can understand what is being said in real time. The app runs on the listener’s device. They point their smartphone at the speaker as if they are taking a photo. A sticker on the back of the phone, visible to the speaker, shows a grid with letters grouped into four boxes corresponding to looking left, right, up and down. As the speaker gives different eye signals, GazeSpeak registers them as letters. “For example, to say the word ‘task’ they first look down to select the group containing ‘t’, then up to select the group containing ‘a’, and so on,” says Xiaoyi Zhang, who developed GazeSpeak whilst he was an intern at Microsoft. GazeSpeak selects the appropriate letter from each group by predicting the word the speaker wants to say based on the most common English words, similar to predictive text messaging. The speaker indicates they have finished a word by winking or looking straight ahead for two seconds. The system also takes into account added lists of words, like names or places that the speaker is likely to use. The top four word predictions are shown onscreen, and the top one is read aloud. © Copyright Reed Business Information Ltd.

Keyword: ALS-Lou Gehrig's Disease ; Robotics
Link ID: 23248 - Posted: 02.18.2017

By Emma Hiolski There’s more to those love handles than meets the eye. Fat tissue can communicate with other organs from afar, sending out tiny molecules that control gene activity in other parts of the body, according to a new study. This novel route of cell-to-cell communication could indicate fat plays a much bigger role in regulating metabolism than previously thought. It could also mean new treatment options for diseases such as obesity and diabetes. “I found this very interesting and, frankly, very exciting,” says Robert Freishtat of Children’s National Health System in Washington, D.C., a pediatrician and researcher who has worked with metabolic conditions like obesity and diabetes. Scientists have long known that fat is associated with all sorts of disease processes, he says, but they don’t fully understand how the much-reviled tissue affects distant organs and their functions. Scientists have identified hormones made by fat that signal the brain to regulate eating, but this new study—in which Freishtat was not involved—takes a fresh look at another possible messenger: small snippets of genetic material called microRNAs, or miRNAs. MiRNAs, tiny pieces of RNA made inside cells, help control the expression of genes and, consequently, protein production throughout the body. But some tumble freely through the bloodstream, bundled into tiny packets called exomes. There, high levels of some miRNAs have been associated with obesity, diabetes, cancer, and cardiovascular disease. © 2017 American Association for the Advancement of Science.

Keyword: Obesity
Link ID: 23247 - Posted: 02.17.2017

By Alice Callahan Once fat cells are formed, can you ever get rid of them? The number of fat cells in a person’s body seems to be able to change in only one direction: up. Fat cell number increases through childhood and adolescence and generally stabilizes in adulthood. But this doesn’t mean that fat cells, or adipocytes, are stagnant. The size of individual fat cells is remarkably variable, expanding and contracting with weight gain or weight loss. And as with most cell types in the body, adipocytes die eventually. “Usually when old ones die, they are replaced by new fat cells,” said Dr. Michael Jensen, an endocrinologist and obesity researcher at the Mayo Clinic. Cell death and production appear to be tightly coupled, so although about 10 percent of adipocytes die each year, they’re replaced at the same rate. Even among bariatric surgery patients, who can lose massive amounts of weight, the number of fat cells tends to remain the same, although the cells shrink in size, studies show. Liposuction reduces the number of fat cells in a person’s body, but studies show the weight lost is typically regained within a year. It isn’t known whether this regain occurs through the production of new fat cells or expansion of existing ones. People who are obese tend to have more fat cells than those who are not, and several studies have found an increase in fat cell number with weight regain following weight loss. The fact that fat cell number can be increased but not decreased most likely contributes to the body’s drive to regain weight after weight loss, said Dr. Kirsty L. Spalding, a cell biologist at the Karolinska Institute in Sweden and the lead author of a 2008 study showing that fat cells die and are replaced. Beyond their role in storing fat, adipocytes secrete proteins and hormones that affect energy metabolism. © 2017 The New York Times Company

