Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 22529

By Kevin Pelphrey, In September, the Florida State University football team made a visit to a Tallahassee middle school that would become famous. At lunchtime, student-athlete Travis Rudolph noticed sixth grader Bo Paske eating alone, so he joined Bo for the meal. Bo, who has autism, often sat by himself in the lunchroom. The world took note of the athlete’s gesture after his mother’s Facebook post about it went viral. “This is one day I didn’t have to worry if my sweet boy ate lunch alone, because he sat across from someone who is a hero in many eyes,” she wrote. This story touched people because it calls to mind something universal: the sting of social exclusion. We have all known children who often eat, or play, alone. And all of us have felt left out at one time or another. But although this experience may be universal, a new generation of children is experiencing a wave of inclusiveness. Technology of various types, often thought of as an isolating influence, can actually abet people’s good intentions or help those with autism learn to fit in. One new app called Sit With Us, invented by 16-year-old Natalie Hampton, helps vulnerable children who have difficulty finding a welcoming group in the lunchroom. Its motto is inspiring: “The first step to a warmer, more inclusive community can begin with LUNCH.” Sit With Us allows students to designate themselves as ‘ambassadors’ and to signal to anyone seeking company that they’re invited to join the ambassador’s table. © 2017 Scientific American

Keyword: Autism; Robotics
Link ID: 23114 - Posted: 01.17.2017

Ian Sample Science editor Tempting as it may be, it would be wrong to claim that with each generation humans are becoming more stupid. As scientists are often so keen to point out, it is a bit more complicated than that. A study from Iceland is the latest to raise the prospect of a downwards spiral into imbecility. The research from deCODE, a genetics firm in Reykjavik, finds that groups of genes that predispose people to spend more years in education became a little rarer in the country from 1910 to 1975. The scientists used a database of more than 100,000 Icelanders to see how dozens of gene variants that affect educational attainment appeared in the population over time. They found a shallow decline over the 65 year period, implying a downturn in the natural inclination to rack up qualifications. But the genes involved in education affected fertility too. Those who carried more “education genes” tended to have fewer children than others. This led the scientists to propose that the genes had become rarer in the population because, for all their qualifications, better educated people had contributed less than others to the Icelandic gene pool. Spending longer in education and the career opportunities that provides is not the sole reason that better educated people tend to start families later and have fewer children, the study suggests. Many people who carried lots of genes for prolonged education left the system early and yet still had fewer children that the others. “It isn’t the case that education, or the career opportunities it provides, prevents you from having more children,” said Kari Stefansson, who led the study. “If you are genetically predisposed to have a lot of education, you are also predisposed to have fewer children.” © 2017 Guardian News and Media Limited

Keyword: Intelligence; Genes & Behavior
Link ID: 23113 - Posted: 01.17.2017

Eating disorders, including anorexia and bulimia, affect a small but substantial number of women in their 40s and 50s, UK research suggests. The study, involving more than 5,000 women, found just over 3% reported having an eating disorder. Some said they had experienced it since their teens, others developed it for the first time in their middle age. Julie Spinks, from Beaconsfield, is 48. She was not involved in the study, but can relate first-hand to its findings. She developed anorexia for the first time when she was 44. "It was a complete shock at the time," she recalls. "I knew that I was restricting my food but I didn't ever think I had anorexia. "I'd been really unhappy at work and had very low self-esteem. To begin with I just thought I had lost my appetite. "I felt depressed, like I was not worth feeding or existing. I wanted to disappear and fade away." Julie started to lose weight quite quickly and began to exercise as well. She realised something was very wrong one day after she had been to the gym. Mind struggle "I'd run for about an hour and burnt off about 500 calories. I remember thinking that's about the same as a chocolate bar. That's when I started to link food and exercise." Julie still did not recognise she had anorexia though. "I thought anorexia was something that happened to other people. It didn't occur to me that I might have it." After a breakdown at work she went for a mental health assessment. Her doctors then diagnosed her with anorexia and depression. Julie was given antidepressants and began therapy sessions to help with her eating disorder. © 2017 BBC.

