Links for Keyword: Emotions

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 874

Angus Chen A common pain medication might make you go from "so cute!" to "so what?" when you look at a photo of an adorable kitten. And it might make you less sensitive to horrifying things too. It's acetaminophen, the active ingredient in Tylenol. Researchers say the drug might be taking the edge off emotions – not just pain. "It seems to take off the highs of your daily highs and the lows off your daily lows," says Baldwin Way, a psychologist at Ohio State University and the principal investigator on the study, "It kind of flattens out the vicissitudes of your life." The idea that over-the-counter pain pills might affect emotions has been circulating since 2010, when two psychologists, Naomi Eisenberger and Nathan DeWall, led a study showing that acetaminophen seemed to be having both a psychological and a neurological effect on people. They asked volunteers to play a rigged game that simulated social rejection. Not only did the acetaminophen appear to be deflecting social anxieties, it also seemed to be dimming activity in the insula, a region of the brain involved in processing emotional pain. A brain that can let other thoughts bubble up despite being in pain might help its owner benefit from meditation or other cognitive therapies. "But [the insula] is a portion of the brain that seems to be involved in a lot of things," Way says. In older studies, scientists saw that people with damage in their insula didn't react as strongly to either negative or positive images. So Way and one of his students, Geoffrey Durso, figured that if acetaminophen is doing something to the insula, then it might be having a wider effect, too. © 2015 NPR

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 5: The Sensorimotor System
Link ID: 20807 - Posted: 04.16.2015

By STEVEN QUARTZ and ANETTE ASP THE gaping inequality of America’s first Gilded Age generated strong emotions. It produced social reformers like Jane Addams, anarchist agitators like Emma Goldman, labor leaders like Eugene V. Debs and Progressive politicians like Theodore Roosevelt. By the 1920s, sweeping legislation regulating food and drugs and breaking up corrupt trusts had been passed. The road to the New Deal was paved. But our current Gilded Age has been greeted with relative complacency. Despite soaring inequality, worsened by the Great Recession, and recent grumbling about the 1 percent, Americans remain fairly happy. All of the wage gains since the downturn ended in 2009 have essentially gone to the top 1 percent, yet the proportion of Americans who say they are “thriving” has actually increased. So-called happiness inequality — the proportion of Americans who are either especially miserable or especially joyful — hit a 40-year low in 2010 by some measures. Men have historically been less happy than women, but that gap has disappeared. Whites have historically been happier than nonwhites, but that gap has narrowed, too. In fact, American happiness has not only stayed steady, but converged, since wages began stagnating in the mid-1970s. This is puzzling. It does not conform with economic theories that compare happiness to envy, and emphasize the impact of relative income for happiness — how we compare with the Joneses. A new neuroscience of consumer behavior reinforces our argument. In one experiment, we used functional magnetic resonance imaging (fMRI) to understand our brains’ reaction to perceived coolness. We selected students from the Art Center College of Design in Pasadena, Calif., and asked them to rate, from uncool to cool, hundreds of images from the following categories: bottled water, shoes, perfumes, handbags, watches, cars, chairs, personal electronics and sunglasses. We also included images of celebrities (actors and musicians). The cooler objects typically weren’t the more expensive ones: our subjects rated a Kia hatchback above a Buick sedan, for example. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20790 - Posted: 04.13.2015

Robin McKie, science editor A smile is the universal welcome, the writer Max Eastman once remarked. But how sure can we be that a person’s smile is genuine? The answer is the empathy test, created by psychologist Richard Wiseman, which probes our ability to appreciate the feelings of others – from their appearance. A photographer asks a subject to imagine meeting an individual they don’t like and to put on a fake smile. Later the subject sits with a real friend and as they converse, the photographer records their genuine smile. Thus two versions of their smile are recorded. The question is: how easy is it to tell the difference? “If you lack empathy, you are very bad at differentiating between the two photographs,” says Wiseman, who teaches at the University of Hertfordshire. But how do professions differ in their ability to spot a fake? And in particular, how do scientists and journalists score? Neither are particularly renowned for their empathy, after all. Last month’s Scientists Meet the Media party, for which the Observer is the media sponsor, gave Wiseman a perfect opportunity to compare the two professions. At the party, hosted by the Science Museum in London, some of Britain’s top researchers mingled with UK science journalists. About 150 guests were shown photographs of subjects with fake and genuine smiles. Guests were then asked to spot the false and the true. The results were intriguing. © 2015 Guardian News and Media Limited

