Links for Keyword: Evolution

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 728

Carl Zimmer Modern humans evolved in Africa roughly 200,000 years ago. But how did our species go on to populate the rest of the globe? The question, one of the biggest in studies of human evolution, has intrigued scientists for decades. In a series of extraordinary genetic analyses published on Wednesday, researchers believe they have found an answer. In the journal Nature, three separate teams of geneticists survey DNA collected from cultures around the globe, many for the first time, and conclude that all non-Africans today trace their ancestry to a single population emerging from Africa between 50,000 and 80,000 years ago. “I think all three studies are basically saying the same thing,” said Joshua M. Akey of the University of Washington, who wrote a commentary accompanying the new work. “We know there were multiple dispersals out of Africa, but we can trace our ancestry back to a single one.” The three teams sequenced the genomes of 787 people, obtaining highly detailed scans of each. The genomes were drawn from people in hundreds of indigenous populations: Basques, African pygmies, Mayans, Bedouins, Sherpas and Cree Indians, to name just a few. The DNA of indigenous populations is essential to understanding human history, many geneticists believe. Yet until now scientists have sequenced entire genomes from very few people outside population centers like Europe and China. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 22682 - Posted: 09.22.2016

Laurel Hamers The brains of human ancestors didn’t just grow bigger over evolutionary time. They also amped up their metabolism, demanding more energy for a given volume, a new study suggests. Those increased energy demands might reflect changes in brain structure and organization as cognitive abilities increased, says physiologist Roger Seymour of the University of Adelaide in Australia, a coauthor of the report, published online August 31 in Royal Society Open Science. Blood vessels passing through bones leave behind holes in skulls; bigger holes correspond to bigger blood vessels. And since larger vessels carry more blood, scientists can use hole size to estimate blood flow in extinct hominids’ brains. Blood flow in turn indicates how much energy the brain consumed. (In modern humans, the brain eats up 20 to 25 percent of the energy the body generates when at rest.) Seymour and colleagues focused on the carotid arteries, the vessels that deliver the bulk of the brain’s blood. The team looked at nearly three dozen skulls from 12 hominid species from the last 3 million years, including Australopithecus africanus, Homo neanderthalensis and Homo erectus. In each, the researchers compared the brain’s overall volume with the diameter of the carotid artery’s tiny entrance hole at the base of the skull. “We expected to find that the rate of blood flow was proportional to the brain size,” Seymour says. “But we found that wasn’t the case.” Instead, bigger brains required more blood flow per unit volume than smaller brains. |© Society for Science & the Public 2000 - 2016.

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 22616 - Posted: 08.31.2016

By Lydia Pyne | On August 3, 1908, the first near-complete Neanderthal skeleton was discovered in a cave near the village of La Chapelle-aux-Saints in south central France, during a survey of the region’s Paleolithic archaeological sites. For decades prior, prehistorians had collected bits and pieces of curious but not-quite-human fossils from museums and excavations alike—the odd skull here, a scrap of tooth there. In 1863, the mélange of bones was finally given its own species designation, Homo neanderthalensis. Forty-five years later, the La Chapelle discovery was the first Neanderthal specimen found in an original archaeological context and the first to be expertly excavated and carefully studied. Because the body was arranged in a flexed, fetal position and carefully placed in the floor of the cave, excavators argued that fossil—nicknamed the Old Man—had been purposefully buried by his Neanderthal contemporaries. More than any other single individual, the Old Man of La Chapelle has shaped the way that science and popular culture have thought about Neanderthals. But why? What is it about this Neanderthal’s story that is so special? In short, the Old Man was the right fossil found at the right time. He was—and still is—offered as a key bit of evidence in debates about evolution and human origins. He quickly became a scientific touchstone, an archetype for how science and popular culture create celebrity fossils. I explore the stories of similarly spectacular paleoanthropological finds in my new book Seven Skeletons: The Evolution of the World’s Most Famous Human Fossils. © 1986-2016 The Scientist