Keyword: Anorexia & Bulimia
Link ID: 23112 - Posted: 01.17.2017

By JANE E. BRODY Insomnia is like a thief in the night, robbing millions — especially those older than 60 — of much-needed restorative sleep. As the king laments in Shakespeare’s “Henry IV, Part 2”: O sleep, O gentle sleep, Nature’s soft nurse, how have I frightened thee. That thou no more will weigh my eyelids down, And steep my senses in forgetfulness? The causes of insomnia are many, and they increase in number and severity as people age. Yet the problem is often overlooked during routine checkups, which not only diminishes the quality of an older person’s life but may also cause or aggravate physical and emotional disorders, including symptoms of cognitive loss. Most everyone experiences episodic insomnia, a night during which the body seems to have forgotten how to sleep a requisite number of hours, if at all. As distressing as that may seem at the time, it pales in comparison to the effects on people for whom insomnia — difficulty falling asleep, staying asleep or awakening much too early — is a nightly affair. A survey done in 1995 by researchers at the National Institute on Aging among more than 9,000 people aged 65 and older living in three communities revealed that 28 percent had problems falling asleep and 42 percent reported difficulty with both falling asleep and staying asleep. The numbers affected are likely to be much larger now that millions spend their pre-sleep hours looking at electronic screens that can disrupt the body’s biological rhythms. Insomnia, Dr. Alon Y. Avidan says, “is a symptom, not a diagnosis” that can be a clue to an underlying and often treatable health problem and, when it persists, should be taken seriously. Dr. Avidan is director of the sleep clinic at the University of California, Los Angeles, David Geffen School of Medicine. © 2017 The New York Times Company

Keyword: Sleep; Development of the Brain
Link ID: 23111 - Posted: 01.17.2017

By Alice Klein Who needs men? A female shark separated from her long-term mate has developed the ability to have babies on her own. Leonie the zebra shark (Stegostoma fasciatum) met her male partner at an aquarium in Townsville, Australia, in 1999. They had more than two dozen offspring together before he was moved to another tank in 2012. From then on, Leonie did not have any male contact. But in early 2016, she had three baby sharks. Intrigued, Christine Dudgeon at the University of Queensland in Brisbane, Australia, and her colleagues began fishing for answers. Zoologger: The amphibious fish that mates with itself One possibility was that Leonie had been storing sperm from her ex and using it to fertilise her eggs. But genetic testing showed that the babies only carried DNA from their mum, indicating they had been conceived via asexual reproduction. Some vertebrate species have the ability to reproduce asexually even though they normally reproduce sexually. These include certain sharks, turkeys, Komodo dragons, snakes and rays. However, most reports have been in females who have never had male partners. There are very few reports of asexual reproduction occurring in females with previous sexual histories, says Dudgeon. An eagle ray and a boa constrictor, both in captivity, are the only other female animals that have been documented switching from sexual to asexual reproduction. © Copyright Reed Business Information Ltd.

Keyword: Sexual Behavior
Link ID: 23110 - Posted: 01.17.2017

By Alan Burdick Some nights—more than I like, lately—I wake to the sound of the bedside clock. The room is dark, without detail, and it expands in such a way that it seems as if I’m outdoors, under an empty sky, or underground, in a cavern. I might be falling through space. I might be dreaming. I could be dead. Only the clock moves, its tick steady, unhurried. At these moments I have the most chilling understanding that time moves in only one direction. I’m tempted to look at the clock, but I already know that it’s the same time it always is: 4 A.M., or 4:10 A.M., or once, for a disconcerting stretch of days, 4:27 A.M. Even without looking, I could deduce the time from the ping of the bedroom radiator gathering steam in winter or the infrequency of the cars passing by on the street outside. In 1917, the psychologist Edwin G. Boring and his wife, Lucy, described an experiment in which they woke people at intervals to see if they knew what time it was; the average estimate was accurate to within fifty minutes, although almost everyone thought it was later than it actually was. They found that subjects were relying on internal or external signals: their degree of sleepiness or indigestion (“The dark brown taste in your mouth is never bad when you have been asleep only a short time”), the moonlight, “bladder cues,” the sounds of cars or roosters. “When a man is asleep, he has in a circle round him the chain of the hours, the sequence of the years, the order of the heavenly bodies,” Proust wrote. “Instinctively he consults them when he awakes, and in an instant reads off his own position on the earth’s surface and the time that has elapsed during his slumbers.” © 2017 Condé Nast.