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20785 - Posted: 04.11.2015

By JENEEN INTERLANDI Nyiregyhaza (pronounced NEAR-re-cha-za) is a medium-size city tucked into the northeastern corner of Hungary, about 60 miles from the Ukrainian border. It has a world-class zoo, several museums and universities and a new Lego Factory. It also has two Roma settlements, or “Gypsy ghettos.” The larger of these settlements is Gusev, a crumbling 19th-century military barracks separated from the city proper by a railway station and a partly defunct industrial zone. Gusev is home to more than 1,000 Roma. Its chief amenities include a small grocery store and a playground equipped with a lone seesaw and a swingless swing set. There’s also a freshly painted elementary school, where approximately 60 students are currently enrolled. Almost all those students are Roma and almost all of them live in Gusev. Officially, most of the schools in Nyiregyhaza are integrated. Roma students have access to the same facilities as non-Roma students, and the ethnic balance of any given facility largely reflects the ethnic balance of the neighborhoods it serves. In practice, things are muddier. While many families in Gusev have been assigned to perfectly reputable schools, there is no busing program, and most schools are not within walking distance. For families living on just 60,000 forints ($205) a month, the schools are also too expensive to reach by public transit. “Everything is fine on paper,” Adel Kegye, an attorney with the Chance for Children Foundation (C.F.C.F.), told me when I visited Hungary this past fall. “But in reality, they make it very hard for the Roma to go anywhere but the settlement school.” ..... In the past two decades, with the advent of f.M.R.I. technology, neuroscientists also began to tackle such questions. Emile Bruneau, a cognitive neuroscientist at the Massachusetts Institute of Technology, has spent the past seven years studying intractable conflicts around the world. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 20707 - Posted: 03.21.2015

Jon Hamilton Since his birth 33 years ago, Jonathan Keleher has been living without a cerebellum, a structure that usually contains about half the brain's neurons. This exceedingly rare condition has left Jonathan with a distinctive way of speaking and a walk that is slightly awkward. He also lacks the balance to ride a bicycle. But all that hasn't kept him from living on his own, holding down an office job and charming pretty much every person he meets. "I've always been more into people than anything else," Jonathan tells me when I meet him at his parents' house in Concord, Mass., a suburb of Boston. "Why read a book or why do anything when you can be social and talk to people?" Jonathan is also making an important contribution to neuroscience. By allowing scientists to study him and his brain, he is helping to change some long-held misconceptions about what the cerebellum does. And that, in turn, could help the hundreds of thousands of people whose cerebellums have been damaged by a stroke, infection or disease. For decades, the cerebellum has been the "Rodney Dangerfield of the brain," says Dr. Jeremy Schmahmann, a professor of neurology at Harvard and Massachusetts General Hospital. It gets no respect because most scientists only know about its role in balance and fine motor control. © 2015 NPR