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 22585 - Posted: 08.23.2016

By Katherine S. Pollard When the first human genome sequence was published in 2001,1 I was a graduate student working as the statistics expert on a team of scientists. Hailing from academia and biotechnology, we aimed to discover differences in gene expression levels between tumors and healthy cells. Like many others, I had high hopes for what we could do with this enormous text file of more than 3 billion As, Cs, Ts, and Gs. Ambitious visions of a precise wiring diagram for human cells and imminent cures for disease were commonplace among my classmates and professors. But I was most excited about a different use of the data, and I found myself counting the months until the genome of a chimpanzee would be sequenced. Chimps are our closest living relatives on the tree of life. While their biology is largely similar to ours, we have many striking differences, ranging from digestive enzymes to spoken language. Humans also suffer from an array of diseases that do not afflict chimpanzees or are less severe in them, including autism, schizophrenia, Alzheimer’s disease, diabetes, atherosclerosis, AIDS, rheumatoid arthritis, and certain cancers. I had long been fascinated with hominin fossils and the way the bones morphed into different forms over evolutionary time. But those skeletons cannot tell us much about the history of our immune system or our cognitive abilities. So I started brainstorming about how to extend the statistical approaches we were using for cancer research to compare human and chimpanzee DNA. My immodest goal was to identify the genetic basis for all the traits that make humans unique. © 1986-2016 The Scientist

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22502 - Posted: 08.02.2016

By Lizzie Wade Neandertals and modern humans had a lot in common—at least enough to have babies together fairly often. But what about their brains? To answer that question, scientists have looked at how Neandertal and modern human brains developed during the crucial time of early childhood. In the first year of life, modern human infants go through a growth spurt in several parts of the brain: the cerebellum, the parietal lobes, and the temporal lobes—key regions for language and social interaction. Past studies suggested baby Neandertal brains developed more like the brains of chimpanzees, without concentrated growth in any particular area. But a new study casts doubt on that idea. Scientists examined 15 Neandertal skulls, including one newborn and a pair of children under the age of 2. By carefully imaging the skulls, the team determined that Neandertal temporal lobes, frontal lobes, and cerebellums did, in fact, grow faster than the rest of the brain in early life, a pattern very similar to modern humans, they report today in Current Biology. Scientists had overlooked that possibility, the researchers say, because Neandertals and Homo sapiens have such differently shaped skulls. Modern humans’ rounded skull is a telltale marker of the growth spurt, for example, whereas Neandertals’ skulls were relatively flat on the top. If Neandertals did, in fact, have fast developing cerebellums and temporal and frontal lobes, they might have been more skilled at language and socializing than assumed, scientists say. This could in turn explain how the children of Neandertal–modern human pairings fared well enough to pass down their genes to so many us living today. © 2016 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22473 - Posted: 07.26.2016

By Bret Stetka Beloved crank and Seinfeld co-creator Larry David once told an interviewer that he tolerates people like he tolerates lactose — which is to say, I'm assuming, not well. David's particular degree of grumpiness might be extreme, and perhaps embellished in the interest his shtick, but his social misgivings echo those of many in their dotage who’d rather spend time with old friends than deal with the sweat and small talk required to go out and make new ones. Humans may not be alone here. According to new research, our primate cousins also become more socially selective with age, preferring the companionship of their “friends” to monkeys that are less familiar (or maybe just a drag at parties). The findings also hint at a possible evolutionary explanation for why our social preferences change over the years. The work, conducted primarily by researchers from the German Primate Center in Göttingen, Germany, was recently published in the journal Current Biology and entailed observing the behaviors of over 100 Barbary macaque monkeys, an out-going, some might say "screechy," species hailing from North Africa. To get a sense of how interest in non-social vs social stimulation changes over the course of their lifetimes, monkeys of varying ages were observed in the presence of both inanimate objects and other monkeys. They were first presented with three novel objects: animal toys, a see-through cube filled with glitter in a viscous liquid, and a tube baited with food. Those that had reached early adulthood were not interested in the objects without a reward. The younger ones were intrigued by all three. © 2016 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 22396 - Posted: 07.05.2016

