Links for Keyword: Evolution

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 708

By Elahe Izadi Tiny cameras attached to wild New Caledonian crows capture, for the first time, video footage of these elusive birds fashioning hooked stick tools, according to researchers. These South Pacific birds build tools out of twigs and leaves that they use to root out food, and they're the only non-humans that make hooked tools in the wild, write the authors of a study published Wednesday in the journal Biology Letters. Humans have previously seen the crows making the tools in artificial situations, in which scientists baited feeding sites and provided the raw tools; but researchers say the New Caledonian crows have never been filmed doing this in a completely natural setting. "New Caledonian crows are renowned for their unusually sophisticated tool behavior," the study authors write. "Despite decades of fieldwork, however, very little is known about how they make and use their foraging tools in the wild, which is largely owing to the difficulties in observing these shy forest birds." Study author Jolyon Troscianko of the University of Exeter in England described the tropical birds as "notoriously difficult to observe" because of the terrain of their habitat and their sensitivity to disturbance, he said in a press release. "By documenting their fascinating behavior with this new camera technology, we obtained valuable insights into the importance of tools in their daily search for food," he added.

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior
Link ID: 21719 - Posted: 12.24.2015

By Diana Kwon The human brain is unique: Our remarkable cognitive capacity has allowed us to invent the wheel, build the pyramids and land on the moon. In fact, scientists sometimes refer to the human brain as the “crowning achievement of evolution.” But what, exactly, makes our brains so special? Some leading arguments have been that our brains have more neurons and expend more energy than would be expected for our size, and that our cerebral cortex, which is responsible for higher cognition, is disproportionately large—accounting for over 80 percent of our total brain mass. Suzana Herculano-Houzel, a neuroscientist at the Institute of Biomedical Science in Rio de Janeiro, debunked these well-established beliefs in recent years when she discovered a novel way of counting neurons—dissolving brains into a homogenous mixture, or “brain soup.” Using this technique she found the number of neurons relative to brain size to be consistent with other primates, and that the cerebral cortex, the region responsible for higher cognition, only holds around 20 percent of all our brain’s neurons, a similar proportion found in other mammals. In light of these findings, she argues that the human brain is actually just a linearly scaled-up primate brain that grew in size as we started to consume more calories, thanks to the advent of cooked food. Other researchers have found that traits once believed to belong solely to humans also exist in other members of the animal kingdom. Monkeys have a sense of fairness. Chimps engage in war. Rats show altruism and exhibit empathy. In a study published last week in Nature Communications, neuroscientist Christopher Petkov and his group at Newcastle University found that macaques and humans share brain areas responsible for processing the basic structures of language. © 2015 Scientific American

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 21668 - Posted: 12.01.2015

Human DNA is 1 to 2% Neandertal, or more, depending on where your ancestors lived. Svante Pääbo, founder of the field of paleogenetics and winner of a 2016 Breakthrough Prize, explains why that matters © 2015 Scientific American

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21650 - Posted: 11.21.2015

Now hear this. Anthropologists have estimated the hearing abilities of early hominins – reconstructing a human ancestor’s sensory perception. Rolf Quam from Binghamton University in New York and his colleagues studied skulls and ear bones from Australopithecus africanus and Paranthropus robustus, two species that lived between 1 million and 3 million years ago, as well as modern humans and chimpanzees. Using CT scans of the bones, they built 3D reconstructions of the ear of each species. Then they fed a series of anatomical measurements into a computer model to predict their hearing abilities. The results for humans and chimpanzees fitted well with laboratory data, suggesting the model aligned well with real performance. For each species, they then estimated the frequency range they can hear best. Modern humans and chimpanzees perform similarly below 3 kilohertz, but humans have better hearing than chimps in the 3-5 kHz range. The early hominins had a similar sensitive range to chimpanzees, but shifted slightly towards that of modern humans, so they have better hearing than chimps do for 3-4 kHz sounds. Australopithecus and Paranthropus are not believed to have been capable of language, but they almost certainly communicated vocally as other primates do, says Quam. Quam thinks this shift in hearing sensitivity would have helped them communicate in open environments, such as African savannahs, where human ancestors are thought to have evolved bipedalism. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 21446 - Posted: 09.26.2015

