Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 19782

By Elizabeth Pennisi The microbes that live in your body outnumber your cells 10 to one. Recent studies suggest these tiny organisms help us digest food and maintain our immune system. Now, researchers have discovered yet another way microbes keep us healthy: They are needed for closing the blood-brain barrier, a molecular fence that shuts out pathogens and molecules that could harm the brain. The findings suggest that a woman's diet or exposure to antibiotics during pregnancy may influence the development of this barrier. The work could also lead to a better understanding of multiple sclerosis, in which a leaky blood-brain barrier may set the stage for a decline in brain function. The first evidence that bacteria may help fortify the body’s biological barriers came in 2001. Researchers discovered that microbes in the gut activate genes that code for gap junction proteins, which are critical to building the gut wall. Without these proteins, gut pathogens can enter the bloodstream and cause disease. In the new study, intestinal biologist Sven Pettersson and his postdoc Viorica Braniste of the Karolinska Institute in Stockholm decided to look at the blood-brain barrier, which also has gap junction proteins. They tested how leaky the blood-brain barrier was in developing and adult mice. Some of the rodents were brought up in a sterile environment and thus were germ-free, with no detectable microbes in their bodies. Braniste then injected antibodies—which are too big to get through the blood-brain barrier—into embryos developing within either germ-free moms or moms with the typical microbes, or microbiota. © 2014 American Association for the Advancement of Science

Keyword: Obesity
Link ID: 20338 - Posted: 11.20.2014

Sara Reardon A technique that makes mouse brains transparent shows how the entire brain responds to cocaine addiction and fear. The findings could uncover new brain circuits involved in drug response. In the technique, known as CLARITY, brains are infused with acrylamide, which forms a matrix in the cells and preserves their structure along with the DNA and proteins inside them. The organs are then treated with a detergent that dissolves opaque lipids, leaving the cells completely clear. To test whether CLARITY could be used to show how brains react to stimuli, neuroscientists Li Ye and Karl Deisseroth of Stanford University in California engineered mice so that their neurons would make a fluorescent protein when they fired. (The system is activated by the injection of a drug.) The researchers then trained four of these mice to expect a painful foot shock when placed in a particular box; another set of mice placed in the box received cocaine, rather than shocks. Once the mice had learned to associate the box with either pain or an addictive reward, the researchers tested how the animals' brains responded to the stimuli. They injected the mice with the drug that activated the fluorescent protein system, placed them in the box and waited for one hour to give their neurons time to fire. The next step was to remove the animals' brains, treat them with CLARITY, and image them using a system that could count each fluorescent cell across the entire brain (see video). A computer combined these images into a model of a three-dimensional brain, which showed the pathways that lit up when mice were afraid or were anticipating cocaine. © 2014 Nature Publishing Group

Keyword: Drug Abuse; Brain imaging
Link ID: 20337 - Posted: 11.20.2014

By Emily Underwood WASHINGTON, D.C.—Rapid changes unfold in the brain after a person's hand is amputated. Within days—and possibly even hours—neurons that once processed sensations from the palm and fingers start to shift their allegiances, beginning to fire in response to sensations in other body parts, such as the face. But a hand transplant can bring these neurons back into the fold, restoring the sense of touch nearly back to normal, according to a study presented here this week at the annual conference of the Society for Neuroscience. To date, roughly 85 people worldwide have undergone hand replant or transplant surgery, an 8- to 10-hour procedure in which surgeons reattach the bones, muscles, nerves, blood vessels, and soft tissue between the patient's severed wrist and their own hand or one from a donor, often using a needle finer than a human hair. After surgery, studies have shown that it takes about 2 years for the peripheral nerves to regenerate, with sensation slowly creeping through the palm and into the fingertips at a rate of roughly 2 mm per day, says Scott Frey, a cognitive neuroscientist at the University of Missouri, Columbia. Even once the nerves have regrown, the surgically attached hand remains far less sensitive to touch than the original hand once was. One potential explanation is that the brain's sensory "map" of the body—a series of cortical ridges and folds devoted to processing touch in different body parts—loses its ability to respond to the missing hand in the absence of sensory input, Frey says. If that's true, the brain may need to reorganize that sensory map once again in order to fully restore sensation. © 2014 American Association for the Advancement of Science

