Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 61 - 80 of 19665

|By Tara Haelle The first step to treating or preventing a disease is often finding out what drives it. In the case of neurodegenerative disorders, the discovery two decades ago of what drives them changed the field: all of them—including Alzheimer's, Parkinson's, Huntington's and amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease)—involve the accumulation of misfolded proteins in brain cells. Typically when a protein misfolds, the cell destroys it, but as a person ages, this quality-control mechanism starts to fail and the rogue proteins build up. In Huntington's, for example, huntingtin protein—used for many cell functions—misfolds and accumulates. Symptoms such as muscular difficulties, irritability, declining memory, poor impulse control and cognitive deterioration accompany the buildup. Mounting evidence suggests that not only does the accumulation of misfolded proteins mark neurodegenerative disease but that the spread of the proteins from one cell to another causes the disease to progress. Researchers have seen misfolded proteins travel between cells in Alzheimer's and Parkinson's. A series of experiments reported in Nature Neuroscience in August suggests the same is true in Huntington's. In their tests, researchers in Switzerland showed that mutated huntingtin protein in diseased brain tissue could invade healthy brain tissue when the two were placed together. And when the team injected the mutated protein into a live mouse's brain, it spread through the neurons within a month—similar to the way prions spread, says Francesco Paolo Di Giorgio of the Novartis Institutes for BioMedical Research in Basel, who led the research. Prions are misfolded proteins that travel through the body and confer their disease-causing characteristics onto other proteins, as seen in mad cow disease. But it is not known if misfolded proteins involved in Huntington's convert other proteins as true prions do, according to Di Giorgio. © 2014 Scientific American

Keyword: Huntingtons
Link ID: 20181 - Posted: 10.08.2014

BY Bethany Brookshire We all need sleep, but attaining it can be delicate. Insomniacs can’t fall or stay asleep. Travelers suffer from jetlag. Anxiety keeps people up at night. Or maybe it’s just that jackhammer running across the street keeping your eyes open. Some people turn to earplugs, dark curtains or alcohol to soothe them to sleep. But others go to the supplement aisle and pick up melatonin. The hormone melatonin is secreted from our brains at night and helps regulate sleep. But this chemical is not restricted to humans, or even to mammals. The roots of melatonin’s role in our nightly slumbers go back much further in evolutionary history. A new paper focuses in on the role of melatonin in tiny marine creatures called zooplankton. It turns out that these animals use melatonin just as much as we do, suggesting that the origins of sleeplike behavior may lie under the sea. “For every system and feature that makes a human or other animal today, you can ask the question: Where did it start? How did it begin? What was its first role and function, and how did it become more complex?” says study coauthor Detlev Arendt, a zoologist at the University of Heidelberg in Germany. Arendt’s laboratory has been studying the answers to these questions in the marine ragworm Platynereis dumerilii. This unassuming, centipede-like, ocean-dwelling worm produces larvae that float through the open water as zooplankton. These small larvae propel themselves up and down in the water column with movements of their cilia, slender, hair-like appendages that protrude out from the organisms. © Society for Science & the Public 2000 - 2014.

Keyword: Biological Rhythms; Aggression
Link ID: 20180 - Posted: 10.08.2014

David Cyranoski Unlike its Western counter­parts, Japan’s effort will be based on a rare resource — a large population of marmosets that its scientists have developed over the past decade — and on new genetic techniques that might be used to modify these highly social animals. The goal of the ten-year Brain/MINDS (Brain Mapping by Integrated Neurotechnologies for Disease Studies) project is to map the primate brain to accelerate understanding of human disorders such as Alzheimer’s disease and schizo­phrenia. On 11 September, the Japanese science ministry announced the names of the group leaders — and how the project would be organized. Funded at ¥3 billion (US$27 million) for the first year, probably rising to about ¥4 billion for the second, Brain/MINDS is a fraction of the size of the European Union’s Human Brain Project and the United States’ BRAIN (Brain Research through Advancing Innovative Neuro­technologies) Initiative, both of which are projected to receive at least US$1 billion over the next decade. But researchers involved in those efforts say that Brain/MINDS fills a crucial gap between disease models in smaller animals that too often fail to mimic human brain disorders, and models of the human brain that need validating data. “It is essential that we have a genetic primate model to study cognition and cognitive brain disorders such as schizophrenia and depression, for which we do not have good mouse models,” says neuroscientist Terry Sejnowski at the Salk Institute in La Jolla, California, who is a member of the National Institutes of Health BRAIN Initiative Working Group. “Other groups in the United States and China have started transgenic-primate projects, but none is as large or as well organized as the Japanese effort.” © 2014 Nature Publishing Group,