Mo Costandi At some point back in deep time, a group of fish were washed into a limestone cave somewhere in northeastern Mexico. With no way out and little more than bat droppings to eat, the fish began to adapt to their new troglodytic lifestyle. Unable to see other members of their group in the dark, they lost their colourful pigmentation. Then they lost their eyesight, their eyes gradually got smaller, and then disappeared altogether. This was accompanied by a dramatic reduction in the size of the brain’s visual system. Yet, the question of why the blind cave fish lost its eyes and a large part of its brain remains unresolved. Now, biologists in Sweden believe they have found the answer. In new research published today, they report that loss of the visual system saves the fish a substantial amount of energy, and was probably key to their stranded ancestors’ survival. The blind cave fish Astyanax mexicanus is adapted to its subterranean environment in other ways. As its vision regressed, it became more reliant on smell and taste, and its taste buds grew larger and more numerous. They also developed an enhanced ability to detect changes in mechanical pressure, which made them more sensitive to water movements. Last year, Damian Moran of Lund University and his colleagues reported that blind cave fish eliminated the circadian rhythm in their metabolism during their course of evolution, and that this leads to a massive 27% reduction in their energy expenditure. This new study was designed test whether or not they lost their visual system for the same reason. © 2015 Guardian News and Media Limited

Related chapters from BP7e: Chapter 10: Vision: From Eye to Brain; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 7: Vision: From Eye to Brain
Link ID: 21401 - Posted: 09.12.2015

By JOHN NOBLE WILFORD Acting on a tip from spelunkers two years ago, scientists in South Africa discovered what the cavers had only dimly glimpsed through a crack in a limestone wall deep in the Rising Star Cave: lots and lots of old bones. The remains covered the earthen floor beyond the narrow opening. This was, the scientists concluded, a large, dark chamber for the dead of a previously unidentified species of the early human lineage — Homo naledi. The new hominin species was announced on Thursday by an international team of more than 60 scientists led by Lee R. Berger, an American paleoanthropologist who is a professor of human evolution studies at the University of the Witwatersrand in Johannesburg. The species name, H. naledi, refers to the cave where the bones lay undisturbed for so long; “naledi” means “star” in the local Sesotho language. In two papers published this week in the open-access journal eLife, the researchers said that the more than 1,550 fossil elements documenting the discovery constituted the largest sample for any hominin species in a single African site, and one of the largest anywhere in the world. Further, the scientists said, that sample is probably a small fraction of the fossils yet to be recovered from the chamber. So far the team has recovered parts of at least 15 individuals. “With almost every bone in the body represented multiple times, Homo naledi is already practically the best-known fossil member of our lineage,” Dr. Berger said. The finding, like so many others in science, was the result of pure luck followed by considerable effort. Two local cavers, Rick Hunter and Steven Tucker, found the narrow entrance to the chamber, measuring no more than seven and a half inches wide. They were skinny enough to squeeze through, and in the light of their headlamps they saw the bones all around them. When they showed the fossil pictures to Pedro Boshoff, a caver who is also a geologist, he alerted Dr. Berger, who organized an investigation. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 21396 - Posted: 09.11.2015

By Ann Gibbons From the moment in 2013 when paleoanthropologist Lee Berger posted a plea on Facebook, Twitter, and LinkedIn for “tiny and small, specialised cavers and spelunkers with excellent archaeological, palaeontological and excavation skills,” some experts began grumbling that the excavation of a mysterious hominin in the Rising Star Cave in South Africa was more of a media circus than a serious scientific expedition. Daily blogs recorded the dangerous maneuvers of “underground astronauts” who squeezed through a long, narrow chute to drop 30 meters into a fossil-filled cavern, while Berger, who is based at the University of the Witwatersrand in Johannesburg, South Africa, became the “voice from the cave” in radio interviews. When it came time to analyze the fossils, Berger put out a call for applications from “early career scientists” to study them at a workshop in Johannesburg in March 2014. Handing over much of the analysis of such potentially important specimens to inexperienced researchers didn’t inspire confidence among Berger’s colleagues either, though it did win him the nickname Mr. Paleodemocracy. Many thought the expedition “had more hype than substance,” paleoanthropologist Chris Stringer of the Natural History Museum in London writes in a commentary accompanying the fossils’ official presentation this week in the journal eLIFE. But the substance has now been unveiled, and few dispute that the findings are impressive. In their report, Berger and his team describe 1550 fossils representing more than 15 ancient members of a strange new kind of hominin, which they named Homo naledi. (Naledi means “star” in the Sotho language spoken in the region of the cave.) © 2015 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 21392 - Posted: 09.10.2015