Keyword: Attention; Sleep
Link ID: 23109 - Posted: 01.16.2017

By Maggie Koerth-Baker “The president can’t have a conflict of interest,” Donald Trump told The New York Times in November. He appears to have meant that in the legal sense — the president isn’t bound by the same conflict-of-interest laws that loom over other executive branch officials and employees.1 But that doesn’t mean the president’s interests can’t be in conflict. When he takes office Jan. 20, Trump will be tangled in a wide array of situations in which his personal connections and business coffers are pulling him in one direction while the interests of the American presidency and people pull him in another. For example, Trump is the president of a vineyard in Virginia that’s requesting foreign worker visas from the government he’ll soon lead. He’s also involved in an ongoing business partnership with the Philippines’ diplomatic trade envoy — a relationship that could predispose Trump to accepting deals that are more favorable to that country than he otherwise might. Once he’s in office, he will appoint some members of the labor board that could hear disputes related to his hotels. Neither Trump nor his transition team replied to interview requests for this article, but his comments to the Times suggest that he genuinely believes he can be objective and put the country first, despite financial and social pressures to do otherwise. Unfortunately, science says he’s probably wrong.

Keyword: Attention
Link ID: 23108 - Posted: 01.16.2017

By JONAH ENGEL BROMWICH I have a big, dumb, deep, goofy voice. But I’m reminded of it only when I hear a recording of myself while playing back an interview — or when friends do impressions of me, lowering their voices several octaves. My high school classmate Walter Suskind has one of the deepest voices I’ve ever heard in person. His experience has been similar to mine. “My voice sounds pretty normal in my head,” he said. “It’s when I catch the echo on the back of the phone or when I hear myself when it’s been taped that I realize how deep it is. Also, when people come up to me and, to imitate my voice, go as deep as they possibly can and growl in my face.” He added, “I’ve been told that the one advantage to voices like ours is we make really good hostage negotiators.” (Here’s Walter on an episode of “Radiolab.” His segment starts at about 12:20, and the host immediately comments on his voice.) Many people have heard their recorded voices and reeled in disgust (“Do I really sound like that?”) Others are surprised how high their voices sound. The indie musician Mitski Miyawaki, who has earned praise for exceptional control over her singing voice, said that she, too, is often unpleasantly surprised by her speaking voice, which she perceives as “lower, more commanding,” than it sounds to others. “And then I listen to a radio interview and I’m like ‘uuuch,’ ” she said, making a disgusted noise. “I listen to my voice and I go, ‘Oh it sounds exactly like a young girl.’ ” There’s an easy explanation for experiences like Ms. Miyawaki’s, said William Hartmann, a physics professor at Michigan State University who specializes in acoustics and psychoacoustics. There are two pathways through which we perceive our own voice when we speak, he explained. One is the route through which we perceive most other sounds. Waves travel from the air through the chain of our hearing systems, traversing the outer, middle and inner ear. © 2017 The New York Times Company

Keyword: Hearing
Link ID: 23107 - Posted: 01.16.2017

Michelle Trudeau When Samantha Deffler was young, her mother would often call her by her siblings' names — even the dog's name. "Rebecca, Jesse, Molly, Tucker, Samantha," she says. A lot of people mix up children's names or friends' names, but Deffler is a cognitive scientist at Rollins College, in Winter Park, Fla., and she wanted to find out why it happens. So she did a survey of 1,700 men and women of different ages, and she found that naming mistakes are very common. Most everyone sometimes mixes up the names of family and friends. Her findings were published in the journal Memory & Cognition. "It's a normal cognitive glitch," Deffler says. It's not related to a bad memory or to aging, but rather to how the brain categorizes names. It's like having special folders for family names and friends names stored in the brain. When people used the wrong name, overwhelmingly the name that was used was in the same category, Deffler says. It was in the same folder. And there was one group who was especially prone to the naming mix-ups. "Moms, especially moms," Deffler says. "Any mom I talked to says, 'You know, I've definitely done this.'" It works something like this: Say you've got an armful of groceries and you need some quick help from one of your kids. Your brain tries to rapidly retrieve the name from the family folder, but it may end up retrieving a related name instead, says Neil Mulligan, a cognitive scientist at UNC Chapel Hill. © 2017 npr