Keyword: Brain imaging; Aggression
Link ID: 20179 - Posted: 10.08.2014

by Laura Starecheski From the self-affirmations of Stuart Smalley on Saturday Night Live to countless videos on YouTube, saying nice things to your reflection in the mirror is a self-help trope that's been around for decades, and seems most often aimed at women. The practice, we're told, can help us like ourselves and our bodies more, and even make us more successful — allow us to chase our dreams! Impressed, but skeptical, I took this self-talk idea to one of the country's leading researchers on body image to see if it's actually part of clinical practice. David Sarwer is a psychologist and clinical director at the Center for Weight and Eating Disorders at the University of Pennsylvania. He says that, in fact, a mirror is one of the first tools he uses with some new patients. He stands them in front of a mirror and coaches them to use gentler, more neutral language as they evaluate their bodies. "Instead of saying, 'My abdomen is disgusting and grotesque,' " Sarwer explains, he'll prompt a patient to say, " 'My abdomen is round, my abdomen is big; it's bigger than I'd like it to be.' " The goal, he says, is to remove "negative and pejorative terms" from the patient's self-talk. The underlying notion is that it's not enough for a patient to lose physical weight — or gain it, as some women need to — if she doesn't also change the way her body looks in her mind's eye. This may sound weird. You're either a size 4 or a size 8, right? Not mentally, apparently. In a 2013 study from the Netherlands, scientists watched women with anorexia walk through doorways in a lab. The women, they noticed, turned their shoulders and squeezed sideways, even when they had plenty of room. © 2014 NPR

Keyword: Attention; Aggression
Link ID: 20178 - Posted: 10.08.2014

By Sarah C. P. Williams When a group of male katydids croon a tune in nearly perfect synchrony, it means the insects are after the ladies. But they’re not aligning their singing with each other to come across as larger or louder, a new study finds; each male is trying to beat out the others to be the first—by mere milliseconds—to hit a note. Katydids, also known as bush crickets (Mecopoda elongata), are among a handful of insects that make noise by rubbing a hind leg on one wing. Scientists knew that the sound attracted females, but they didn’t know why the males sang in synchrony. In the new study, researchers recorded and analyzed the choral performances of 18 different groups of four male katydids. Then, they let females choose between the males in each group. Females preferred males that were the first to broadcast each tone, even if it were only 70 milliseconds ahead of others in the group, the team reports online today in Royal Society Open Science. Moreover, the females preferred these lead singers to katydids that were singing alone—but the increased volume of the chorus didn’t seem to draw more females to the group as a whole. Singing in a group, the authors of the new study hypothesize, might help keep males on a steady rhythm—another trait that female katydids in the study preferred. But more work is needed to figure out why females chose the steadiest, leading singer, and whether the observation holds true in all species of katydids, like the round-headed katydid (pictured) that's more common in North America. © 2014 American Association for the Advancement of Science