Erin Wayman Nose picking isn’t a mark of distinction among people — but it is among monkeys. For the first time, researchers have reported a wild capuchin monkey using a tool to pick its nose and teeth. The monkey was caught in the act last year by Michael Haslam of the University of Oxford. For about five minutes, an adult female bearded capuchin (Sapajus libidinosus) in northeastern Brazil repeatedly inserted a twig or stem into its nostril, usually inducing a sneeze. The monkey also rubbed sticks back and forth against the base of its teeth, probably to dislodge debris, Haslam and Oxford colleague Tiago Falótico report in the July Primates. After picking its nose or teeth, the monkey often licked the tool tip, perhaps to wipe the stick clean. Bearded capuchins are quite handy, brandishing rocks to crack open nuts (SN Online: 4/30/15) and sticks to retrieve insects from crevices or to collect honey. But until now, no one had seen a wild capuchin use a tool as a nasal probe or toothpick. M. Haslam and T. Falótico. Nasal probe and toothpick tool use by a wild female bearded capuchin (Sapajus libidinosus). Primates. Vol. 56, July 2015, p. 211. doi: 10.1007/s10329-015-0470-6. © Society for Science & the Public 2000 - 2015

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 21382 - Posted: 09.08.2015

Carl Zimmer You are what you eat, and so were your ancient ancestors. But figuring out what they actually dined on has been no easy task. There are no Pleistocene cookbooks to consult. Instead, scientists must sift through an assortment of clues, from the chemical traces in fossilized bones to the scratch marks on prehistoric digging sticks. Scientists have long recognized that the diets of our ancestors went through a profound shift with the addition of meat. But in the September issue of The Quarterly Review of Biology, researchers argue that another item added to the menu was just as important: carbohydrates, bane of today’s paleo diet enthusiasts. In fact, the scientists propose, by incorporating cooked starches into their diet, our ancestors were able to fuel the evolution of our oversize brains. Roughly seven million years ago, our ancestors split off from the apes. As far as scientists can tell, those so-called hominins ate a diet that included a lot of raw, fiber-rich plants. After several million years, hominins started eating meat. The oldest clues to this shift are 3.3-million-year-old stone tools and 3.4-million-year-old mammal bones scarred with cut marks. The evidence suggests that hominins began by scavenging meat and marrow from dead animals. At some point hominins began to cook meat, but exactly when they invented fire is a question that inspires a lot of debate. Humans were definitely making fires by 300,000 years ago, but some researchers claim to have found campfires dating back as far as 1.8 million years. Cooked meat provided increased protein, fat and energy, helping hominins grow and thrive. But Mark G. Thomas, an evolutionary geneticist at University College London, and his colleagues argue that there was another important food sizzling on the ancient hearth: tubers and other starchy plants. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 21299 - Posted: 08.15.2015

By Andrea Alfano Forget the insult “fathead.” We may actually owe our extraordinary smarts to the fat in our brain. A study published in Neuron in February revealed that the variety of fat molecules found in the human neocortex, the brain region responsible for advanced cognitive functions such as language, evolved at an exceptionally fast rate after the human-ape split. The researchers analyzed the concentrations of 5,713 different lipids, or fat molecules and their derivatives, present in samples of brain, kidney and muscle tissues taken from humans, chimpanzees, macaques and mice. Lipids have a variety of critical functions in all cells, including their role as the primary component of a cell's membrane. They are particularly important in the brain because they enable electrical signal transmission among neurons. Yet until this study, it was unknown whether the lipids in the human brain differed significantly from lipids in other mammals. The team discovered that the levels of various lipids found in human brain samples, especially from the neocortex, stood out. Humans and chimps diverged from their common ancestor around the same time, according to much evolutionary evidence. Because the two species have had about the same amount of time to rack up changes to their lipid profiles, the investigators expected them to have roughly the same number of species-specific lipid concentrations, explains computational biologist and study leader Kasia Bozek of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany. Indeed, lipid changes in the cerebellum, a primitive part of the brain similar in all vertebrates, were comparable between humans and chimps. But the human neocortex has accumulated about three times more lipid changes than the chimpanzee cortex has since we split from our common ancestor. © 2015 Scientific American