Keyword: Learning & Memory
Link ID: 23106 - Posted: 01.16.2017

By GARY TAUBES The first time the sugar industry felt compelled to “knock down reports that sugar is fattening,” as this newspaper put it, it was 1956. Papers had run a photograph of President Dwight D. Eisenhower sweetening his coffee with saccharin, with the news that his doctor had advised him to avoid sugar if he wanted to remain thin. The industry responded with a national advertising campaign based on what it believed to be solid science. The ads explained that there was no such thing as a “fattening food”: “All foods supply calories and there is no difference between the calories that come from sugar or steak or grapefruit or ice cream.” More than 60 years later, the sugar industry is still making the same argument, or at least paying researchers to do it for them. The stakes have changed, however, with a near tripling of the prevalence of obesity in the intervening decades and what the Centers for Disease Control and Prevention figures reveal to be an almost unimaginable 655 percent increase in the percentage of Americans with diabetes diagnoses. When it comes to weight gain, the sugar industry and purveyors of sugary beverages still insist, a calorie is a calorie, regardless of its source, so guidelines that single out sugar as a dietary evil are not evidence-based. Surprisingly, the scientific consensus is technically in agreement. It holds that obesity is caused “by a lack of energy balance,” as the National Institutes of Health website explains — in other words, by our taking in more calories than we expend. Hence, the primary, if not the only, way that foods can influence our body weight is through their caloric content. Another way to say this is that what we eat doesn’t matter; it’s only how much — just as the sugar industry would have us believe. A 2014 article in an American Diabetes Association journal phrased the situation this way: “There is no clear or convincing evidence that any dietary or added sugar has a unique or detrimental impact relative to any other source of calories on the development of obesity or diabetes.” © 2017 The New York Times Company

Keyword: Obesity
Link ID: 23105 - Posted: 01.14.2017

Charles Q. Choi Prions, the infectious agents best known for causing degenerative brain disorders such as ‘mad cow’ disease, may have been spotted in bacteria. A section of a protein in Clostridium botulinum, the microbe that causes botulism, can behave like a prion when it is inserted into yeast and Escherichia coli bacteria, researchers report in the 13 January issue of Science1. Prions are formed by proteins that can fold in a number of structurally distinct ways. A prion version of a protein can perpetuate itself in an infectious manner by converting normal forms of that protein into the prion version. Scientists first discovered prions in the 1980s as the agents behind fatal brain disorders known as transmissible spongiform encephalopathies. Since then, researchers have found the misfolded proteins in mammals, insects, worms, plants and fungi2, and learned that not all prions harm their hosts. But until now, prions were only seen in the cells of eukaryotic organisms, a group that includes animals, plants and fungi. In the latest study, researchers analysed roughly 60,000 bacterial genomes using software trained to recognize prion-forming proteins in yeast. They focused on a section of the bacterial protein Rho. In many bacteria, such as C. botulinum and E. coli, Rho is a global regulator of gene expression, meaning that it can control the activity of many genes. © 2017 Macmillan Publishers Limited,