Keyword: Sexual Behavior; Aggression
Link ID: 20177 - Posted: 10.08.2014

|By Tori Rodriguez Imagining your tennis serve or mentally running through an upcoming speech might help you perform better, studies have shown, but the reasons why have been unclear. A common theory is that mental imagery activates some of the same neural pathways involved in the actual experience, and a recent study in Psychological Science lends support to that idea. Scientists at the University of Oslo conducted five experiments investigating whether eye pupils adjust to imagined light as they do to real light, in an attempt to see whether mental imagery can trigger automatic neural processes such as pupil dilation. Using infrared eye-tracking technology, they measured the diameter of participants' pupils as they viewed shapes of varying brightness and as they imagined the shapes they viewed or visualized a sunny sky or a dark room. In response to imagined light, pupils constricted 87 percent as much as they did during actual viewing, on average; in response to imagined darkness, pupils dilated to 56 percent of their size during real perception. Two other experiments ruled out the possibility that participants were able to adjust their pupil size at will or that pupils were changing in response to mental effort, which can cause dilation. The finding helps to explain why imagined rehearsals can improve your game. The mental picture activates and strengthens the very neural circuits—even subconscious ones that control automated processes like pupil dilation—that you will need to recruit when it is time to perform. © 2014 Scientific American

Keyword: Learning & Memory
Link ID: 20176 - Posted: 10.08.2014

By Julie Rehmeyer Eight years ago, collapsed on a neurologist’s examining table, I asked a naive question that turned out to be at the center of a long-running controversy: “So what is chronic fatigue syndrome?” I had just been diagnosed with the illness, which for six years had been gradually overtaking me. A week earlier, I had woken up barely able to walk. Fatigue hardly described what I felt. Paralysis was more like it. My legs seemed to have been amputated and replaced with tubes of liquid concrete, and just shifting them on the table made me grunt like an Olympic weightlifter. My bones hurt; my brain felt like a swollen mass. Speaking required tracking down and spearing each word individually as it scampered away from me. I felt as capable of writing an article about science — my job — as of killing a rhino with my teeth. “We don’t understand it very well,” my neurologist said, his face blank. He could recommend no tests, no treatments, no other doctors. I came to understand that, for him, the term chronic fatigue syndrome meant “I can’t help you.” My neurologist’s understanding of the illness mirrored that of many doctors, who believe two things about CFS: that it’s probably psychosomatic and that there’s nothing doctors can do for it. One survey found that nearly half of doctors thought that CFS was or might be psychosomatic, and 58 percent said there wasn’t enough information available to help them diagnose it. An examination of medical textbooks found that CFS was underrepresented, even compared with less-prevalent illnesses.

Keyword: Movement Disorders; Aggression
Link ID: 20175 - Posted: 10.08.2014

By Gretchen Reynolds Encourage young boys and girls to run, jump, squeal, hop and chase after each other or after erratically kicked balls, and you substantially improve their ability to think, according to the most ambitious study ever conducted of physical activity and cognitive performance in children. The results underscore, yet again, the importance of physical activity for children’s brain health and development, especially in terms of the particular thinking skills that most affect academic performance. The news that children think better if they move is hardly new. Recent studies have shown that children’s scores on math and reading tests rise if they go for a walk beforehand, even if the children are overweight and unfit. Other studies have found correlations between children’s aerobic fitness and their brain structure, with areas of the brain devoted to thinking and learning being generally larger among youngsters who are more fit. But these studies were short-term or associational, meaning that they could not tease out whether fitness had actually changed the children’s’ brains or if children with well-developed brains just liked exercise. So for the new study, which was published in September in Pediatrics, researchers at the University of Illinois at Urbana-Champaign approached school administrators at public elementary schools in the surrounding communities and asked if they could recruit the school’s 8- and 9-year-old students for an after-school exercise program. This group was of particular interest to the researchers because previous studies had determined that at that age, children typically experience a leap in their brain’s so-called executive functioning, which is the ability to impose order on your thinking. Executive functions help to control mental multitasking, maintain concentration, and inhibit inappropriate responses to mental stimuli. © 2014 The New York Times Company

Keyword: ADHD; Aggression
Link ID: 20174 - Posted: 10.08.2014

By Virginia Morell Two years ago, scientists showed that dolphins imitate the sounds of whales. Now, it seems, whales have returned the favor. Researchers analyzed the vocal repertoires of 10 captive orcas (Orcinus orca), three of which lived with bottlenose dolphins (Tursiops truncatus) and the rest with their own kind. Of the 1551 vocalizations these seven latter orcas made, more than 95% were the typical pulsed calls of killer whales. In contrast, the three orcas that had only dolphins as pals busily whistled and emitted dolphinlike click trains and terminal buzzes, the scientists report in the October issue of The Journal of the Acoustical Society of America. (Watch a video as bioacoustician and co-author Ann Bowles describes the difference between killer whale and orca whistles.) The findings make orcas one of the few species of animals that, like humans, is capable of vocal learning—a talent considered a key underpinning of language. © 2014 American Association for the Advancement of Science.