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20697 - Posted: 03.17.2015

By Nicholas Bakalar People sometimes take Valium or Ativan to relieve anxiety before surgery, but a new study suggests that these benzodiazepine drugs have little beneficial effect and may even delay recovery. Researchers studied 1,062 patients admitted to French hospitals for surgery requiring general anesthesia. A third took 2.5 milligrams of lorazepam (brand name Ativan), a third received a placebo, and a third were given no premedication. Patients completed questionnaires assessing anxiety, pain levels and quality of sleep before and a day after their operations, while researchers recorded their time to having ventilation tubes removed and to recovering full wakefulness. The study was published in JAMA. Lorazepam was associated with more postsurgery amnesia and a longer time to recover cognitive abilities. Quality of sleep was impaired in the lorazepam group, but not in the others. And ventilation tubes were kept in significantly longer in the lorazepam group. Pain scores did not differ between the lorazepam and the no-medication groups, but there was more pain in the group given the placebo. The lead author, Dr. Axel Maurice-Szamburski, an anesthesiologist at Timone Hospital in Marseille, cited recent surveys showing that benzodiazepines are widely prescribed before surgery. “But until now,” he added, “sedatives have not been evaluated from the patient’s point of view. It’s the patient who should be happy, not the doctor.” © 2015 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 20676 - Posted: 03.10.2015

By JULIE HOLLAND WOMEN are moody. By evolutionary design, we are hard-wired to be sensitive to our environments, empathic to our children’s needs and intuitive of our partners’ intentions. This is basic to our survival and that of our offspring. Some research suggests that women are often better at articulating their feelings than men because as the female brain develops, more capacity is reserved for language, memory, hearing and observing emotions in others. These are observations rooted in biology, not intended to mesh with any kind of pro- or anti-feminist ideology. But they do have social implications. Women’s emotionality is a sign of health, not disease; it is a source of power. But we are under constant pressure to restrain our emotional lives. We have been taught to apologize for our tears, to suppress our anger and to fear being called hysterical. The pharmaceutical industry plays on that fear, targeting women in a barrage of advertising on daytime talk shows and in magazines. More Americans are on psychiatric medications than ever before, and in my experience they are staying on them far longer than was ever intended. Sales of antidepressants and antianxiety meds have been booming in the past two decades, and they’ve recently been outpaced by an antipsychotic, Abilify, that is the No. 1 seller among all drugs in the United States, not just psychiatric ones. As a psychiatrist practicing for 20 years, I must tell you, this is insane. At least one in four women in America now takes a psychiatric medication, compared with one in seven men. Women are nearly twice as likely to receive a diagnosis of depression or anxiety disorder than men are. For many women, these drugs greatly improve their lives. But for others they aren’t necessary. The increase in prescriptions for psychiatric medications, often by doctors in other specialties, is creating a new normal, encouraging more women to seek chemical assistance. Whether a woman needs these drugs should be a medical decision, not a response to peer pressure and consumerism. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 20639 - Posted: 03.02.2015

|By Matthew Hutson We like to think of our moral judgments as consistent, but they can be as capricious as moods. Research reveals that such judgments are swayed by incidental emotions and perceptions—for instance, people become more moralistic when they feel dirty or sense contamination, such as in the presence of moldy food. Now a series of studies shows that hippies, the obese and “trailer trash” suffer prejudicial treatment because they tend to elicit disgust. Researchers asked volunteers to read short paragraphs about people committing what many consider to be impure acts, such as watching pornography, swearing or being messy. Some of the paragraphs described the individuals as being a hippie, obese or trailer trash—and the volunteers judged these fictional sinners more harshly, according to the paper in the Journal of Experimental Psychology: General. Questionnaires revealed that feelings of disgust toward these groups were driving the volunteers' assessments. A series of follow-up studies solidified the link, finding that these groups also garnered greater praise for purity-related virtues, such as keeping a neat cubicle. If the transgression in question did not involve purity, such as not tipping a waiter, the difference in judgment disappeared. “The assumption people have is that we draw on values that are universal and important,” says social psychologist E. J. Masicampo of Wake Forest University, who led the study, “but something like mentioning that a person is overweight can really push that judgment around. It's triggering these gut-level emotions.” The researchers also looked for real-world effects. © 2015 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 14: Attention and Consciousness
Link ID: 20622 - Posted: 02.26.2015