Keyword: Obesity
Link ID: 23246 - Posted: 02.17.2017

By Kelly Clancy More than two hundred years ago, a French weaver named Joseph Jacquard invented a mechanism that greatly simplified textile production. His design replaced the lowly draw boy—the young apprentice who meticulously chose which threads to feed into the loom to create a particular pattern—with a series of paper punch cards, which had holes dictating the lay of each stitch. The device was so successful that it was repurposed in the first interfaces between humans and computers; for much of the twentieth century, programmers laid out their code like weavers, using a lattice of punched holes. The cards themselves were fussy and fragile. Ethereal information was at the mercy of its paper substrate, coded in a language only experts could understand. But successive computer interfaces became more natural, more flexible. Immutable program instructions were softened to “If x, then y. When a, try b.” Now, long after Jacquard’s invention, we simply ask Amazon’s Echo to start a pot of coffee, or Apple’s Siri to find the closest car wash. In order to make our interactions with machines more natural, we’ve learned to model them after ourselves. Early in the history of artificial intelligence, researchers came up against what is referred to as Moravec’s paradox: tasks that seem laborious to us (arithmetic, for example) are easy for a computer, whereas those that seem easy to us (like picking out a friend’s voice in a noisy bar) have been the hardest for A.I. to master. It is not profoundly challenging to design a computer that can beat a human at a rule-based game like chess; a logical machine does logic well. But engineers have yet to build a robot that can hopscotch. The Austrian roboticist Hans Moravec theorized that this might have something to do with evolution. Since higher reasoning has only recently evolved—perhaps within the last hundred thousand years—it hasn’t had time to become optimized in humans the way that locomotion or vision has. The things we do best are largely unconscious, coded in circuits so ancient that their calculations don’t percolate up to our experience. But because logic was the first form of biological reasoning that we could perceive, our thinking machines were, by necessity, logic-based. © 2017 Condé Nast.

Keyword: Brain imaging; Robotics
Link ID: 23245 - Posted: 02.17.2017

Hannah Devlin A transportable brain-scanning helmet that could be used for rapid brain injury assessments of stroke victims and those felled on the sports pitch or battlefield is being tested by US scientists. The wearable device, known as the PET helmet, is a miniaturised version of the hospital positron emission tomography (PET) scanner, a doughnut-shaped machine which occupies the volume of a small room. Julie Brefczynski-Lewis, the neuroscientist leading the project at West Virginia University, said that the new helmet could dramatically speed up diagnosis and make the difference between a positive outcome and devastating brain damage or death for some patients. “You could roll it right to their bedside and put it on their head,” she said ahead of a presentation at the American Association for the Advancement of Science’s (AAAS) annual meeting in Boston. “Time is brain for stroke.” Despite being only the size of a motorbike helmet, the new device produces remarkably detailed images that could be used to identify regions of trauma to the brain in the ambulance on the way to hospital or at a person’s bedside. The device is currently being tested on healthy volunteers, but could be used clinically within two years, the team predicted.

Keyword: Brain imaging; Brain Injury/Concussion
Link ID: 23244 - Posted: 02.17.2017

Bret Stetka In a series of recent interviews, President Donald Trump's longtime personal physician Dr. Harold N. Bornstein told The New York Times that our new commander in chief has what amounts to a pretty unremarkable medical chart. Like about a quarter of American adults, Trump is on a statin for high cholesterol. He also takes a daily baby aspirin for heart health, an occasional antibiotic for rosacea, a skin condition, and Propecia, a pill to promote hair growth. Bornstein also told the Times that should he be appointed White House doctor, he probably wouldn't test the president for baseline dementia risk, something many doctors have argued should be mandatory. At 70, Trump is the oldest American president to ever take office. Couple his age with a family history of dementia — his father Fred developed Alzheimer's disease in his 80s — and one could argue that the question of baseline cognitive testing for the U.S. head of state has taken on new relevance. An assortment of fairly simple tests exist that can establish a reference point for cognitive capacity and detect early symptoms of mental decline. One of the most common such screens is the Mini-Mental Status Examination, a series of questions that gauges attention, orientation and short-term memory. It takes about five to 10 minutes to complete. Yet admitting vulnerability of any kind isn't something politicians have been keen to do. The true health of politicians has likely been cloaked in secrecy since the days of Mesopotamian kings, but definitely since the Wilson administration. © 2017 npr