Keyword: Language; Aggression
Link ID: 20173 - Posted: 10.08.2014

By CLAIRE MALDARELLI Whether it’s lying wide awake in the middle of the night or falling asleep at an international business meeting, many of us have experienced the funk of jet lag. New research has uncovered some of the mysteries behind how our cells work together to maintain one constant daily rhythm, offering the promise of defense against this disorienting travel companion. Many organisms, including humans and fruit flies, have pacemaker neurons — specialized cells in the brain that have their own molecular clocks and oscillate in 24-hour cycles. But in order for an organism to regulate itself, all of these internal clocks must tick together to create one master clock. While scientists understood how individual neurons set their own clock, they didn’t know how that master clock was set. Working with young fruit flies, whose neuronal system is simpler than adults with fewer cells and easier to study, the researchers found that two types of neurons, which they called dawn cells and dusk cells, maintain a continuous cycle. As the sun rises, special “timeless” proteins, as they’re called, help the dawn cells to first signal to each other and then signal to the dusk cells. Then as the sun sets, proteins help the dusk cells signal to each other and then signal back to the dawn cells. Each signal tells the cells to synchronize with each other. Together, these two distinct signals drive the daily sleep and wake cycle. “This really shifts our view of these cells as super strong, independent oscillators to much more of a collective group working together to keep time,” said Justin Blau, a neurobiologist at New York University and co-author of the study. © 2014 The New York Times Company

Keyword: Sleep; Aggression
Link ID: 20172 - Posted: 10.07.2014

|By Brian Bienkowski and Environmental Health News On his farm in Iowa, Matt Peters worked from dawn to dusk planting his 1,500 acres of fields with pesticide-treated seeds. “Every spring I worried about him,” said his wife, Ginnie. “Every spring I was glad when we were done.” In the spring of 2011, Ginnie Peters' “calm, rational, loving” husband suddenly became depressed and agitated. “He told me ‘I feel paralyzed’,” she said. “He couldn’t sleep or think. Out of nowhere he was depressed.” A clinical psychologist spoke to him on the phone and urged him to get medical help. “He said he had work to do, and I told him if it’s too wet in the morning to plant beans come see me,” Mike Rossman said. “And the next day I got the call.” Peters took his own life. He was 55 years old. No one knows what triggered Peters’ sudden shift in mood and behavior. But since her husband’s death, Ginnie Peters has been on a mission to not only raise suicide awareness in farm families but also draw attention to the growing evidence that pesticides may alter farmers’ mental health. “These chemicals that farmers use, look what they do to an insect. It ruins their nervous system,” Peters said. “What is it doing to the farmer?” Farming is a stressful job – uncontrollable weather, physical demands and economic woes intertwine with a personal responsibility for land that often is passed down through generations. But experts say that some of the chemicals used to control pests may make matters worse by changing farmers’ brain chemistry. © 2014 Scientific American

Keyword: Depression; Aggression
Link ID: 20171 - Posted: 10.07.2014

By Sarah C. P. Williams If you sailed through school with high grades and perfect test scores, you probably did it with traits beyond sheer smarts. A new study of more than 6000 pairs of twins finds that academic achievement is influenced by genes affecting motivation, personality, confidence, and dozens of other traits, in addition to those that shape intelligence. The results may lead to new ways to improve childhood education. “I think this is going to end up being a really classic paper in the literature,” says psychologist Lee Thompson of Case Western Reserve University in Cleveland, Ohio, who has studied the genetics of cognitive skills and who was not involved in the work. “It’s a really firm foundation from which we can build on.” Researchers have previously shown that a person’s IQ is highly influenced by genetic factors, and have even identified certain genes that play a role. They’ve also shown that performance in school has genetic factors. But it’s been unclear whether the same genes that influence IQ also influence grades and test scores. In the new study, researchers at King’s College London turned to a cohort of more than 11,000 pairs of both identical and nonidentical twins born in the United Kingdom between 1994 and 1996. Rather than focus solely on IQ, as many previous studies had, the scientists analyzed 83 different traits, which had been reported on questionnaires that the twins, at age 16, and their parents filled out. The traits ranged from measures of health and overall happiness to ratings of how much each teen liked school and how hard they worked. © 2014 American Association for the Advancement of Science