Julie Beck When Paul Ekman was a grad student in the 1950s, psychologists were mostly ignoring emotions. Most psychology research at the time was focused on behaviorism—classical conditioning and the like. Silvan Tomkins was the one other person Ekman knew of who was studying emotions, and he’d done a little work on facial expressions that Ekman saw as extremely promising. “To me it was obvious,” Ekman says. “There’s gold in those hills; I have to find a way to mine it.” For his first cross-cultural studies in the 1960s, he traveled around the U.S., Chile, Argentina, and Brazil. In each location, he showed people photos of different facial expressions and asked them to match the images with six different emotions: happiness, sadness, anger, surprise, fear, and disgust. “There was very high agreement,” Ekman says. People tended to match smiling faces with “happiness,” furrow-browed, tight-lipped faces with “anger,” and so on. But these responses could have been influenced by culture. The best way to test whether emotions were truly universal, he thought, would be to repeat his experiment in a totally remote society that hadn’t been exposed to Western media. So he planned a trip to Papua New Guinea, his confidence bolstered by films he’d seen of the island’s isolated cultures: “I never saw an expression I wasn’t familiar with in our culture,” he says. Once there, he showed locals the same photos he’d shown his other research subjects. He gave them a choice between three photos and asked them to pick images that matched various stories (such as “this man’s child has just died”). Adult participants chose the expected emotion between 28 and 100 percent of the time, depending which photos they were choosing among. (The 28 percent was a bit of an outlier: That was when people had to choose between fear, surprise, and sadness. The next lowest rate was 48 percent.) © 2014 by The Atlantic Monthly Group.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20619 - Posted: 02.26.2015

Berit Brogaard On popular websites, we read headlines such as “Scientists are finding that love really is a chemical addiction between people.” Love, of course, is not literally a chemical addiction. It’s a drive perhaps, or a feeling or an emotion, but not a chemical addiction or even a chemical state. Nonetheless, romantic love, no doubt, often has a distinct physiological, bodily, and chemical profile. When you fall in love, your body chemicals go haywire. The exciting, scary, almost paranormal and unpredictable elements of love stem, in part, from hyper-stimulation of the limbic brain’s fear center known as the amygdala. It’s a tiny, almond-shaped brain region in the temporal lobe on the side of your head. In terms of evolutionary history, this brain region is old. It developed millions of years before the neocortex, the part of the brain responsible for logical thought and reasoning. While it has numerous biological functions, the prime role of the amagdala is to process negative emotional stimuli. Significant changes to normal amygdala activation are associated with serious psychological disorders. For example, human schizophrenics have significantly less activation in the amygdala and the memory system (the hippocampus), which is due to a substantial reduction in the size of these areas. People with depression, anxiety, and attachment insecurity, on the other hand, have significantly increased blood flow in the amygdala and memory system. Neuroscientist Justin Feinstein and his colleagues (2010) studied a woman whose amygdala was destroyed after a rare brain condition. They exposed her to pictures of spiders and snakes, took her on a tour of the world’s scariest haunted house, and had her take notes about her emotional state when she heard a beep from a random beeper that had been attached to her. After three months of investigation, the researchers concluded that the woman could not experience fear. This is very good evidence for the idea that the amygdala is the main center for fear processing. (The chief competing hypothesis is that fear is processed in a brain region that receives its main information from the amygdala.) © 2015 Salon Media Group, Inc.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 20586 - Posted: 02.16.2015