Keyword: Pain & Touch; Regeneration
Link ID: 20336 - Posted: 11.20.2014

By Kate Baggaley WASHINGTON — Being stroked in the right place at the right speed activates specialized nerve fibers. The caresses that people rate most pleasant line up with the probable locations of the fibers on the skin, new research suggests. “Touch is important in terms of our physical health and our psychological well-being,” said Susannah Walker, who presented the research November 17 at the annual meeting of the Society for Neuroscience. “But very little attention has been paid to the neurological basis of that effect.” Sensors in the skin known as C-tactile afferents respond strongly to being stroked at between three and 10 centimeters per second. The sensors send signals to the brain that make touch rewarding, says Walker, a neuroscientist at Liverpool John Moores University in England. Walker and a colleague played videos for 93 participants, showing a hand caressing a person’s palm, back, shoulder or forearm, either at 5 cm/s or 30 cm/s. Participants rated the 5 cm/s stroking — the best speed to get the skin’s sensors firing — as the most pleasant, except on the palm, where there are no stroking sensors. The back got the highest pleasantness ratings, forearms lowest. The spots where people like to be touched may not line up with the areas traditionally considered most sensitive. Though less finely attuned to texture or temperature than the hands or face, the back and shoulders are sensitive to a different, social sort of touch. © Society for Science & the Public 2000 - 2014.

Keyword: Pain & Touch; Emotions
Link ID: 20335 - Posted: 11.20.2014

By MAX BEARAK MUMBAI, India — The young man sat cross-legged atop a cushioned divan on an ornately decorated stage, surrounded by other Jain monks draped in white cloth. His lip occasionally twitched, his hands lay limp in his lap, and for the most part his eyes were closed. An announcer repeatedly chastised the crowd for making even the slightest noise. From daybreak until midafternoon, members of the audience approached the stage, one at a time, to show the young monk a random object, pose a math problem, or speak a word or phrase in one of at least six different languages. He absorbed the miscellany silently, letting it slide into his mind, as onlookers in their seats jotted everything down on paper. After six hours, the 500th and last item was uttered — it was the number 100,008. An anxious hush descended over the crowd. And the monk opened his eyes and calmly recalled all 500 items, in order, detouring only once to fill in a blank he had momentarily set aside. When he was done, and the note-keepers in the audience had confirmed his achievement, the tense atmosphere dissolved and the announcer led the crowd in a series of triumphant chants. The opportunity to witness the feat of memory drew a capacity crowd of 6,000 to the Sardar Vallabhbhai Patel stadium in Mumbai on Sunday. The exhibition was part of a campaign to encourage schoolchildren to use meditation to build brainpower, as Jain monks have done for centuries in India, a country drawn both toward ancient religious practices and more recent ambitions. But even by Jain standards, the young monk — Munishri Ajitchandrasagarji, 24 — is something special. His guru, P. P. Acharya Nayachandrasagarji, said no other monk in many years had come close to his ability. © 2014 The New York Times Company