Keyword: Genes & Behavior; Aggression
Link ID: 20170 - Posted: 10.07.2014

By LAWRENCE K. ALTMAN A British-American scientist and a pair of Norwegian researchers were awarded this year’s Nobel Prize in Physiology or Medicine on Monday for discovering “an inner GPS in the brain” that enables virtually all creatures to navigate their surroundings. John O’Keefe, 75, a British-American scientist, will share the prize of $1.1 million with May-Britt Moser, 51, and Edvard I. Moser, 52, only the second married couple to win a Nobel in medicine, who will receive the other half. The three scientists’ discoveries “have solved a problem that has occupied philosophers and scientists for centuries — how does the brain create a map of the space surrounding us and how can we navigate our way through a complex environment?” said the Karolinska Institute in Sweden, which chooses the laureates. The positioning system they discovered helps us know where we are, find our way from place to place and store the information for the next time, said Goran K. Hansson, secretary of the Karolinska’s Nobel Committee. The researchers documented that certain cells are responsible for the higher cognitive function that steers the navigational system. Dr. O’Keefe began using neurophysiological methods in the late 1960s to study how the brain controls behavior and sense of direction. In 1971, he discovered the first component of the inner navigational system in rats. He identified nerve cells in the hippocampus region of the brain that were always activated when a rat was at a certain location. © 2014 The New York Times Company

Keyword: Learning & Memory
Link ID: 20169 - Posted: 10.07.2014

By Clare Wilson If you’re facing surgery, this may well be your worst nightmare: waking up while under the knife without medical staff realizing. The biggest-ever study of this phenomenon is shedding light on what such an experience feels like and is causing debate about how best to prevent it. For a one-year period starting in 2012, an anesthetist at every hospital in the United Kingdom and Ireland recorded every case where a patient told a staff member that he had been awake during surgery. Prompted by these reports, the researchers investigated 300 cases, interviewing the patient and doctors involved. One of the most striking findings, says the study’s lead author, Jaideep Pandit of Oxford University Hospitals, was that pain was not generally the worst part of the experience: It was paralysis. For some operations, paralyzing drugs are given to relax muscles and stop reflex movements. “Pain was something they understood, but very few of us have experienced what it’s like to be paralyzed,” Pandit says. “They thought they had been buried alive.” “I thought I was about to die,” says Sandra, who regained consciousness but was unable to move during a dental operation when she was 12 years old. “It felt as though nothing would ever work again — as though the anesthetist had removed everything apart from my soul.”

Keyword: Consciousness
Link ID: 20168 - Posted: 10.07.2014

Aaron E. Carroll For a drug to be approved by the Food and Drug Administration, it must prove itself better than a placebo, or fake drug. This is because of the “placebo effect,” in which patients often improve just because they think they are being treated with something. If we can’t compare a new drug with a placebo, we can’t be sure that the benefit seen from it is anything more than wishful thinking. But when it comes to medical devices and surgery, the requirements aren’t the same. Placebos aren’t required. That is probably a mistake. At the turn of this century, arthroscopic surgery for osteoarthritis of the knee was common. Basically, surgeons would clean out the knee using arthroscopic devices. Another common procedure was lavage, in which a needle would inject saline into the knee to irrigate it. The thought was that these procedures would remove fragments of cartilage and calcium phosphate crystals that were causing inflammation. A number of studies had shown that people who had these procedures improved more than people who did not. However, a growing number of people were concerned that this was really no more than a placebo effect. And in 2002, a study was published that proved it. A total of 180 patients who had osteoarthritis of the knee were randomly assigned (with their consent) to one of three groups. The first had a standard arthroscopic procedure, and the second had lavage. The third, however, had sham surgery. They had an incision, and a procedure was faked so that they didn’t know that they actually had nothing done. Then the incision was closed. The results were stunning. Those who had the actual procedures did no better than those who had the sham surgery. They all improved the same amount. The results were all in people’s heads. © 2014 The New York Times Company