By Jane E. Brody Bereavement — how one responds and adjusts to the death of a loved one — is a very individual matter. It is natural to experience a host of negative reactions in the weeks and months following the loss of a loved one: among them, sadness, difficulty sleeping, painful reminders of the person, difficulty enjoying activities once shared, even anger. Grief is a normal human reaction, not a disease, and there is no one right way to get through it. Most often, within six months of a death, survivors adjust and are more or less able to resume usual activities, experience joy, and remember their loved ones without intense pain. But sometimes, even when the loss is neither sudden nor unexpected, as is true in the majority of deaths in the United States, survivors close to the deceased can experience extremely disruptive grief reactions that persist far longer. In a report last month in The New England Journal of Medicine, Dr. M. Katherine Shear presents a composite portrait of what is known as complicated grief, an extreme, unrelenting reaction to loss that persists for more than six months and can result in a serious risk to health. She describes a 68-year-old widow who continued to be seriously impaired by grief four years after her husband died. The woman slept on the couch because she could not bear to sleep in the bed she had shared with him. She found it too painful to engage in activities they used to do together. She no longer ate regular meals because preparing them was a too-distressing reminder of her loss. And she remained alternately angry with the medical staff who cared for him and with herself for not recognizing his illness earlier. Symptoms of complicated grief commonly include intense yearning, longing or emotional pain; frequent preoccupying, intrusive thoughts and memories of the person lost; a feeling of disbelief or inability to accept the loss; and difficulty imagining a meaningful life without that person. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 20580 - Posted: 02.16.2015

By Devin Powell Dog owners may think their pets can tell a smile from a frown, but scientific evidence has been lacking. Now, researchers have trained dogs from a variety of breeds to look at a pair of photos arranged side by side—one showing the upper half of a woman’s face looking happy and the other showing the upper half of the same woman’s face looking angry—and pick out the happy expression by touching their snouts to it (pictured). When then shown the lower halves of the faces or pieces of other people’s faces, the perceptive pooches could still easily discern happy from angry. Another group of canines similarly learned to identify angry faces. Dogs in a previous study that distinguished expressions on whole faces could have done so using simple visual clues that reappeared in every face: the white of teeth in a smile, for instance, or creases in angry skin. Identifying emotions from photos of different parts of the face requires a more holistic understanding of expression, argue the authors of the new study, published online today in Current Biology. While primates are known to recognize faces, dogs may have been especially adapted for emotional sensitivity to humans during their domestication. The researchers plan to investigate how common this ability is by testing pigs and other animals. © 2015 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20570 - Posted: 02.13.2015

by Penny Sarchet It's a familiar sight: a flock of birds flying overhead in a classic V-formation, each saving energy by stealing lift from the bird flying ahead. But what's in it for the bird out front? For northern bald ibises, it's all about taking turns. The leading bird soon swaps places with the bird immediately behind it, in a rare example of a phenomenon called reciprocal altruism. To understand how birds cooperate in flight, Bernhard Voelkl at the University of Oxford and his team tagged every ibis in a group of 14 with high-precision GPS data loggers, allowing them to measure each individual's position in relation to the rest of the flock. They found that individual birds changed positions frequently, and were only in an aerodynamically helpful position about a third of the time. Most of these formations comprised just two birds sharing duties equally. "For whichever combination of two birds we looked at, we saw that the time bird A was flying in front of bird B matched closely the time bird B was flying in front of bird A," says Voelkl. And this wasn't just an average over the 39 kilometres that the flock flew – Voelkl's team frequently observed swaps within a pair happening within seconds, with the leader moving back behind the same bird for a similarly timed spell of following. "This immediacy of the reciprocation reduces the opportunity for cheating," says Voelkl. "Direct swaps also mean that you do not have to memorise who is 'owing' you leading time, so doesn't require a lot of memory." © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20545 - Posted: 02.03.2015

By Nicholas Weiler If you find people watching oddly compelling, you’re not alone. A new study suggests that gregarious European starlings (Sturnus vulgaris) get a kick out of looking at their fellow birds, even if it’s just on a computer screen. Researchers took 10 captive starlings from their flock and isolated them for 4 days in a cage with plenty of food and water and a large flat-screen monitor. Most of the birds quickly discovered that poking their beaks into one sensor in the cage flashed a life-size photograph of an unknown starling onto the screen, while a second sensor produced a picture of a suburban landscape. The lonely birds seemed to enjoy looking at other starlings, the researchers found. On average, they triggered a new starling photo every 6 minutes, 7 hours a day, for 4 days. They only threw in a landscape every 20 minutes or so. It wasn’t just that the landscapes were boring. Given the choice between photos of starlings and photos of monkeys, a second group of five birds also pecked to view their own kind three times more often. The results suggest starlings have a natural yearning for social stimulation, the authors report online this month in Animal Cognition. In the future, starlings’ drive to view photos of one another could be used to study the social rewards that knit communities together. © 2015 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20529 - Posted: 01.29.2015