Keyword: Learning & Memory; Attention
Link ID: 20334 - Posted: 11.20.2014

Mo Costandi A team of neuroscientists in America say they have rediscovered an important neural pathway that was first described in the late nineteenth century but then mysteriously disappeared from the scientific literature until very recently. In a study published today in Proceedings of the National Academy of Sciences, they confirm that the prominent white matter tract is present in the human brain, and argue that it plays an important and unique role in the processing of visual information. The vertical occipital fasciculus (VOF) is a large flat bundle of nerve fibres that forms long-range connections between sub-regions of the visual system at the back of the brain. It was originally discovered by the German neurologist Carl Wernicke, who had by then published his classic studies of stroke patients with language deficits, and was studying neuroanatomy in Theodor Maynert’s laboratory at the University of Vienna. Wernicke saw the VOF in slices of monkey brain, and included it in his 1881 brain atlas, naming it the senkrechte occipitalbündel, or ‘vertical occipital bundle’. Maynert - himself a pioneering neuroanatomist and psychiatrist, whose other students included Sigmund Freud and Sergei Korsakov - refused to accept Wernicke’s discovery, however. He had already described the brain’s white matter tracts, and had arrived at the general principle that they are oriented horizontally, running mostly from front to back within each hemisphere. But the pathway Wernicke had described ran vertically. Another of Maynert’s students, Heinrich Obersteiner, identified the VOF in the human brain, and mentioned it in his 1888 textbook, calling it the senkrechte occipitalbündel in one illustration, and the fasciculus occipitalis perpendicularis in another. So, too, did Heinrich Sachs, a student of Wernicke’s, who labeled it the stratum profundum convexitatis in his 1892 white matter atlas. © 2014 Guardian News and Media Limited

Keyword: Language
Link ID: 20333 - Posted: 11.20.2014

By Esther Hsieh A little-known fact: the tongue is directly connected to the brain stem. This anatomical feature is now being harnessed by scientists to improve rehabilitation. A team at the University of Wisconsin–Madison recently found that electrically stimulating the tongue can help patients with multiple sclerosis (MS) improve their gait. MS is an incurable disease in which the insulation around the nerves becomes damaged, disrupting the communication between body and brain. One symptom is loss of muscle control. In a study published in the Journal of Neuro-Engineering and Rehabilitation, Wisconsin neuroscientist Yuri Danilov and his team applied painless electrical impulses to the tip of the tongue of MS patients during physical therapy. Over a 14-week trial, patients who got tongue stimulation improved twice as much on variables such as balance and fluidity as did a control group who did the same regimen without stimulation. The tongue has extensive motor and sensory integration with the brain, Danilov explains. The nerves on the tip of the tongue are directly connected to the brain stem, a crucial hub that directs basic bodily processes. Previous research showed that sending electrical pulses through the tongue activated the neural network for balance; such activation may shore up the circuitry weakened by MS. The team is also using tongue stimulation to treat patients with vision loss, stroke damage and Parkinson's. “We have probably discovered a new way for the neurorehabilitation of many neurological disorders,” Danilov says. © 2014 Scientific American

Keyword: Multiple Sclerosis
Link ID: 20332 - Posted: 11.20.2014

By Elahe Izadi Putting very little babies through numerous medical procedures is especially challenging for physicians, in part because reducing the pain they experience is so difficult. Typically for patients, "the preferred method of reducing pain is opiates. Obviously you don't want to give opiates to babies," says neurologist Regina Sullivan of NYU Langone Medical Center. "Also, it's difficult to know when a baby is in pain and not in pain." In recent years, research has shown environmental factors, like a mother or caregiver having contact with a baby during a painful procedure, appears to reduce the amount of pain felt by the baby, at least as indicated by the child's behavior, Sullivan said. But she and Gordon Barr of the University of Pennsylvania, an expert in pain, were interested in whether a mother's presence actually changed the brain functioning of a baby in pain. So Sullivan and Barr turned to rats. Specifically mama and baby rats who were in pain. And they found that hundreds of genes in baby rats' brains were more or less active, depending on whether the mothers were present. Sullivan and Barr presented their committee peer-reviewed research before the Society for Neuroscience annual meeting Tuesday. They gave mild electric shocks to infant rats, some of which had their mothers around and others who didn't. The researchers analyzed a specific portion of the infants' brains, the amygdala region of neurons, which is where emotions like fear are processed.