Keyword: Prions
Link ID: 23104 - Posted: 01.14.2017

Mi Zhang, David Mohr, Jingbo Meng Depression is the leading mental health issue on college campuses in the U.S. In 2015, a survey of more than 90,000 students at 108 American colleges and universities found that during the previous year, more than one-third of them had felt so depressed at some point that it was difficult to function. More than two-thirds had felt hopeless in the preceding academic year. Today’s college students are dealing with depression at an alarmingly high rate, and are increasingly seeking help from on-campus mental health services. Depression is also an underlying cause of other common problems on college campuses, including alcohol and substance abuse, eating disorders, self-injury, suicide and dropping out of school. But university counseling centers, the primary sources for students to get mental health care, are struggling to meet this rising demand. First, it can take a long time for clinicians to gain a full picture of what students are experiencing: Depressed students’ accounts of their symptoms are often inaccurate and incomplete. In addition, budget constraints and limited office hours mean the number of clinicians on campus has not grown, and in some cases has shrunk, despite increasing demand. There simply are not enough university clinicians available to serve every student – and few, if any, at critical times like nights and weekends. The number of students on counseling waiting lists doubled from 2010 to 2012. This can leave students waiting long periods without help. In the worst cases, this can have lifelong – or life-ending – consequences. Using mobile technology for mental illness diagnosis and treatment is becoming a hot research topic nowadays because of the pervasiveness of mobile devices and their behavior-tracking capabilities. Building on others’ work, we have found a way to enhance counseling services with mobile technology and big data analytics. It can help students and clinicians alike, by offering a new tool for assessing depression that may shed increased light on a condition that is challenging to study. © 2010–2017, The Conversation US, Inc.

Keyword: Depression
Link ID: 23103 - Posted: 01.14.2017

Jonathan Sadowsky Carrie Fisher’s ashes are in an urn designed to look like a Prozac pill. It’s fitting that in death she continues to be both brash and wryly funny about a treatment for depression. The public grief over Carrie Fisher’s death was not only for an actress who played one of the most iconic roles in film history. It was also for one who spoke with wit and courage about her struggle with mental illness. In a way, the fearless General Leia Organa on screen was not much of an act. Carrie Fisher at a screening of ‘Catastrophe’ at the Tribeca Film Festival in April 2016. PBG/AAD/STAR MAX/IPx via AP Fisher’s bravery, though, was not just in fighting the stigma of her illness, but also in declaring in her memoir “Shockaholic” her voluntary use of a stigmatized treatment: electroconvulsive therapy (ECT), often known as shock treatment. Many critics have portrayed ECT as a form of medical abuse, and depictions in film and television are usually scary. Yet many psychiatrists, and more importantly, patients, consider it to be a safe and effective treatment for severe depression and bipolar disorder. Few medical treatments have such disparate images. I am a historian of psychiatry, and I have published a book on the history of ECT. I had, like many people, been exposed only to the frightening images of ECT, and I grew interested in the history of the treatment after learning how many clinicians and patients consider it a valuable treatment. My book asks the question: Why has this treatment been so controversial? © 2010–2017, The Conversation US, Inc.

Keyword: Depression
Link ID: 23102 - Posted: 01.14.2017

By LISA SANDERS, M.D. “You don’t look well,” the man at the gas station told the older woman in the car. He’d known her for years, always thinking of her as a lively, robust woman. But that day she looked pale and tired. Her sharp blue eyes seemed dim. She gave a feeble smile. “I don’t feel well at all,” she told him. There’s an urgent-care clinic just up the street, he said. Could she make it there? She was nearly 45 minutes away from her home in Halifax, Nova Scotia. Stopping just up the street seemed a much better option. At the clinic, the doctor took one look at her, put a blood pressure cuff around her arm and told her assistant to call an ambulance. The rest of the day was a blur. The woman remembers being bundled onto a stretcher and one of the E.M.T.s saying her blood pressure was very low. It was an odd thing to hear, because her blood pressure was usually high enough to require three medications. She was taken to the emergency room at the Queen Elizabeth II Health Sciences Center in Halifax. She remembers being fussed over — having blood drawn, receiving intravenous fluids, feeling sticky snaps being placed on her chest that connected her to a continuous heart monitor. She had been a nurse for many years when she was younger, yet seeing herself at the center of these familiar activities was strange. A blood test indicated that there may have been damage to her heart. The doctor told her she was having a heart attack, she recalls. You’ve got the wrong patient, she thought to herself. Sure, she had a little high blood pressure, a little asthma, a little back pain. But problems with her heart? Never. The patient used a cane, but she had no difficulty getting up on the exam table — an important test of mobility. © 2017 The New York Times Company