Keyword: Alzheimers
Link ID: 23243 - Posted: 02.17.2017

By LISA SANDERS, M.D. The 3-year-old girl was having a very bad day — a bad week, really. She’d been angry and irritable, screaming and kicking at her mother over nothing. Her mother was embarrassed by this unusual behavior, because her husband’s sister, Amber Bard, was visiting. Bard, a third-year medical student at Michigan State, was staying in the guest room while working with a local medical practice in Grand Rapids so that she could spend a little time with her niece. The behavior was strange, but the mother was more concerned about her child’s left eye. A few days earlier it was red and bloodshot. It no longer was, but now the girl had little bumps near the eye. The mother asked Bard whether she could look at the eye. “I’m a third-year medical student,” Bard told her. “I know approximately nothing.” But Bard was happy to try. She turned to the girl, who immediately averted her face. “Can you show me your eye?” she asked. The girl shouted: “No! No, no, no!” Eventually Bard was able to coax her into allowing her a quick look at the eye. She saw a couple of tiny pimples along the lower lid, near the lashes, and a couple more just next to the eye. The eye itself wasn’t red; the lid wasn’t swollen. She couldn’t see any discharge. Once the child was in bed, Bard opened her laptop and turned to a database she’d been using for the past week when she started to see patients. Called VisualDx, it’s one of a dozen or so programs known as decision-support software, designed to help doctors make a diagnosis. This one focuses mostly on skin findings.

Keyword: Vision
Link ID: 23242 - Posted: 02.17.2017

By Pallab Ghosh Scientists are appealing for more people to donate their brains for research after they die. They say they are lacking the brains of people with disorders such as depression and post-traumatic stress disorder. In part, this shortage results from a lack of awareness that such conditions are due to changes in brain wiring. The researchers' aim is to develop new treatments for mental and neurological disorders. The human brain is as beautiful as it is complex. Its wiring changes and grows as we do. The organ is a physical embodiment of our behaviour and who we are. In recent years, researchers have made links between the shape of the brain and mental and neurological disorders. Most of their specimens are from people with mental or neurological disorders. Samples are requested by scientists to find new treatments for Parkinson's, Alzheimer's and a whole host of psychiatric disorders. But there is a problem. Scientists at McLean Hospital and at brain banks across the world do not have enough specimens for the research community. According Dr Kerry Ressler, who is the chief scientific officer at McLean hospital, new treatments for many mental and neurological diseases are within the grasp of the research community. However, he says it is the lack of brain tissue that is holding back their development. © 2017 BBC.

Keyword: Brain imaging
Link ID: 23241 - Posted: 02.17.2017

Ewen Callaway Researchers have no way to tell whether young babies may later be diagnosed with autism. But brain scans could help, a small study suggests. By scanning the brains of babies whose siblings have autism, researchers say they have been able to make reasonably accurate forecasts about which of these high-risk infants will later develop autism themselves. The findings raise the prospect of diagnosing autism spectrum disorder (ASD) months before children develop symptoms, a goal that has proved elusive. Nature looks at the new study and its implications. Why has it been so tough to diagnose autism in infants? Children typically show symptoms of ASD, such as difficulty making eye contact, after the age of 2. Researchers believe that the brain changes underlying ASD begin much earlier — possibly even in the womb. But behavioural assessments haven't been helpful in predicting who will get autism, says Joseph Piven, a psychiatrist at the University of North Carolina (UNC) in Chapel Hill, who co-led the study, published online in Nature1. “Children who end up with autism at 2 or 3, they don’t look like they have autism in the first year," he says. Certain rare mutations are linked to ASD, but the vast majority of cases cannot be pinned to a single or even a handful of genetic risk factors. Beginning in the 1990s, Piven and other researchers noticed that children with autism tended to have larger brains than developmentally normal children, suggesting that brain growth could be a biomarker for ASD. But Piven and colleague Heather Cody Hazlett, a psychologist at UNC-Chapel Hill, say it had not been clear when overgrowth occurred. What did their latest study look at? © 2017 Macmillan Publishers Limited,

Keyword: Autism; Brain imaging
Link ID: 23240 - Posted: 02.16.2017

By Amy Ellis Nutt For the first time, scientists can point to substantial empirical evidence that people with attention-deficit/hyperactivity disorder have brain structures that differ from those of people without ADHD. The common disorder, they conclude, should be considered a problem of delayed brain maturation and not, as it is often portrayed, a problem of motivation or parenting. In conducting the largest brain imaging study of its kind, an international team of researchers found that ADHD involves decreased volume in key brain regions, in particular the amygdala, which is responsible for regulating the emotions. Although the study, published Wednesday in the Lancet Psychiatry, included children, adolescents and adults, the scientists said the greatest differences in brain volume appeared in the brains of children. Of seven subcortical brain regions targeted in the study, five, including the amygdala, were found to be smaller in those with ADHD, compared with those in a control group. The other regions that showed reductions in volume were: the caudate nucleus (which has been linked to goal-directed action), the putamen (involved in learning and responding to stimuli), the nucleus accumbens (which processes rewards and motivation) and the hippocampus (where memories are formed). © 1996-2017 The Washington Post