Keyword: Pain & Touch; Sexual Behavior
Link ID: 20331 - Posted: 11.20.2014

By Neuroskeptic An attempt to replicate the results of some recent neuroscience papers that claimed to find correlations between human brain structure and behavior has drawn a blank. The new paper is by University of Amsterdam researchers Wouter Boekel and colleagues and it’s in press now at Cortex. You can download it here from the webpage of one of the authors, Eric-Jan Wagenmakers. Neuroskeptic readers will know Wagenmakers as a critic of statistical fallacies in psychology and a leading advocate of preregistration, which is something I never tire of promoting either. Boekel et al. attempted to replicate five different papers which, together, reported 17 distinct positive results in the form of structural brain-behavior (‘SBB’) correlations. An SBB correlation is an association between the size (usually) of a particular brain area and a particular behavioral trait. For instance, one of the claims was that the amount of grey matter in the amygdala is correlated with the number of Facebook friends you have. To attempt to reproduce these 17 findings, Boekel et al. took 36 students whose brains were scanned with two methods, structural MRI and DWI. The students then completed a set of questionnaires and psychological tests, identical to ones used in the five papers that were up for replication. The methods and statistical analyses were fully preregistered (back in June 2012); Boekel et al. therefore had no scope for ‘fishing’ for positive (or negative) results by tinkering with the methodology. So what did they find? Nothing much. None of the 17 brain-behavior correlations were significant in the replication sample.

Keyword: Brain imaging
Link ID: 20330 - Posted: 11.20.2014

By Gretchen Reynolds Exercise seems to be good for the human brain, with many recent studies suggesting that regular exercise improves memory and thinking skills. But an interesting new study asks whether the apparent cognitive benefits from exercise are real or just a placebo effect — that is, if we think we will be “smarter” after exercise, do our brains respond accordingly? The answer has significant implications for any of us hoping to use exercise to keep our minds sharp throughout our lives. In experimental science, the best, most reliable studies randomly divide participants into two groups, one of which receives the drug or other treatment being studied and the other of which is given a placebo, similar in appearance to the drug, but not containing the active ingredient. Placebos are important, because they help scientists to control for people’s expectations. If people believe that a drug, for example, will lead to certain outcomes, their bodies may produce those results, even if the volunteers are taking a look-alike dummy pill. That’s the placebo effect, and its occurrence suggests that the drug or procedure under consideration isn’t as effective as it might seem to be; some of the work is being done by people’s expectations, not by the medicine. Recently, some scientists have begun to question whether the apparently beneficial effects of exercise on thinking might be a placebo effect. While many studies suggest that exercise may have cognitive benefits, those experiments all have had a notable scientific limitation: They have not used placebos. This issue is not some abstruse scientific debate. If the cognitive benefits from exercise are a result of a placebo effect rather than of actual changes in the brain because of the exercise, then those benefits could be ephemeral and unable in the long term to help us remember how to spell ephemeral. © 2014 The New York Times Company

Keyword: Learning & Memory
Link ID: 20329 - Posted: 11.20.2014

By David Shultz WASHINGTON, D.C.—Reciting the days of the week is a trivial task for most of us, but then, most of us don’t have cooling probes in our brains. Scientists have discovered that by applying a small electrical cooling device to the brain during surgery they could slow down and distort speech patterns in patients. When the probe was activated in some regions of the brain associated with language and talking—like the premotor cortex—the patients’ speech became garbled and distorted, the team reported here yesterday at the Society for Neuroscience’s annual meeting. As scientists moved the probe to other speech regions, such as the pars opercularis, the distortion lessened, but speech patterns slowed. (These zones and their effects are displayed graphically above.) “What emerged was this orderly map,” says team leader Michael Long, a neuroscientist at the New York University School of Medicine in New York City. The results suggest that one region of the brain organizes the rhythm and flow of language while another is responsible for the actual articulation of the words. The team was even able to map which word sounds were most likely to be elongated when the cooling probe was applied. “People preferentially stretched out their vowels,” Long says. “Instead of Tttuesssday, you get Tuuuesdaaay.” The technique is similar to the electrical probe stimulation that researchers have been using to identify the function of various brain regions, but the shocks often trigger epileptic seizures in sensitive patients. Long contends that the cooling probe is completely safe, and that in the future it may help neurosurgeons decide where to cut and where not to cut during surgery. © 2014 American Association for the Advancement of Science.