Keyword: Hormones & Behavior
Link ID: 23101 - Posted: 01.14.2017

Susan Milius NEW ORLEANS — The self-cleaning marvel known as earwax may turn the dust particles it traps into agents of their own disposal. Earwax, secreted in the ear canal, protects ears from building up dunes of debris from particles wafting through the air. The wax creates a sticky particle-trapper inside the canal, explained Zac Zachow January 6 at the annual meeting of the Society of Integrative and Comparative Biology. The goo coats hairs and haphazardly pastes them into a loose net. Then, by a process not yet fully understood, bits of particle-dirtied wax leave the ear, taking their burden of debris with them. Earwax may accomplish such a feat because trapping more and more dust turns it from gooey to crumbly, Zachow said. Working with Alexis Noel in David Hu’s lab at Georgia Tech in Atlanta, he filmed a rough demonstration of this idea: Mixing flour into a gob of pig’s earwax eventually turned the lump from stickier to drier, with crumbs fraying away at the edges. Jaw motions might help shake loose these crumbs, Zachow said. A video inside the ear of someone eating a doughnut showed earwax bucking and shifting. This dust-to-crumb scenario needs more testing, but Noel points out that earwax might someday inspire new ways of reducing dust buildup in machinery such as home air-filtration systems. Z. Zachow, A. Noel and D.L. Hu. Earwax has properties like paint, enabling self-cleaning. Annual meeting of the Society for Integrative and Comparative Biology, New Orleans, January 6, 2017. © Society for Science & the Public 2000 - 2017

Keyword: Hearing
Link ID: 23100 - Posted: 01.14.2017

Jon Hamilton Mice that kill at the flip of a switch may reveal how hunting behavior evolved hundreds of millions of years ago. The mice became aggressive predators when two sets of neurons in the amygdala were activated with laser light, a team reported Thursday in the journal Cell. "The animals become very efficient in hunting," says Ivan de Araujo, an associate professor of psychiatry at Yale University and an associate fellow at The John B. Pierce Laboratory in New Haven. "They pursue the prey [a live cricket] faster and they are more capable of capturing and killing it." Activating the neurons even caused the mice to attack inanimate objects, including sticks, bottle caps and an insectlike toy. "The animals intensively bite the toy and use their forepaws in an attempt to kill it," De Araujo says. But the aggressive behavior is reserved for prey. Mice didn't attack each other, even when both sets of neurons were activated. The results hint at how the brain changed hundreds of millions of years ago when the first animals with jaws began to appear. This new ability to pursue and kill prey "must have influenced the way the brain is wired up in a major way," De Araujo says. Specifically, the brain needed to develop hunting circuits that would precisely coordinate the movements of a predator's jaw and neck. "This is a very complex and demanding task," De Araujo says. © 2017 npr

Keyword: Aggression
Link ID: 23099 - Posted: 01.13.2017

Bruce Bower Marijuana’s medical promise deserves closer, better-funded scientific scrutiny, a new state-of-the-science report concludes. The report, released January 12 by the National Academies of Sciences, Engineering and Medicine in Washington, D.C., calls for expanding research on potential medical applications of cannabis and its products, including marijuana and chemical components called cannabinoids. Big gaps in knowledge remain about health effects of cannabis use, for good or ill. Efforts to study these effects are hampered by federal classification of cannabis as a Schedule 1 drug, meaning it has no accepted medical use and a high potential for abuse. Schedule 1 status makes it difficult for researchers to access cannabis. The new report recommends reclassifying the substance to make it easier to study. Recommendations from the 16-member committee that authored the report come at a time of heightened acceptance of marijuana and related substances. Cannabis is a legal medical treatment in 28 states and the District of Columbia. Recreational pot use is legal in eight of those states and the District. “The legalization and commercialization of cannabis has allowed marketing to get ahead of science,” says Raul Gonzalez, a psychologist at Florida International University in Miami who reviewed the report before publication. While the report highlights possible medical benefits, Gonzalez notes that it also underscores negative consequences of regular cannabis use. These include certain respiratory and psychological problems. |© Society for Science & the Public 2000 - 2017.