Keyword: Pain & Touch
Link ID: 20167 - Posted: 10.07.2014

By Lisa Sanders, M.D. On Thursday, we challenged Well readers to solve the mystery of a 62-year-old man with severe neck pain that spread down his arm, a facial droop, and numbness on his torso. Nearly 200 of you wrote in, and 20 of you correctly diagnosed the patient. The correct diagnosis is… Lyme disease. And more precisely, the early disseminated form of Lyme disease with neurological involvement The first person with the correct answer was Dr. Arielle Hay, a pediatric rheumatologist in Miami, who nailed it just half an hour after the case was posted. Dr. Hay said that the biggest clue was the UConn letterhead. When combined with the odd neurological symptoms, this reminder of where the case took place brought Lyme disease to mind. Lyme disease is one of those diseases that hardly needs an explanation. It was first described in 1977, in a case series of 51 children and parents who had mysterious episodes of joint pain and swelling. The children were initially diagnosed with juvenile rheumatoid arthritis, but the clustering of cases eventually led the investigators, Dr. Allen Steere and Dr. Stephen Malawista, to consider an infectious disease. The illness was named after the Connecticut town where most of the initial cases were located. The disease is caused by a spirochete, a spiral shaped bacterium carried by the Ixodes tick, and usually presents first with a distinctive, expanding red rash (called erythema migrans) that appears at the site of the bite in the early, localized stage of the disease. It is thought that the rash appears in up to 80 percent of Lyme infections. © 2014 The New York Times Company

Keyword: Pain & Touch; Aggression
Link ID: 20166 - Posted: 10.07.2014

Fiona Fox Last week the UK Home Office published the findings of its investigations into allegations of animal suffering, made after undercover infiltrations at two animal research facilities. You will not find coverage of any of the conclusions in the national news media. Instead any search for media coverage will unearth the original infiltration stories under headlines such as: “Horrific video shows distress of puppies and kittens waiting to be dissected at animal testing lab”; “Graphic content: horrifying video shows puppies and kittens tested at UK laboratory”; and “Rats beheaded with scissors and kept in ‘pitiful state’.” These “shocking exposés”, brought to the newspapers by the animal rights group BUAV, include distressing images, links to videos that are difficult to watch, and quote allegedly secretly recorded researchers saying terrible things about the animals in their care. The newspapers seem in no doubt that the allegations they are carrying add up to “appalling suffering on a very large scale”, and appear to be proud of their role in bringing the abuses to light: “The Sunday Express today publishes details of an undercover investigation … that shines a light on the secret world of vivisection laboratories.” You may well see these articles as reassuring evidence that we still have public interest journalism in the UK. These animal rights supporters have done exactly what investigative journalists used to do in a time when newspapers had enough money to shine a light on the darker corners of our institutions and uncover hidden abuses. And you would be right, but for one thing: we now know that the stories were largely untrue. © 2014 Guardian News and Media Limited

Keyword: Animal Rights
Link ID: 20165 - Posted: 10.07.2014

|By Tori Rodriguez The safety of football continues to be a heated topic for players and parents, with mixed evidence regarding the effect of head injuries on mental illness. Past studies on the connection have often been methodologically flawed or yielded ambiguous results. Now a paper in April in the American Journal of Psychiatry, the largest study yet to investigate the link, finds that even a single head injury indeed increases the risk of later mental illness, especially if the injury occurs during adolescence. Using Danish medical registries, researchers led by physician Sonja Orlovska of the University of Copenhagen studied 113,906 people who had been hospitalized for head injuries over a 23-year period. They discovered that in addition to cognitive symptoms caused by structural damage to the brain (such as delirium), these people were subsequently more likely than the general population to develop several psychiatric illnesses. Risk increased by 65 percent for schizophrenia and 59 percent for depression. Risk was highest in the first year postinjury but remained significantly elevated throughout the next 15 years. After the team controlled for several potential confounders, such as accident proneness and a family history of psychiatric problems, they found the strongest injury-related predictor for later onset of schizophrenia, depression and bipolar disorder was a head trauma experienced between the ages of 11 and 15. “Previous studies have shown that head injury induces inflammation in the brain, which causes several changes—for example, an increased permeability of the blood-brain barrier,” Orlovska says. Normally the barrier protects the brain from potentially harmful contents in the bloodstream, but injury-induced inflammation may allow these substances access to the brain. “For some individuals, this might initiate damaging processes in the brain,” she says. © 2014 Scientific American,