By NATALIE ANGIER At birth, the least weasel is as small and light as a paper clip, and the tiny ribs that press visibly against its silvery pink skin give it a segmented look, like that of an insect. A newborn kit is exceptionally underdeveloped, with sealed eyes and ears that won’t open for five or six weeks, an age when puppies and kittens are ready to be weaned. A mother weasel, it seems, has no choice but to deliver her young half-baked. As a member of the mustelid clan — a noble but often misunderstood family of carnivorous mammals that includes ferrets, badgers, minks and wolverines — she holds to a slender, elongated body plan, the better to pursue prey through tight spaces that most carnivores can’t penetrate. Bulging baby bumps would jeopardize that sylphish hunting physique. The solution? Give birth to the equivalent of fetuses and then finish gestating them externally on mother’s milk. “If you want access to small environments, you can’t have a big belly,” said William J. Zielinski, a mustelid researcher with the United States Forest Service in Arcata, Calif. “You don’t see fat weasels.” For Dr. Zielinski and other mustelid-minded scientists, weasels exemplify evolutionary genius and compromise in equal measure, the piecing together of exaggerated and often contradictory traits to yield a lineage of fierce, fleet, quick-witted carnivores that can compete for food against larger celebrity predators like the big cats, wolves and bears. Researchers admit that wild mustelids can be maddening to study. Most species are secretive loners, shrug off standard radio collars with ease, and run close to the ground “like small bolts of brown lightning,” as one team noted. Now you see them, no, you didn’t. Nevertheless, through a mix of dogged field and laboratory studies, scientists have lately made progress in delineating the weasel playbook, and it’s a page turner, or a page burner. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 22321 - Posted: 06.14.2016

By Devi Shastri Calling someone a “bird brain” might not be the zinger of an insult you thought it was: A new study shows that—by the total number of forebrain neurons—some birds are much brainier than we thought. The study, published online today in the Proceedings of the National Academy of Sciences, found that 28 bird species have more neurons in their pallial telencephalons, the brain region responsible for higher level learning, than mammals with similar-sized brains. Parrots and songbirds in particular packed in the neurons, with parrots (like the gray parrot, above) ranging from 227 million to 3.14 billion, and songbirds—including the notoriously intelligent crow—from 136 million to 2.17 billion. That’s about twice as many neurons as primates with brains of the same mass and four times as many as rodent brains of the same mass. To come up with their count, the researchers dissected the bird brains and then dissolved them in a detergent solution, ensuring that the cells were suspended in what neuroscientist Suzana Herculano-Houzel of Vanderbilt University in Nashville calls “brain soup.” This allowed them to label, count, and estimate how many neurons were in a particular brain region. The region that they focused on allows some birds to hone skills like tool use, planning for the future, learning birdsong, and mimicking human speech. One surprising finding was that the neurons were much smaller than expected, with shorter and more compact connections between cells. The team’s next step is to examine whether these neurons started out small or instead shrank in order to keep the birds light enough for flights. One thing, at least, is clear: It’s time to find a new insult for your less brainy friends. © 2016 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 22315 - Posted: 06.14.2016