Keyword: Language; Brain imaging
Link ID: 20328 - Posted: 11.20.2014

By Tanya Lewis WASHINGTON — From the stroke of a mother's hand to the embrace of a lover, sensations of gentle touch activate a specialized set of nerves in humans. The brain is widely believed to contain a "map" of the body for sensing touch. But humans may also have an emotional body map that corresponds to feelings of gentle touch, according to new research presented here Sunday (Nov. 16) at the 44th annual meeting of the Society for Neuroscience. For humans and all social species, touch plays a fundamental role in the formation and maintenance of social bonds, study researcher Susannah Walker, a behavioral neuroscientist at Liverpool John Moores University in the United KIngdom, said in a news conference. [Top 10 Things That Make Humans Special] "Indeed, a lack of touch can have a detrimental effect on both our physical health and our psychological well-being," Walker said. In a clinical setting, physical contact with premature infants has been shown to boost growth, decrease stress and aid brain development. But not much research has focused on the basis of these effects in the nervous system, Walker said. The human body has a number of different kinds of nerves for perceiving touch. Thicker nerves surrounded by a fatty layer of insulation (called myelin) identify touch and temperature and rapidly send those signals to the brain, whereas thinner nerves that lack this insulation send sensory information more slowly.

Keyword: Pain & Touch; Emotions
Link ID: 20327 - Posted: 11.18.2014

By Laura Geggel A major pathway of the human brain involved in visual perception, attention and movement — and overlooked by many researchers for more than a century — is finally getting its moment in the sun. In 2012, researchers made note of a pathway in a region of the brain associated with reading, but "we couldn't find it in any atlas," said Jason Yeatman, a research scientist at the University of Washington's Institute for Learning and Brain Sciences. "We'd thought we had discovered a new pathway that no one else had noticed before." A quick investigation showed that the pathway, known as the vertical occipital fasciculus (VOF), was not actually unknown. Famed neuroscientist Carl Wernicke discovered the pathway in 1881, during the dissection of a monkey brain that was most likely a macaque. [10 Things You Didn't Know About the Brain] But besides Wernicke's discovery, and a few other mentions throughout the years, the VOF is largely absent from studies of the human brain. This made Yeatman and his colleagues wonder, "How did a whole piece of brain anatomy get forgotten?" he said. The researchers immersed themselves in century-old brain atlases and studies, trying to decipher when and why the VOF went missing from mainstream scientific literature. They also scanned the brains of 37 individuals, and found an algorithm that can help present-day researchers pinpoint the elusive pathway.

Keyword: Vision; Dyslexia
Link ID: 20326 - Posted: 11.18.2014

By Kelly Servick Dean Hamer finally feels vindicated. More than 20 years ago, in a study that triggered both scientific and cultural controversy, the molecular biologist offered the first direct evidence of a “gay gene,” by identifying a stretch on the X chromosome likely associated with homosexuality. But several subsequent studies called his finding into question. Now the largest independent replication effort so far, looking at 409 pairs of gay brothers, fingers the same region on the X. “When you first find something out of the entire genome, you’re always wondering if it was just by chance,” says Hamer, who asserts that new research “clarifies the matter absolutely.” But not everyone finds the results convincing. And the kind of DNA analysis used, known as a genetic linkage study, has largely been superseded by other techniques. Due to the limitations of this approach, the new work also fails to provide what behavioral geneticists really crave: specific genes that might underlie homosexuality. Few scientists have ventured into this line of research. When the genetics of being gay comes up at scientific meetings, “sometimes even behavioral geneticists kind of wrinkle up their noses,” says Kenneth Kendler, a psychiatric geneticist at Virginia Commonwealth University in Richmond. That’s partially because the science itself is so complex. Studies comparing identical and fraternal twins suggest there is some heritable component to homosexuality, but no one believes that a single gene or genes can make a person gay. Any genetic predispositions probably interact with environmental factors that influence development of a sexual orientation. © 2014 American Association for the Advancement of Science.