Keyword: ADHD; Development of the Brain
Link ID: 23239 - Posted: 02.16.2017

By John Carroll, Scratch yet another Phase III Alzheimer’s drug hopeful. Merck announced late Tuesday that it is shuttering its EPOCH trial for the BACE inhibitor verubecestat in mild-to-moderate Alzheimer’s after the external data monitoring committee concluded that the drug was a bust, with “virtually” no chance of success. A separate Phase III study in prodromal patients, set to read out in two years, will continue as investigators found no signs of safety issues. This is one of Merck’s top late-stage drugs, and news of the failure drove down the pharma giant’s shares in after-market trading by 2.45%. BACE drugs essentially seek to interfere in the process that creates amyloid beta, a toxic protein often found in the brains of Alzheimer’s patients. As the top amyloid beta drugs like bapineuzumab and solanezumab — which sought to extract existing amyloid beta loads — ground their way to repeated failures, developers in the field turned increasingly to BACE therapies as an alternative mechanism that could provide the key to slowing this disease down. Merck’s effort was the most advanced in the pipeline, but Eli Lilly and others are still in hot pursuit with their own persistent BACE efforts. Teams from Biogen/Eisai and Novartis/Amgen are also beavering away on BACE. “Alzheimer’s disease is one of the most pressing and daunting medical issues of our time, with inherent, substantial challenges to developing an effective disease-modifying therapy for people with mild-to-moderate disease. Studies such as EPOCH are critical, and we are indebted to the patients in this study and their caregivers,” said Dr. Roger M. Perlmutter, president, Merck Research Laboratories. © 2017 American Association for the Advancement of Science.

Keyword: Alzheimers
Link ID: 23238 - Posted: 02.16.2017

Jon Hamilton Scientists may have solved the mystery of nodding syndrome, a rare form of epilepsy that has disabled thousands of children in East Africa. The syndrome seems to be caused by the immune system's response to a parasitic worm, an international team reports in the journal Science Translational Medicine. And they think it's the same worm responsible for river blindness, an eye infection that's also found in East Africa. The finding means that current efforts to eliminate river blindness should also reduce nodding syndrome, says Avi Nath, an author of the study and chief of the section of infections of the nervous system at the National Institute of Neurological Disorders and Stroke. "We can prevent new infections even if we can't treat the ones who already have nodding syndrome," Nath says. Drugs can kill the parasite in its early stages. Nodding syndrome usually strikes children between 5 and 16 who live in rural areas of northern Uganda and South Sudan. Their bodies and brains stop growing. And they experience frequent seizures. "These are kids, young kids, you would expect that they should be running around playing," says Nath, who visited Uganda several years ago. "Instead, if you go to these villages they are just sitting there in groups," so villagers can keep an eye on them. © 2017 npr

Keyword: Epilepsy; Neuroimmunology
Link ID: 23237 - Posted: 02.16.2017

By Mitch Leslie Fasting is all the rage. Self-help books promise it will incinerate excess fat, spruce up your DNA, and prolong your life. A new scientific study has backed up some health claims about eating less. The clinical trial reveals that cutting back on food for just 5 days a month could help prevent or treat age-related illnesses like diabetes and cardiovascular disease. “It’s not trivial to do this kind of study,” says circadian biologist Satchidananda Panda of the Salk Institute for Biological Studies in San Diego, California, who wasn’t connected to the research. “What they have done is commendable.” Previous studies in rodents and humans have suggested that periodic fasting can reduce body fat, cut insulin levels, and provide other benefits. But there are many ways to fast. One of the best known programs, the 5:2 diet, allows you to eat normally for 5 days a week. On each of the other 2 days, you restrict yourself to 500 to 600 calories, about one-fourth of what the average American consumes. An alternative is the so-called fasting-mimicking diet, devised by biochemist Valter Longo of the University of Southern California in Los Angeles and colleagues. For most of the month, participants eat as much of whatever they want. Then for five consecutive days they stick to a menu that includes chips, energy bars, and soups, consuming about 700 to 1100 calories a day. © 2017 American Association for the Advancement of Science