By C. CLAIBORNE RAY Q. Does the size of an animal’s brain really correlate with intelligence on a species-by-species basis? A. “It’s not necessarily brain size but rather the ratio of brain size to body size that really tells the story,” said Rob DeSalle, a curator at the Sackler Institute for Comparative Genomics at the American Museum of Natural History. Looking at this ratio over a large number of vertebrate animals, he said, scientists have found that “brain size increases pretty linearly with body size, except for some critical species like Homo sapiens and some cetaceans,” the order of mammals that includes whales, dolphins and porpoises. “So if there is a deviation from this general ratio, one can predict how smart a vertebrate might be,” Dr. DeSalle continued. Therefore, living vertebrates that deviate so that their brains are inordinately bigger compared with their bodies are for the most part smarter, he said. As for dinosaurs, he said, scientists really can’t tell how smart they may have been. “But the Sarmientosaurus, with its lime-sized brain, was a big animal, so the extrapolation is that it would have been pretty dense,” he said. “On the other hand, Troodon, a human-sized dinosaur, had a huge brain relative to its body size and is widely considered the smartest dinosaur ever found.” © 2016 The New York Times Company

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 22261 - Posted: 05.30.2016

By Emily Benson Baby birds are sometimes known to shove their siblings out of the nest to gain their parents’ undivided attention, but barn owl chicks appear to be more altruistic. Scientists recorded the hissing calls of hungry and full barn owl nestlings (Tyto alba, pictured), then played the sounds back to single chicks settled in nests stocked with mice. The young owls that heard the squawks of their hungry kin delayed eating each rodent by an average of half an hour; those that heard cries indicating their invisible nest-mate was full ate the mice more quickly. The findings suggest that barn owl chicks give hungrier siblings a chance to eat first even when the nest is full of food, the researchers will report in an upcoming issue of Behavioral Ecology and Sociobiology. So is it true altruism? Maybe not. Nestlings may share food in exchange for help with grooming or to get the first crack at a later meal, the team says, suggesting a possible ulterior motive. © 2016 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 22174 - Posted: 05.04.2016

By Sarah Kaplan We know where the human story started: In Africa, millions of years ago, with diminutive people whose brains were just a third of the size of ours. And we know where it ended: with us. Yet a lot of what happened in between is still debated, including the question of how humans' bodies and noggins got so much bigger than our ancestors'. The traditional thinking is that the growth of both was spurred by the process of natural selection. The evolutionary advantages of a big body and a big brain are plentiful, so it seems reasonable to think that each developed independent of the other in response to the demands of survival in a hostile world. But a new study in the journal Current Anthropology suggests that, while our brains are certainly an advantageous adaptation, our imposing physiques (such as they are) are more of an evolutionary fluke. That's because the genes that determine brain and body size are the same, argues Mark Grabowski, a fellow at the American Museum of Natural History. So as humans evolved bigger and bigger brains, our bodies "just got pulled along." Grabowski acknowledges that it may seem like a counterintuitive conclusion — most of us learned in high school biology that evolution is about adapting to circumstances and that only the fittest survive. We're not used to thinking of traits as a product of happenstance. But evolutionary scientists know that lots of traits — even ultimately beneficial ones — are just the luck of the draw.

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 22119 - Posted: 04.20.2016

By Virginia Morell Moths have an almost fatal attraction to lights—so much so that we say people are drawn to bad ends “like moths to a flame.” But in this age of global light pollution, that saying has a new poignancy: Moths, which are typically nocturnal insects, are dying in droves at artificial lights. The high levels of mortality should have evolutionary consequences, leading to moths that avoid lights, biologists say. To find out, two scientists tested the flight-to-light behavior of 1048 adult ermine moths (Yponomeuta cagnagella, shown above) in Europe. The researchers collected the insects in 2007 as larvae that had just completed their first molt. Three hundred and twenty came from populations that lived where the skies were largely dark; 728 were gathered in light polluted areas. They were raised in a lab with 16 hours of daylight and 8 hours of darkness daily while they completed their life stages. Two to 3 days after emerging as moths, they were released in a flight cage with a fluorescent tube at one side. Moths from high light pollution areas were significantly less attracted to the light than those from the darker zones, the scientists report in today’s issue of Biology Letters. Overall, moths from the light-polluted populations had a 30% reduction in the flight-to-light behavior, indicating that this species is evolving, as predicted, to stay away from artificial lights. That change should increase these city moths’ reproductive success. But their success comes at a cost: To avoid the lights, the moths are likely flying less, say the scientists, so they aren’t pollinating as many flowers or feeding as many spiders and bats. © 2016 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 22100 - Posted: 04.13.2016