|By Daniel Yudkin Imagine you are with some friends at a concert, and the bouncer approaches the group and says that, because you are all looking so ravishing tonight, he’s been instructed to offer one of you—just one!—a backstage pass to meet the artist. Do you raise your hand? For most people, this would be a no-brainer: who wouldn’t leap at the chance to meet a famous singer or secure a long-sought autograph? The results of a recent study, published in Psychological Science by Gus Cooney, Daniel Gilbert, and Timothy Wilson, however, suggest taking a second’s pause before snapping up that backstage pass. Cooney, Gilbert, and Wilson suspected that extraordinary experiences—like meeting a musical idol—carry hidden costs. They hypothesized that, while such occurrences undoubtedly make us happier in the moment, they also risk separating us from our peers, leading to a sense of isolation so unpleasant as to outweigh whatever enjoyment they initially confer. To test this idea, the researchers recruited subjects in groups of four and had them watch a video clip. Of the group, three were told that they would watch a clip that previous viewers had given a 2-star rating; the remaining subject, by contrast, was granted the opportunity to view a special 4-star clip. After watching the videos, all four subjects were given some time to talk amongst themselves, and then each reported on their general happiness. © 2015 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20527 - Posted: 01.28.2015

/ by Tanya Lewis, LiveScience You know the feeling: the dryness in the mouth, the stickiness in the throat and the creeping salivation — thirst. But what causes feelings of thirst in the brain? In a new study, scientists used laser light to activate groups of neurons in the brains of mice. By targeting specific neuron groups, the scientists could make the animals drink even if they weren't thirsty, and stop drinking even if they were thirsty. Understanding how the brain causes feelings of thirst could help scientists learn what goes awry in disorders that make people drink too much or too little fluid, researchers say. "Thirst has attracted a lot of interest because it is such a basic function for all organisms," said Yuki Oka, a neuroscientist currently at the California Institute of Technology and co-author of the study published today (Jan. 26) in the journal Nature. Before this study, scientists knew which brain regions were activated by dehydration and hydration. "But key information was missing as to which were controlling thirst," Oka told Live Science. In the new study, Oka and a team of colleagues at Columbia University used a technique called optogenetics to pinpoint the origin of thirst impulses in the brains of mice. The researchers injected the mouse brains with a virus that made certain cells sensitive to laser light, and when scientists shone the laser on those cells, it caused them to turn nerve impulses "on" or "off." © 2015 Discovery Communications, LLC.

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20525 - Posted: 01.28.2015

By Rachel Feltman Fear is one of our most basic evolutionary instincts, a sudden physical jolt to help us react to danger more quickly. In the modern world, fear often seems excessive -- in the absence of wild animals to flee, we're left screaming over roller coasters and scary movies. But for at least one woman, fear is unobtainable. And while she lives a normal life, her fearlessness is actually a handicap. The researchers who study her keep her closely guarded, using the code-name "SM" when publishing papers about her brave brainpower. And until this year, she'd never been interviewed. "Tell me what fear is," Tranel began. "Well, that's what I'm trying to -- to be honest, I truly have no clue," SM said, her voice raspy. That's actually a symptom of the condition that stole fear from her. Urbach-Wieth disease, which is characterized by a hoarse voice, small bumps around the eyes, and calcium deposits in the brain is rare in its own right -- only 400 people on the planet are known to have it -- but in SM's case, some of those brain-deposits happened to take over her amygdalae. These almond-shaped structures deep inside the brain are crucial to human fear response. And in SM's case, they've been totally calcified since she was a young woman. Now in her 40s, her fear-center is as good as gone. "It's a little bit as if you would go to this region and literally scoop it out," Antonio Damasio, another neuroscientist who studies SM, told "Invisibilia" hosts Lulu Miller and Alix Spiegel.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20504 - Posted: 01.21.2015