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 21260 - Posted: 08.04.2015

Kill, Fido! Docile ants become aggressive guard dogs after a secret signal from their caterpillar overlord. The idea turns on its head the assumption that the two species exchange favours in an even-handed relationship. The caterpillars of the Japanese oakblue butterfly (Narathura japonica) grow up wrapped inside leaves on oak trees. To protect themselves against predators like spiders and wasps, they attract ant bodyguards, Pristomyrmex punctatus, with an offering of sugar droplets. The relationships was thought to be a fair exchange of services in which both parties benefit. But Masaru Hojo from Kobe University in Japan noticed something peculiar: the caterpillars were always attended by the same ant individuals. “It also seemed that the ants never moved away or returned to their nests,” he says. They seemed to abandon searching for food, and were just standing around guarding the caterpillar. Intrigued, Hojo and his colleagues conducted lab experiments in which they allowed some ants to interact with the caterpillars and feed on the secretions, and kept others separate. Ants that ate the caterpillar’s secretions remained close to the caterpillar. They didn’t return to their nest. And whenever the caterpillar everted its tentacles – flipped them so they turned inside out – the ants moved around rapidly, acting aggressively. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 21244 - Posted: 08.01.2015

Ewen Callaway Our ancestors were not a picky bunch. Overwhelming genetic evidence shows that Homo sapiens had sex with Neander­thals, Denisovans and other archaic relatives. Now researchers are using large genomics studies to unravel the decidedly mixed contributions that these ancient romps made to human biology — from the ability of H. sapiens to cope with environments outside Africa, to the tendency of modern humans to get asthma, skin diseases and maybe even depression. The proportion of the human genome that comes from archaic relatives is small. The genomes of most Europeans and Asians are 2–4% Neanderthal1, with Denisovan DNA making up about 5% of the genomes of Mela­nesians2 and Aboriginal Australians3. DNA slivers from other distant relatives probably pepper a variety of human genomes4. But these sequences may have had an outsize effect on human biology. In some cases, they are very different from the corresponding H. sapiens DNA, notes population geneticist David Reich of Harvard Medical School in Boston, Massachusetts — which makes it more likely that they could introduce useful traits. “Even though it’s only a couple or a few per cent of ancestry, that ancestry was sufficiently distant that it punched above its weight,” he says. Last year, Reich co-led one of two teams that catalogued the Neanderthal DNA living on in modern-day humans5, 6. The studies hinted that Neanderthal versions of some genes may have helped Eurasians to reduce heat loss or grow thicker hair. But the evidence that these genes were beneficial was fairly weak. To get a better handle on how Neanderthal DNA shapes human biology, Corinne Simonti and Tony Capra, evolutionary geneticists at Vanderbilt University in Nashville, Tennessee, turned to genome-wide association studies (GWAS) that had already compared thousands of DNA variants in people with and without a certain disease or condition. © 2015 Nature Publishing Group,

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 21240 - Posted: 07.30.2015

Carl Zimmer An ant colony is an insect fortress: When enemies invade, soldier ants quickly detect the incursion and rip their foes apart with their oversize mandibles. But some invaders manage to slip in with ease, none more mystifyingly than the ant nest beetle. Adult beetles stride into an ant colony in search of a mate, without being harassed. They lay eggs, from which larva hatch. As far as scientists can tell, workers feed the young beetles as if they were ants. When the beetles grow into adults, the ants swarm around them, grooming their bodies. In exchange for this hospitality, the beetles sink their jaws into ant larvae and freshly moulted adults in order to drink their body fluids. “They’re like vampire beetles wandering in the ant nests,” said Andrea Di Giulio, an entomologist at Roma Tre University in Rome. Dr. Di Giulio and his colleagues have now uncovered a remarkable trick that the beetles use to fool their hosts. It turns out they can perform uncanny impressions, mimicking a range of ant calls. Dr. Di Giulio and his colleagues study a species of ant nest beetle called Paussus favieri, which lives in the Atlas Mountains of Morocco, where it infiltrates the nests of Moroccan ants, known as Pheidole pallidula. Like many ant species, Pheidole pallidula makes noises by rubbing its legs against ridges on its body. The meanings of these signals vary from species to species; leaf-cutting ants summon bodyguards for the march back to the nest; in other species, a queen trills to her workers to attend to her. Scientists have found that Pheidole pallidula ants make three distinct sounds, each produced by a different caste: soldiers, workers and the queen. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 21193 - Posted: 07.20.2015