Keyword: Pain & Touch; Drug Abuse
Link ID: 23098 - Posted: 01.13.2017

Alison Abbott Bats have brain cells that keep track of their angle and distance to a target, researchers have discovered. The neurons, called ‘vector cells’, are a key piece of the mammalian’s brain complex navigation system — and something that neuroscientists have been seeking for years. Our brain’s navigation system has many types of cells, but a lot of them seem designed to keep track of where we are. Researchers know of ‘place’ cells, for example, which fire when animals are in a particular location, and ‘head direction’ cells that fire in response to changes in the direction the head is facing. Bats also have a kind of neuronal compass that enables them to orient themselves as they fly. The vector cells, by contrast, keep spatial track of where we are going. They are in the brain’s hippocampus, which is also where ‘place’ and ‘head-direction’ cells were discovered. That’s a surprise, considering how well this area has been studied by researchers, says Nachum Ulanovsky, who led the team at the Weizmann Institute of Science in Rehovot, Israel, that discovered the new cells. His team published their findings in Science on 12 January1. Finding the cells "was one of those very rare discovery moments in a researcher’s life,” says Ulanovsky. “My heart raced, I started jumping around.” The trick to finding them was a simple matter of experimental design, he says. © 2017 Macmillan Publishers Limited

Keyword: Learning & Memory; Hearing
Link ID: 23097 - Posted: 01.13.2017

By Virginia Morell Only three known species go through menopause: killer whales, short-finned pilot whales, and humans. Two years ago, scientists suggested whales do this to focus their attention on the survival of their families rather than on birthing more offspring. But now this same team reports there’s another—and darker—reason: Older females enter menopause because their eldest daughters begin having calves, leading to fights over resources. The findings might also apply to humans, the scientists say. “What an interesting paper,” says Phyllis Lee, a behavioral ecologist at the University of Stirling in the United Kingdom, who was not involved in the study. “It brings two perspectives on menopause neatly together, and provides an elegant model for its rarity.” The new work came about when Darren Croft, a behavioral ecologist at the University of Exeter in the United Kingdom, and his colleagues looked back on their 2015 killer whale menopause study. “That showed how they helped and why they lived so long after menopause, but it didn’t explain why they stop reproducing,” he says, noting that in other species, such as elephants, older females also share wisdom and knowledge with their daughters, but continue to have calves. © 2017 American Association for the Advancement of Science.

Keyword: Hormones & Behavior; Sexual Behavior
Link ID: 23096 - Posted: 01.13.2017

By Peter Godfrey-Smith Adapted from Other Minds: The Octopus, the Sea and the Deep Origins of Consciousness, by Peter Godfrey-Smith. Copyright © 2016 by Peter Godfrey-Smith. Someone is watching you, intently, but you can't see them. Then you notice, drawn somehow by their eyes. You're amid a sponge garden, the seafloor scattered with shrublike clumps of bright orange sponge. Tangled in one of these sponges and the gray-green seaweed around it is an animal about the size of a cat. Its body seems to be everywhere and nowhere. The only parts you can keep a fix on are a small head and the two eyes. As you make your way around the sponge, so, too, do those eyes, keeping their distance, keeping part of the sponge between the two of you. The creature's color perfectly matches the seaweed, except that some of its skin is folded into tiny, towerlike peaks with tips that match the orange of the sponge. Eventually it raises its head high, then rockets away under jet propulsion. A second meeting with an octopus: this one is in a den. Shells are strewn in front, arranged with some pieces of old glass. You stop in front of its house, and the two of you look at each other. This one is small, about the size of a tennis ball. You reach forward a hand and stretch out one finger, and one octopus arm slowly uncoils and comes out to touch you. The suckers grab your skin, and the hold is disconcertingly tight. It tugs your finger, tasting it as it pulls you gently in. The arm is packed with sensors, hundreds of them in each of the dozens of suckers. The arm itself is alive with neurons, a nest of nervous activity. Behind the arm, large round eyes watch you the whole time. © 2017 Scientific American

Keyword: Learning & Memory; Evolution
Link ID: 23095 - Posted: 01.13.2017