Keyword: Obesity
Link ID: 23236 - Posted: 02.16.2017

Laura Beil People who undergo gastric bypass surgery are more likely to experience a remission of their diabetes than patients who receive a gastric sleeve or intensive management of diet and exercise, according to a new study. Bypass surgery had already shown better results for diabetes than other weight-loss methods in the short term, but the new research followed patients for five years. “We knew that surgery had a powerful effect on diabetes,” says Philip Schauer of the Bariatric & Metabolic Institute at the Cleveland Clinic. “What this study says is that the effect of surgery is durable.” The results were published online February 15 in the New England Journal of Medicine. The study followed 134 people with type 2 diabetes for five years in a head-to-head comparison of weight-loss methods. At the end of that time, two of 38 patients who only followed intensive diet and exercise plans were no longer in need of insulin to manage blood sugar levels. For comparison, 11 of 47 patients who had a gastric sleeve, which reduces the size of the stomach, and 14 of 49 who underwent gastric bypass, a procedure that both makes the stomach smaller and shortens digestion time, did not need the insulin anymore. In general, patients who had been diabetic for fewer than eight years were more likely to be cured, Schauer says. Even those surgical patients who still needed to take insulin had greater weight loss and lower median glucose levels than others in the study. This study was also one of the few to show that bariatric surgery could help those with only mild obesity, defined as a body mass index between 27 and 34. How bariatric surgery might improve diabetes is still unknown, but scientists have pointed to effects on the body’s metabolism (SN: 8/24/13, p. 14) and gut microbes (SN: 9/5/15, p. 16). |© Society for Science & the Public 2000 - 2016.

Keyword: Obesity
Link ID: 23235 - Posted: 02.16.2017

Sarah Jane Tribble In response to outrage from patients and lawmakers, Marathon Pharmaceuticals has delayed the launch of an $89,000 drug for Duchenne muscular dystrophy. The company had announced the annual list price for Emflaza, which is a steroid, after the Food and Drug Administration approved the drug Thursday. Emflaza is approved as an orphan drug, which means it is intended to treat a rare disease. Duchenne is an inherited disorder that causes muscles to become weak. There is no cure for the condition, which mainly affects boys, but some drugs, including Emflaza, are used to lessen symptoms. For years, many American patients have imported deflazacort, the generic version of Emflaza, for about $1,200 a year. But because the medicine wasn't approved in the U.S., the cost of the medicine wasn't typically covered by insurers. That contrast in price between became a flash point Monday as Sen. Bernie Sanders, I-Vt., and Rep. Elijah Cummings, D-Md., sent a letter to Marathon on Monday morning demanding answers about the $89,000 price for a drug that isn't new. It has been used routinely by Duchenne patients in the U.S. since at least 2005. "We believe Marathon is abusing our nation's 'orphan drug' program, which grants companies seven years of market exclusivity to encourage research into new treatments for rare diseases — not to provide companies like Marathon with lucrative market exclusivity rights for drugs that have been available for decades," Sanders and Cummings wrote. Marathon said FDA approval would help more patients get the drug. © 2017 npr

Keyword: Movement Disorders
Link ID: 23234 - Posted: 02.15.2017

By Jesse Singal Those who advocate for sound, evidence-based research about autism are extremely alarmed about Donald Trump, and for good reason: In addition to Trump’s ties to Andrew Wakefield, the disgraced British doctor whose debunked research helped fuel the false idea of links between childhood vaccines and autism, Robert F. Kennedy Jr., a notorious anti-vaxxer himself, told reporters back in January that Trump planned to tap him as chair of a commission on “vaccine safety.” There is no question at this point that Trump has significant connections to a pseudoscientific medical movement that spreads dangerous, disproven ideas. Today, Trump gave nervous observers yet more reason to worry. It occurred at a White House event in which Trump and Secretary of Education Betsy DeVos met with a bunch of educators. Trump seemed to fixate, for a moment, on one educator named Jane (her last name is hard to make out) after she explained that she is the principal of a special education center in Virginia. The sequence starts at about 5:38 in this video: After Jane noted that many of her students have autism, Trump asked, “Have you seen a big increase in the autism, with the children?” Jane replied in the affirmative, but seemed to couch her response as being more about an increase in demand for services — she didn’t explicitly agree there’s been a big increase in the overall rate. Trump continued: “So what’s going on with autism? When you look at the tremendous increase, it’s really — it’s such an incredible — it’s really a horrible thing to watch, the tremendous amount of increase. Do you have any idea? And you’re seeing it in the school?” Jane replied — again, in a way that seems a bit noncommittal vis-à-vis Trump’s claim — that the rate of autism is something like 1-in-66 or 1-in-68 children. To which Trump responds: “Well now, it’s gotta be even lower [presumably meaning higher, rate-wise] than that, which is just amazing — well, maybe we can do something.” (Jane had the rate right, and Trump is incorrect that it has crept higher.) © 2017, New York Media LLC.