By Michael Balter The human hand is a marvel of dexterity. It can thread a needle, coax intricate melodies from the keys of a piano, and create lasting works of art with a pen or a paintbrush. Many scientists have assumed that our hands evolved their distinctive proportions over millions of years of recent evolution. But a new study suggests a radically different conclusion: Some aspects of the human hand are actually anatomically primitive—more so even than that of many other apes, including our evolutionary cousin the chimpanzee. The findings have important implications for the origins of human toolmaking, as well as for what the ancestor of both humans and chimps might have looked like. Humans and chimps diverged from a common ancestor perhaps about 7 million years ago, and their hands now look very different. We have a relatively long thumb and shorter fingers, which allows us to touch our thumbs to any point along our fingers and thus easily grasp objects. Chimps, on the other hand, have much longer fingers and shorter thumbs, perfect for swinging in trees but much less handy for precision grasping. For decades the dominant view among researchers was that the common ancestor of chimps and humans had chimplike hands, and that the human hand changed in response to the pressures of natural selection to make us better toolmakers. But recently some researchers have begun to challenge the idea that the human hand fundamentally changed its proportions after the evolutionary split with chimps. The earliest humanmade stone tools are thought to date back 3.3 million years, but new evidence has emerged that some of the earliest members of the human line—such as the 4.4-million-year-old Ardipithecus ramidus (“Ardi”)—had hands that resembled those of modern humans rather than chimps, even though it did not make tools. © 2015 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 21170 - Posted: 07.15.2015

by Bob Holmes Bonobos can be just as handy as chimpanzees. In fact, bonobos' tool-using abilities look a lot like those of early humans, suggesting that observing them could teach anthropologists about how our own ancestors evolved such skills. Until now, bonobos have been more renowned for their free and easy sex lives than their abilities with tools. They have never been seen to forage using tools in the wild, although only a handful of wild populations have been studied because of political instability in the Democratic Republic of the Congo, where they live. As for those in captivity, Itai Roffman of Haifa University in Israel and his colleagues previously observed one captive bonobo, called Kanzi, using stone tools to crack a log and extract food. However, it was possible that Kanzi was a lone genius, raised by humans and taught sign language, as well as once being shown how to use tools. To find out if other captive bonobos shared Kanzi's aptitude, Roffman's team looked to animals at a zoo in Germany and a bonobo sanctuary in Iowa. The team gave them a series of problems that required tools to solve – for example, showing the bonobos that food was buried under rocks, then leaving a tray of potential aids such as sticks and antlers nearby. Two of eight zoo animals and four of seven in the sanctuary made use of the tools – in some cases almost immediately. The bonobos used sticks, rocks and antlers to dig, and also used long sticks as levers to move larger rocks out of the way (see video above). Some used different tools in sequence. © Copyright Reed Business Information Ltd

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 21147 - Posted: 07.08.2015

By Michael Balter For much of the time dinosaurs were lording over the land, sleek marine reptiles called ichthyosaurs were the masters of the sea. The dolphinlike predators had enormous eyes for hunting and grew as long as 20 meters. But paleontologists have long been baffled by their brain structure, because most fossil specimens have been squished flat by marine sediments. One rare exception—discovered in the 1800s in southern England’s Bristol Channel—is a spectacularly preserved, 180-million-year-old ichthyosaur named Hauffiopteryx. Now, using computerized tomography (CT) scanning, researchers have created a 3D digital reconstruction of Hauffiopteryx’s skull, making a “ghost image” of its brain known as a digital endocast (above). The team, which reported its findings online earlier this month in Palaeontology, found that the brain’s optic lobes were particularly large; so were the cerebellum, which controls motor functions, and the olfactory region, where odors are processed. Taken together, the team concludes these features show ichthyosaurs were highly mobile predators with a keen sense of sight and smell. © 2015 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 21097 - Posted: 06.27.2015

By David Shultz Not usually lauded for their cuddly appearance, opossums were long thought to have a social inclination to match their looks; the marsupials have mostly been observed lurking alone and hissing at others who encroach on their personal space. However, a new study published online today in Biology Letters suggests that opossums sometimes live in groups and may form pair bonds with mates before the mating season starts. Based on 17,127 observations of 312 artificial nests over 8 years, scientists at the Federal University of Pernambuco in Recife, Brazil, discovered 10 instances of multiple opossums sharing the same den with no signs of hostility or ongoing reproductive activity. An additional observation made on the university campus revealed a group of 13 opossums from three separate age groups all sharing a single den. The researchers speculate that this type of “gregarious denning” may be relatively common in the wild and that males and females may work cooperatively to build a nest—a ritual that could trigger the onset of an estrous cycle in females. Furthermore, the group of 13 animals was discovered in a large concrete box housing electrical equipment, much bigger than the typical artificial dens used by scientists studying opossums. The team suspects that building larger artificial dens may promote more social interactions like the ones they observed. © 2015 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 21059 - Posted: 06.17.2015