By Tia Ghose Being around strangers can cause people stress and, in turn, make them less able to feel others' pain, new research suggests. But giving people a drug that blocks the body's stress response can restore that sense of empathy, scientists said. What's more, the same effect shows up in both humans and mice. "In some sense, we've figured out what to do about increasing empathy as a practical matter," said Jeffrey Mogil, a neuroscientist at McGill University in Montreal. "We've figured out what stops it from happening and, therefore, the solution to make it happen more between strangers." Decreasing stress by doing a shared activity could be a simple way to increase empathy between people who don't know each other, the findings suggest. Past studies had found that mice seemed to feel the pain of familiar mice but were less responsive to foreign mice. Other studies found that, in both humans and mice, stress levels tended to rise around strangers. To see how stress and empathy are connected, Mogil and his colleagues placed two mice together in a cage, then inflicted a painful stimulus on one of them. When the mice were cage mates, the unaffected mouse showed more signs of pain than when they were strangers. But when the team gave the mice a drug called metyrapone, which blocks the formation of the stress hormone cortisol, the mice responded equally to the strangers' pain.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20491 - Posted: 01.17.2015

by Bethany Brookshire Drugs that treat anxiety can be real downers. While they may help you feel less anxious, drugs such as Valium and Xanax can leave you drowsy and unfocused. Long-term use of these compounds, a class of drugs called the benzodiazepines, can lead to dependence and tolerance. And patients often need higher and higher doses to calm their anxiety. Getting off the drugs requires careful weaning to avoid insomnia, tremors and other nasty withdrawal effects. But Subhashis Banerjee and colleagues at the Scripps Research Institute in Jupiter, Fla., have identified a potential new target for anti-anxiety drugs that avoids the drowsiness and other side effects that come with the standard treatments. The target is an integral part of the body’s internal clock, and in tests in mice, compounds aimed at it reduced measures of anxiety while keeping the mice awake. The possibilities show how basic science questions, such as how the body produces sleep and internal rhythms, could have clinical applications. But it’s important to remember that it’s a long way between mice and people. The proteins REV-ERB alpha and REV-ERB beta are found in cell nuclei throughout the body. These proteins are receptors that sense levels of heme, subsections of chemicals in the body containing iron atoms. Levels of heme rise and fall based on a cell’s activity. REV-ERB responds to these heme level changes by controlling the activation of genes within the cell’s nucleus that govern the cell’s 24-hour internal clock. This circadian rhythm plays an important role in controlling our sleep. © Society for Science & the Public 2000 - 2015.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 10: Biological Rhythms and Sleep
Link ID: 20489 - Posted: 01.15.2015

By Nicholas Weiler A friend can make even the shiest creature bold. Rats usually fear strange open spaces, but having a companion by their side makes the rodents more intrepid, scientists report in the current issue of Animal Cognition. Researchers tracked rats’ exploration of a large, unfamiliar room, first alone, then again 2 days later either alone or paired with a familiar cagemate. On their own, rats made short, hesitant forays into the open space before darting back to huddle by the door. Solitary rats’ anxiety in the room didn’t improve on their second visit. But adding a friend, even one who’d never seen the room before, gave the pair the confidence to actively explore, covering 50% more ground and running significantly faster than the control rats. And exploring with company seemed to boost the rats’ sense of security permanently. Placed in the room a third time, once more alone, the socialized rats boldly explored more new places than ever, while solo rats continued to cower. This illustrates that for communal animals like rats—and perhaps humans—friendship can be the best antidote to fear. © 2015 American Association for the Advancement of Scienc

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20462 - Posted: 01.10.2015