By FRANS de WAAL TICKLING a juvenile chimpanzee is a lot like tickling a child. The ape has the same sensitive spots: under the armpits, on the side, in the belly. He opens his mouth wide, lips relaxed, panting audibly in the same “huh-huh-huh” rhythm of inhalation and exhalation as human laughter. The similarity makes it hard not to giggle yourself. The ape also shows the same ambivalence as a child. He pushes your tickling fingers away and tries to escape, but as soon as you stop he comes back for more, putting his belly right in front of you. At this point, you need only to point to a tickling spot, not even touching it, and he will throw another fit of laughter. Laughter? Now wait a minute! A real scientist should avoid any and all anthropomorphism, which is why hard-nosed colleagues often ask us to change our terminology. Why not call the ape’s reaction something neutral, like, say, vocalized panting? That way we avoid confusion between the human and the animal. The term anthropomorphism, which means “human form,” comes from the Greek philosopher Xenophanes, who protested in the fifth century B.C. against Homer’s poetry because it described the gods as though they looked human. Xenophanes mocked this assumption, reportedly saying that if horses had hands they would “draw their gods like horses.” Nowadays the term has a broader meaning. It is typically used to censure the attribution of humanlike traits and experiences to other species. Animals don’t have “sex,” but engage in breeding behavior. They don’t have “friends,” but favorite affiliation partners. Given how partial our species is to intellectual distinctions, we apply such linguistic castrations even more vigorously in the cognitive domain. By explaining the smartness of animals either as a product of instinct or simple learning, we have kept human cognition on its pedestal under the guise of being scientific. Everything boiled down to genes and reinforcement. To think otherwise opened you up to ridicule, which is what happened to Wolfgang Köhler, the German psychologist who, a century ago, was the first to demonstrate flashes of insight in chimpanzees. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 22091 - Posted: 04.11.2016

Modern humans diverged from Neanderthals some 600,000 years ago – and a new study shows the Y chromosome might be what kept the two species separate. It seems we were genetically incompatible with our ancient relatives – and male fetuses conceived through sex with Neanderthal males would have miscarried. We knew that some cross-breeding between us and Neanderthals happened more recently – around 100,000 to 60,000 years ago. Neanderthal genes have been found in our genomes, on X chromosomes, and have been linked to traits such as skin colour, fertility and even depression and addiction. Now, an analysis of a Y chromosome from a 49,000-year-old male Neanderthal found in El Sidrón, Spain, suggests the chromosome has gone extinct seemingly without leaving any trace in modern humans. This could simply be because it drifted out of the human gene pool or, as the new study suggests, it could be because genetic differences meant that hybrid offspring who had this chromosome were infertile – a genetic dead end. Fernando Mendez of Stanford University, and his colleagues compared the Neanderthal Y chromosome with that of chimps, and ancient and modern humans. They found mutations in four genes that could have prevented the passage of Y chromosome down the paternal line to the hybrid children. “Some of these mutations could have played a role in the loss of Neanderthal Y chromosomes in human populations,” says Mendez. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 22088 - Posted: 04.09.2016

by Daniel Galef Footage from a revolutionary behavioural experiment showed non-primates making and using tools just like humans. In the video, a crow is trying to get food out of a narrow vessel, but its beak is too short for it to reach through the container. Nearby, the researchers placed a straight wire, which the crow bent against a nearby surface into a hook. Then, holding the hook in its beak, it fished the food from the bottle. Corvids—the family of birds that includes crows, ravens, rooks, jackdaws, and jays—are pretty smart overall. Although not to the level of parrots and cockatoos, ravens can also mimic human speech. They also have a highly developed system of communication and are believed to be among the most intelligent non-primate animals in existence. McGill Professor Andrew Reisner recalls meeting a graduate student studying corvid intelligence at Oxford University when these results were first published in 2015. “I had read early in the year that some crows had been observed making tools, and I mentioned this to him,” Reisner explained. “He said that he knew about that, as it had been he who had first observed it happening. Evidently the graduate students took turns watching the ‘bird box,’ […] and the tool making first occurred there on his shift.”