James Gorman Chimpanzees have the cognitive ability to cook, according to new research, if only someone would give them ovens. It’s not that the animals are ready to go head-to-head with Gordon Ramsay, but scientists from Harvard and Yale found that chimps have the patience and foresight to resist eating raw food and to place it in a device meant to appear, at least to the chimps, to cook it. That is no small achievement. In a line that could easily apply to human beings, the researchers write, “Many primate species, including chimpanzees, have difficulty giving up food already in their possession and show limitations in their self-control when faced with food.” But they found that chimps would give up a raw slice of sweet potato in the hand for the prospect of a cooked slice of sweet potato a bit later. That kind of foresight and self-control is something any cook who has eaten too much raw cookie dough can admire. The research grew out of the idea that cooking itself may have driven changes in human evolution, a hypothesis put forth by Richard Wrangham, an anthropologist at Harvard and several colleagues about 15 years ago in an article in Current Anthropology, and more recently in his book, “Catching Fire: How Cooking Made Us Human.” He argued that cooking may have begun something like two million years ago, even though hard evidence only dates back about one million years. For that to be true, some early ancestors, perhaps not much more advanced than chimps, had to grasp the whole concept of transforming the raw into the cooked. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 21016 - Posted: 06.03.2015

By Sarah C. P. Williams Bonobos, endangered great apes considered—along with chimpanzees—the closest living relative to humans, spend most of each day climbing through trees, collecting fruit and leaves. Compare that with the lives of early humans who traversed hot, barren landscapes and it begins to make sense why we’re the fattier, less muscular primate. Over the past 3 decades, two researchers analyzed the hard-to-come-by bodies of 13 bonobos that had died in captivity and compared them with already collected data on 49 human bodies donated by means of autopsy to help understand how evolution drove this change. Although some captive bonobos have become obese, the researchers found that, on average, the apes’ body mass—which is thought to resemble that of the closest common ancestor we share with them—is composed of 10% to 13% skin, whereas humans have only 6% skin. This thinner skin, the team hypothesizes, probably arose around the same time that Homo sapiens gained the ability to sweat, allowing more time spent in hot, open areas. The scientists also found that we pack on more fat than our ape relatives: Female and male humans average 36% and 20% body fat, whereas female and male bonobos average 4% and close to 0% body fat, respectively. Increased fat, the researchers hypothesize, allowed our species to survive—and reproduce—during times of low food availability. As for muscle, the team reports online today in the Proceedings of the National Academy of Sciences, bonobos come out on top, especially when it comes to upper body muscles needed for tree climbing and swinging, which became unnecessary when humans went strictly bipedal. The new findings, the researchers say, help illustrate the forces of natural selection that may have affected H. sapiens’s soft tissues even before our brains started expanding in size and tool use shaped the species. © 2015 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 21007 - Posted: 06.02.2015

Carl Zimmer For scientists who study human evolution, the last few months have been a whirlwind. Every couple of weeks, it seems, another team pulls back the curtain on newly discovered bones or stone tools, prompting researchers to rethink what we know about early human history. On Wednesday, it happened again. Yohannes Haile-Selassie of the Cleveland Museum of Natural History and his colleagues reported finding a jaw in Ethiopia that belonged to an ancient human relative that lived some time between 3.3 and 3.5 million years. They argue that the jaw belongs to an entirely new species, which they dubbed Australopithecus deyiremeda. While some experts agree, skeptics argued that the jaw belongs to a familiar hominid species, known as Australopithecus afarensis, that existed from about 3.9 to 3 million years ago. Studies like this one are adding fresh fuel to the debate over the pace of human evolution. Some researchers now believe the human family tree bore exuberant branches early on. “I’m so excited about these discoveries, I’m driving my friends crazy,” said Carol V. Ward, a paleoanthropologist at the University of Missouri. “It makes us stop and rethink everything.” In the 1990s, the broad outlines of human evolution seemed fairly clear. Early human ancestors — known as hominids — evolved from an ancestor shared with chimpanzees about six or seven million years ago. These hominids were short, bipedal apes with small brains and arms and legs still adapted for climbing trees. Until about three million years ago, experts thought, there weren’t a lot of hominid species. In fact, some researchers argued that most hominid fossils represented just a single species. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 20993 - Posted: 05.28.2015