Keyword: Sexual Behavior; Genes & Behavior
Link ID: 20325 - Posted: 11.18.2014

James Gorman Evidence has been mounting for a while that birds and other animals can count, particularly when the things being counted are items of food. But most of the research is done under controlled conditions. In a recent experiment with New Zealand robins, Alexis Garland and Jason Low at Victoria University of Wellington tested the birds in a natural setting, giving them no training and no rewards, and showed that they knew perfectly well when a scientist had showed them two mealworms in a box, but then delivered only one. The researchers reported the work this fall in the journal Behavioural Processes. The experiment is intriguing to watch, partly because it looks like a child’s magic trick. The apparatus used is a wooden box that has a sliding drawer. After clearly showing a robin that she was dropping two mealworms in a circular well in the box, Dr. Garland would slide in the drawer. It covered the two worms with an identical-looking circular well containing only one worm. When the researcher moved away and the robin flew down and lifted off a cover, it would find only one worm. The robins pecked intensely at the box, behavior they didn’t show if they found the two worms they were expecting. Earlier experiments had also shown the birds to be good at counting, and Dr. Garland said that one reason might be that they are inveterate thieves. Mates, in particular, steal from one another’s food caches, where they hide perishable prey like worms or insects. “If you’ve got a mate that steals 50 or more percent of your food,” she said, you’d better learn how to keep track of how many mealworms you’ve got. © 2014 The New York Times Company

Keyword: Intelligence; Evolution
Link ID: 20324 - Posted: 11.18.2014

By Bethany Brookshire WASHINGTON – Moldy houses are hard on the lungs, and new results in mice suggest that they could also be bad for the brain. Inhaling mold spores made mice anxious and forgetful, researchers reported November 15 at the annual meeting of the Society for Neuroscience. Cheryl Harding, a psychologist at the City University of New York, and colleagues dripped low doses of spores from the toxic mold Stachybotrys into mouse noses three times per week. After three weeks, the mice didn’t look sick. But they had trouble remembering a fearful place. The mice were also more anxious than normal counterparts. The anxiety and memory deficits went along with decreases in new brain cells in the hippocampus — a part of the brain that plays a role in memory — compared with control mice. Harding and colleagues also found that the behaviors linked to increased inflammatory proteins in the hippocampus. Exposure to mold’s toxins and structural proteins may trigger an immune response in the brain. The findings, Harding says, may help explain some of the conditions that people living in moldy buildings complain about, such as anxiety and cognitive problems. C. Harding et al. Mold inhalation, brain inflammation, and behavioral dysfunction. Society for Neuroscience Meeting, Washington, DC, November 15, 2014. © Society for Science & the Public 2000 - 2014.

Keyword: Neurotoxins; Emotions
Link ID: 20323 - Posted: 11.18.2014

By Nicholas Bakalar Exposure to secondhand smoke and roadway traffic may be tied to increased body mass index in children and adolescents, a new study suggests. Researchers studied 3,318 children in 12 Southern California communities beginning at an average age of 10, and then followed them through age 18. They used parental questionnaires to establish exposure to smoking, and data on traffic volume and levels of nitrogen dioxide, ozone and particulates to track pollution. The study, in Environmental Health Perspectives, controlled for many other factors: sex, initial B.M.I., asthma, physical activity, insurance status, parental education and income, acres of parks and open space nearby, percentage of people living in poverty in each community. But even after accounting for these issues and more, they found that compared with children exposed to no secondhand smoke or near-roadway air pollution, B.M.I. was 0.80 higher in children exposed to pollution alone, 0.85 higher in those exposed to secondhand smoke alone, and 2.15 higher in those exposed to both. A normal B.M.I. for adults is 18.5 to 24.9. Higher than 25 is considered overweight, and above 30 obese. “It would be interesting to know more about the mechanism,” said the lead author, Dr. Rob McConnell, a professor of preventive medicine at the University of Southern California. “But the finding challenges the view that obesity is due solely to increased caloric intake and reduced physical activity. That’s not the whole story.” © 2014 The New York Times Company