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22072 - Posted: 04.06.2016

Ewen Callaway Homo floresiensis, the mysterious and diminutive species found in Indonesia in 2003, is tens of thousands of years older than originally thought — and may have been driven to extinction by modern humans. After researchers discovered H. floresiensis, which they nicknamed the hobbit, in Liang Bua cave on the island of Flores, they concluded that its skeletal remains were as young as 11,000 years old. But later excavations that have dated more rock and sediment around the remains now suggest that hobbits were gone from the cave by 50,000 years ago, according to a study published in Nature on 30 March1. That is around the time that modern humans moved through southeast Asia and Australia. “I can’t believe that it is purely coincidence, based on what else we know happens when modern humans enter a new area,” says Richard Roberts, a geochronologist at the University of Wollongong, Australia. He notes that Neanderthals vanished soon after early modern humans arrived in Europe from Africa. Roberts co-led the study with archaeologist colleague Thomas Sutikna (who also helped coordinate the 2003 dig), and Matthew Tocheri, a paleoanthropologist at Lakehead University in Thunder Bay, Canada. The first hobbit fossil, known as LB1, was found in 20032 beneath about 6 metres of dirt and rock. Its fragile bones were too precious for radiocarbon dating, so the team collected nearby charcoal, on the assumption that it had accrued at the same time as the bones. That charcoal was as young as 11,000 years old, researchers reported at the time3, 4. “Somehow these tiny people had survived on this island 30,000 years after modern humans arrived,” says Roberts. “We were scratching our heads. It couldn’t add up.” © 2016 Nature Publishing Group,

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 22055 - Posted: 03.31.2016

By NATALIE ANGIER Juan F. Masello never intended to study wild parrots. Twenty years ago, as a graduate student visiting the northernmost province of Patagonia in Argentina, he planned to write his dissertation on colony formation among seabirds. But when he asked around for flocks of, say, cormorants or storm petrels, a park warden told him he was out of luck. “He said, ‘This is the only part of Patagonia with no seabird colonies,’” recalled Dr. Masello, a principal investigator in animal ecology and systematics at Justus Liebig University in Germany. Might the young scientist be interested in seeing a large colony of parrots instead? The sight that greeted Dr. Masello was “amazing” and “incredible,” he said. “It was almost beyond words.” On a 160-foot-high sandstone cliff that stretched some seven miles along the Atlantic coast, tens of thousands of pairs of burrowing parrots had used their powerful bills to dig holes — their nests — deep into the rock face. And when breeding season began not long afterward, the sky around the cliffs erupted into a raucous carnival of parrot: 150,000 crow-size, polychromed aeronauts with olive backsides, turquoise wings, white epaulets and bright red belly patches ringed in gold. Dr. Masello was hooked. Today, Dr. Masello’s hands are covered with bite scars. He has had four operations to repair a broken knee, a broken nose — “the little accidents you get from working with parrots,” he said. Still, he has no regrets. “Their astonishing beauty and intelligence,” Dr. Masello said, “are inspirational.” © 2016 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22016 - Posted: 03.22.2016