Keyword: Brain Injury/Concussion; Aggression
Link ID: 20164 - Posted: 10.06.2014

By Gretchen Vogel Research on how the brain knows where it is has bagged the 2014 Nobel Prize in Physiology or Medicine, the Nobel Committee has announced from Stockholm. One half of the prize goes to John O'Keefe, director of the Sainsbury Wellcome Centre in Neural Circuits and Behaviour at University College London. The other is for a husband-wife couple: May-Britt Moser, who is director of the Centre for Neural Computation in Trondheim, and Edvard Moser, director of the Kavli Institute for Systems Neuroscience in Trondheim. "In 1971, John O´Keefe discovered the first component of this positioning system," the Nobel Committee says in a statement that was just released. "He found that a type of nerve cell in an area of the brain called the hippocampus that was always activated when a rat was at a certain place in a room. Other nerve cells were activated when the rat was at other places. O´Keefe concluded that these “place cells” formed a map of the room." "More than three decades later, in 2005, May‐Britt and Edvard Moser discovered another key component of the brain’s positioning system," the statement goes on to explain. "They identified another type of nerve cell, which they called “grid cells”, that generate a coordinate system and allow for precise positioning and pathfinding. Their subsequent research showed how place and grid cells make it possible to determine position and to navigate." © 2014 American Association for the Advancement of Science

Keyword: Learning & Memory
Link ID: 20163 - Posted: 10.06.2014

Alison Abbott The fact that Edvard and May-Britt Moser have collaborated for 30 years — and been married for 28 — has done nothing to dull their passion for the brain. They talk about it at breakfast. They discuss its finer points at their morning lab meeting. And at a local restaurant on a recent summer evening, they are still deep into a back-and-forth about how their own brains know where they are and will guide them home. “Just to walk there, we have to understand where we are now, where we want to go, when to turn and when to stop,” says May-Britt. “It's incredible that we are not permanently lost.” If anyone knows how we navigate home, it is the Mosers. They shot to fame in 2005 with their discovery of grid cells deep in the brains of rats. These intriguing cells, which are also present in humans, work much like the Global Positioning System, allowing animals to understand their location. The Mosers have since carved out a niche studying how grid cells interact with other specialized neurons to form what may be a complete navigation system that tells animals where they are going and where they have been. Studies of grid cells could help to explain how memories are formed, and why recalling events so often involves re-envisioning a place, such as a room, street or landscape. While pursuing their studies, the two scientists have become a phenomenon. Tall and good-looking, they operate like a single brain in two athletic bodies in their generously funded lab in Trondheim, Norway — a remote corner of northern Europe just 350 kilometres south of the Arctic Circle. They publish together and receive prizes as a single unit — most recently, the Nobel Prize in Physiology or Medicine, which they won this week with their former supervisor, neuroscientist John O’Keefe at University College London. In 2007, while still only in their mid-40s, they won a competition by the Kavli Foundation of Oxnard, California, to build and direct one of only 17 Kavli Institutes around the world. The Mosers are now minor celebrities in their home country, and their institute has become a magnet for other big thinkers in neuroscience. “It is definitely intellectually stimulating to be around them,” says neurobiologist Nachum Ulanovsky from the Weizmann Institute of Science in Rehovot, Israel, who visited the Trondheim institute for the first time in September. © 2014 Nature Publishing Grou

Keyword: Learning & Memory
Link ID: 20162 - Posted: 10.06.2014