Keyword: Autism
Link ID: 23233 - Posted: 02.15.2017

By Amitha Kalaichandran, When pain researcher Diane Gromala recounts how she started in the field of virtual reality, she seems reflective. She had been researching virtual reality for pain since the early 1990s, but her shift to focusing on how virtual reality could be used for chronic pain management began in 1999, when her own chronic pain became worse. Prior to that, her focus was on VR as entertainment. Gromala, 56, was diagnosed with chronic pain in 1984, but the left-sided pain that extended from her lower stomach to her left leg worsened over the next 15 years. "Taking care of my chronic pain became a full-time job. So at some point I had to make a choice — either stop working or charge full force ahead by making it a motivation for my research. You can guess what I chose," she said. Diane Gromala Pain researcher Diane Gromala found that taking care of her own chronic pain became 'a full-time job.' (Pain studies lab at Simon Fraser University) Now she's finding that immersive VR technology may offer another option for chronic pain, which affects at least one in five Canadians, according to a 2011 University of Alberta study. "We know that there is some evidence supporting immersive VR for acute pain, so it's reasonable to look into how it could help patients that suffer from chronic pain." Gromala has a PhD in human computer interaction and holds the Canada Research Chair in Computational Technologies for Transforming Pain. She also directs the pain studies lab and the Chronic Pain Research Institute at Simon Fraser University in Burnaby, B.C. ©2017 CBC/Radio-Canada.

Keyword: Pain & Touch; Vision
Link ID: 23232 - Posted: 02.15.2017

By GINA KOLATA Dr. James Weinstein, a back pain specialist and chief executive of Dartmouth-Hitchcock Health System, has some advice for most people with lower back pain: Take two aspirin and don’t call me in the morning. On Monday, the American College of Physicians published updated guidelines that say much the same. In making the new recommendations for the treatment of most people with lower back pain, the group is bucking what many doctors do and changing its previous guidelines, which called for medication as first-line therapy. Dr. Nitin Damle, president of the group’s board of regents and a practicing internist, said pills, even over-the-counter pain relievers and anti-inflammatories, should not be the first choice. “We need to look at therapies that are nonpharmacological first,” he said. “That is a change.” The recommendations come as the United States is struggling with an epidemic of opioid addiction that often begins with a simple prescription for ailments like back pain. In recent years, a number of states have enacted measures aimed at curbing prescription painkillers. The problem has also led many doctors around the country to reassess prescribing practices. The group did not address surgery. Its focus was on noninvasive treatment.The new guidelines said that doctors should avoid prescribing opioid painkillers for relief of back pain and suggested that before patients try anti-inflammatories or muscle relaxants, they should try alternative therapies like exercise, acupuncture, massage therapy or yoga. Doctors should reassure their patients that they will get better no matter what treatment they try, the group said. The guidelines also said that steroid injections were not helpful, and neither was acetaminophen, like Tylenol, although other over-the-counter pain relievers like aspirin, naproxen or ibuprofen could provide some relief. © 2017 The New York Times Company

Keyword: Pain & Touch
Link ID: 23231 - Posted: 02.15.2017

Elizabeth Eaton A prehistoric marine reptile may have given birth to its young alive. A fossil from South China may be the first evidence of live birth in the animal group Archosauromorpha, scientists report February 14 in Nature Communications. Today Archosauromorpha is represented by birds and crocodiles — which both lay eggs. Whether this fossil really is the first evidence of live birth in Archosauromorpha depends on how another group of semiaquatic animals is classified, says Michael Caldwell, a vertebrate paleontologist with the University of Alberta in Canada. Placement of Choristodera, a now-extinct group that included a freshwater reptile that gave live birth, remains murky, with some researchers putting them with Archosauromorpha and others with a group that includes snakes and lizards. “Our discovery is the first of live birth in reptiles with undoubted archosauromorph affinity,” says Jun Liu, a paleontologist at Hefei University of Technology in China. Researchers have speculated that the biology of archosauromorphs prevented their reproductive traits from evolving, says study coauthor Chris Organ, an evolutionary biologist with Montana State University in Bozeman. This find may disprove that view. “Ancestrally, the science suggests that live birth is not absolutely prohibited,” Organ says. Even though birds and crocodiles haven’t yet evolved to give life birth, this discovery suggests that it’s possible. |© Society for Science & the Public 2000 - 2016

Keyword: Sexual Behavior; Evolution
Link ID: 23230 - Posted: 02.15.2017