How did evolution produce a monstrous killer like T. rex? A fossil find in Central Asia is giving scientists a glimpse of the process. T. rex and other tyrannosaurs were huge, dominant predators, but they evolved from much smaller ancestors. The new discovery from Uzbekistan indicates that this supersizing happened quickly, and only after the appearance of some anatomical features that may have helped the monster tyrannosaurs hunt so effectively. The finding was reported Monday by Hans-Dieter Sues of the Smithsonian's National Museum of Natural History in Washington, Stephen Brusatte of the University of Edinburgh in Scotland, and others in a paper released by the Proceedings of the National Academy of Sciences. The discovery They report finding bones of a previously unknown member of the evolutionary branch that led to the huge tyrannosaurs. This earlier dinosaur lived about 90 million years ago, south of what is now the Aral Sea. It looked roughly like a T. rex, but was only about 10 to 12 feet long and weighed only about 600 pounds at most, Sues said. T. rex grew about four times as long and weighed more than 20 times as much. The discovery helps fill in a frustrating gap in the tyrannosaur fossil record. Before that gap, which began some 100 million years ago, the ancestral creatures were only about as big as a horse. Right after the gap, at about 80 million years ago, tyrannosaurs were multi-ton behemoths like T. rex. The new finding shows the forerunners were still relatively small even just 90 million years ago. So the size boom happened pretty quickly. Standard equipment ©2016 CBC/Radio-Canada.

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 21989 - Posted: 03.15.2016

Carl Zimmer Scientists recently turned Harvard’s Skeletal Biology Laboratory into a pop-up restaurant. It would have fared very badly on Yelp. Katherine D. Zink, then a graduate student, acted as chef and waitress. First, she attached electrodes to the jaws of diners to record the activity in the muscles they use to chew food. Then she brought out the victuals. Some volunteers received a three-course vegetarian meal of carrots, yams or beets. In one course, the vegetables were cooked; in the second, they were raw and sliced; in the last course, Dr. Zink simply served raw chunks of plant matter. Other patrons got three courses of meat (goat, in this case). Dr. Zink grilled the meat in the first course, but offered it raw and sliced in the second. In the third course, her volunteers received an uncooked lump of goat flesh. In some of the trials, the volunteers chewed the food until it was ready to swallow and then spat it out. Dr. Zink painstakingly picked apart those food bits and measured their size. Every week, we'll bring you stories that capture the wonders of the human body, nature and the cosmos. “If that was all my dissertation was, I would have quit graduate school,” Dr. Zink said. “It was as lovely as it sounds.” Dr. Zink persevered, however, because she was exploring a profound question about our origins: How did our ancestors evolve from small-brained, big-jawed apes into large-brained, small-jawed humans? Scientists studying the fossil record have long puzzled over this transition, which happened around two million years ago. Before then, early human relatives — known as hominins — were typically about the size of chimpanzees, with massive teeth and a brain only a third the size of humans’ current brains. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 21975 - Posted: 03.10.2016

It’s the most ancient nervous system we’ve ever seen, preserved inside 520 million-year-old fossils. What’s more, the nervous systems of these creatures’ modern-day descendants are less intricate, proving that evolution isn’t a one-way street to complexity. Found in South China, the five Cambrian fossils belonged to a group of organisms that gave rise to the arthropods, including insects, spiders and crustaceans. The fossils are of Chengjiangocaris kunmingensis, a creature around 10 centimetres long, with a segmented body, multiple pairs of legs and a heart-shaped head. But most interesting of all is its nerve cord and associated neurons. Together, the fossils show the entire nervous system of the organism, apart from its brain – making this the oldest preserved nervous system that has ever been found. “The detail of this fossil is exquisite,” says Rob DeSalle of the American Museum of Natural History in New York, who was not involved in the work. “The information from this specimen unravels transitions in how the nervous systems of arthropods evolved.” The animal had a nerve cord that ran the length of its body, with bulbous nodes of neurons called ganglia located between each pair of legs. “It’s almost like a mini-brain for each pair of legs,” says Javier Ortega-Hernández of the University of Cambridge, whose team analysed and described the fossil. Surprisingly, the team found dozens of fine, subsidiary nerves fanning out across the entire length of the nerve cord, making this nervous system more complex than those seen in today’s descendants. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 21941 - Posted: 03.01.2016