Keyword: Obesity; Neurotoxins
Link ID: 20322 - Posted: 11.18.2014

By Tom Shroder After more than 30 years in which psychedelics were considered dangerous remnants of the 1960s, the drugs have begun to make a comeback, this time as potential remedies for a host of tough-to-treat maladies. Pilot studies and clinical trials of LSD, psilocybin, ketamine and MDMA have shown that the drugs, often in combination with talk therapy, can be given safely under medical supervision and may help people dealing with opiate and tobacco addiction, alcoholism, anxiety, depression and post-traumatic stress disorder, or PTSD. That these investigations have shown potential is not surprising to many researchers. A generation of scientists and practitioners had used psychedelics successfully with thousands of patients until the research was banned in 1970, after the drugs were embraced by an exploding counterculture that seemed to threaten the status quo. In the panicked reaction, psychedelics were listed along with heroin in the highest rungs of prohibition. Ironically, this failed to stop recreational use but it shut the science down cold. As one researcher put it, “It was as if psychedelic drugs had become undiscovered.” But a small cadre of psychiatrists and researchers, often risking careers and reputations, pushed to bring psychedelics back to the lab and the clinic. Their persistence paid off. Beginning in the 1990s, the Food and Drug Administration approved the first human clinical studies of psychedelic drugs in a quarter of a century. By 2004, the first FDA-approved trial of the medicinal use of a psychedelic drug, in this case a trial of MDMA-assisted therapy for PTSD involving 24 subjects, was underway. Now such studies are proliferating.

Keyword: Depression; Drug Abuse
Link ID: 20321 - Posted: 11.18.2014

By John Bohannon If you had the choice between hurting yourself or someone else in exchange for money, how altruistic do you think you’d be? In one infamous experiment, people were quite willing to deliver painful shocks to anonymous victims when asked by a scientist. But a new study that forced people into the dilemma of choosing between pain and profit finds that participants cared more about other people’s well-being than their own. It is hailed as the first hard evidence of altruism for the young field of behavioral economics. Human behavior toward others is hard to predict. On the one hand, we stand out in the animal world for our altruism, often making significant sacrifices to help out a stranger in need. And all but the most antisocial people experience psychological distress at witnessing, let alone causing, pain in others. Yet study after study in the field of behavioral economics has demonstrated that we tend to value our own needs and desires above those of others. For example, researchers have found that just thinking about money makes people behave more selfishly. To try to reconcile the angels and devils of our nature, a team led by Molly Crockett, a psychologist at the University of Oxford in the United Kingdom, combined the classic psychological and economics tools for probing altruism: pain and money. Everyone has their own pain threshold, so the first task was a pain calibration. Researchers administered electric shocks with electrodes attached to the wrists of 160 subjects, starting at an almost imperceptible level and amping up until the subject described the pain as intolerable. (For most people, that threshold for pain is similar to holding your wrist under a stream of 50°C water.) © 2014 American Association for the Advancement of Science.

Keyword: Aggression; Emotions
Link ID: 20320 - Posted: 11.18.2014

By DENISE GRADY An electrical device glued to the scalp can slow cancer growth and prolong survival in people with the deadliest type of brain tumor, researchers reported on Saturday. The device is not a cure and, on average, adds only a few months of life when used along with the standard regimen of surgery, radiation and chemotherapy. Some doctors have questioned its usefulness. But scientists conducting a new study said the device was the first therapy in a decade to extend life in people with glioblastomas, brain tumors in which median survival is 15 months even with the best treatment. The disease affects about 10,000 people a year in the United States and is what killed Senator Edward M. Kennedy in 2009. It is so aggressive and hard to treat that even seemingly small gains in survival are considered important. The new findings mean the device should become part of the standard care offered to all patients with newly diagnosed glioblastomas, the researchers conducting the study said. The equipment consists of four pads carrying transducer arrays that patients glue to their scalps and change every few days. Wires lead to a six-pound operating system and power supply. Except for some scalp irritation, the device has no side effects, the study found. But patients have to wear it more or less around the clock and must keep their heads shaved. It generates alternating, low-intensity electrical fields — so-called tumor-treating fields — that can halt tumor growth by stopping cells from dividing, which leads to their death. The researchers said the technology might also help treat other cancers, and would be tested in mesothelioma and cancers of the lung, ovary, breast and pancreas. © 2014 The New York Times Company

Keyword: Miscellaneous
Link ID: 20319 - Posted: 11.17.2014