Links for Keyword: Learning & Memory

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 834

By David Noonan It was the day before Christmas, and the normally busy MIT laboratory on Vassar Street in Cambridge was quiet. But creatures were definitely stirring, including a mouse that would soon be world famous. Steve Ramirez, a 24-year-old doctoral student at the time, placed the mouse in a small metal box with a black plastic floor. Instead of curiously sniffing around, though, the animal instantly froze in terror, recalling the experience of receiving a foot shock in that same box. It was a textbook fear response, and if anything, the mouse’s posture was more rigid than Ramirez had expected. Its memory of the trauma must have been quite vivid. Which was amazing, because the memory was bogus: The mouse had never received an electric shock in that box. Rather, it was reacting to a false memory that Ramirez and his MIT colleague Xu Liu had planted in its brain. “Merry Freaking Christmas,” read the subject line of the email Ramirez shot off to Liu, who was spending the 2012 holiday in Yosemite National Park. The observation culminated more than two years of a long-shot research effort and supported an extraordinary hypothesis: Not only was it possible to identify brain cells involved in the encoding of a single memory, but those specific cells could be manipulated to create a whole new “memory” of an event that never happened. “It’s a fantastic feat,” says Howard Eichenbaum, a leading memory researcher and director of the Center for Neuroscience at Boston University, where Ramirez did his undergraduate work. “It’s a real breakthrough that shows the power of these techniques to address fundamental questions about how the brain works.” In a neuroscience breakthrough, the duo implanted a false memory in a mouse

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20418 - Posted: 12.16.2014

By Gary Stix Our site recently ran a great story about how brain training really doesn’t endow you instantly with genius IQ. The games you play just make you better at playing those same games. They aren’t a direct route to a Mensa membership. Just a few days before that story came out—Proceedings of the National Academy of Sciences—published a report that suggested that playing action video games, Call of Duty: Black Ops II and the like—actually lets gamers learn the essentials of a particular visual task (the orientation of a Gabor signal—don’t ask) more rapidly than non-gamers, a skill that has real-world relevance beyond the confines of the artificial reality of the game itself. As psychologists say, it has “transfer effects.” Gamers appear to have learned how to do stuff like home in quickly on a target or multitask better than those who inhabit the non-gaming world. Their skills might, in theory, make them great pilots or laparoscopic surgeons, not just high scorers among their peers. Action video games are not billed as brain training, but both Call of Duty and nominally accredited training programs like Lumosity are both structured as computer games. So that leads to the question of what’s going on here? Every new finding about brain training as B.S. appears to be contradicted by another that points to the promise of cognitive exercise, if that’s what you call a session with Call of Duty. It may boil down to a realization that the whole story about exercising your neurons to keep the brain supple may be a lot less simple than proponents make it out to be. © 2014 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20409 - Posted: 12.13.2014

|By Bret Stetka When University of Bonn psychologist Monika Eckstein designed her latest published study, the goal was simple: administer a hormone into the noses of 62 men in hopes that their fear would go away. And for the most part, it did. The hormone was oxytocin, often called our “love hormone” due to its crucial role in mother-child relationships, social bonding, and intimacy (levels soar during sex). But it also seems to have a significant antianxiety effect. Give oxytocin to people with certain anxiety disorders, and activity in the amygdala—the primary fear center in human and other mammalian brains, two almond-shaped bits of brain tissue sitting deep beneath our temples—falls. The amygdala normally buzzes with activity in response to potentially threatening stimuli. When an organism repeatedly encounters a stimulus that at first seemed frightening but turns out to be benign—like, say, a balloon popping—a brain region called the prefrontal cortex inhibits amygdala activity. But in cases of repeated presentations of an actual threat, or in people with anxiety who continually perceive a stimulus as threatening, amygdala activity doesn’t subside and fear memories are more easily formed. To study the effects of oxytocin on the development of these fear memories, Eckstein and her colleagues first subjected study participants to Pavlovian fear conditioning, in which neutral stimuli (photographs of faces and houses) were sometimes paired with electric shocks. Subjects were then randomly assigned to receive either a single intranasal dose of oxytocin or a placebo. Thirty minutes later they received functional MRI scans while undergoing simultaneous fear extinction therapy, a standard approach to anxiety disorders in which patients are continually exposed to an anxiety-producing stimulus until they no longer find it stressful. In this case they were again exposed to images of faces and houses, but this time minus the electric shocks. © 2014 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory, Learning, and Development
Link ID: 20397 - Posted: 12.06.2014

By CHRISTOPHER F. CHABRIS and DANIEL J. SIMONS NEIL DEGRASSE TYSON, the astrophysicist and host of the TV series “Cosmos,” regularly speaks to audiences on topics ranging from cosmology to climate change to the appalling state of science literacy in America. One of his staple stories hinges on a line from President George W. Bush’s speech to Congress after the 9/11 terrorist attacks. In a 2008 talk, for example, Dr. Tyson said that in order “to distinguish we from they” — meaning to divide Judeo-Christian Americans from fundamentalist Muslims — Mr. Bush uttered the words “Our God is the God who named the stars.” Dr. Tyson implied that President Bush was prejudiced against Islam in order to make a broader point about scientific awareness: Two-thirds of the named stars actually have Arabic names, given to them at a time when Muslims led the world in astronomy — and Mr. Bush might not have said what he did if he had known this fact. This is a powerful example of how our biases can blind us. But not in the way Dr. Tyson thought. Mr. Bush wasn’t blinded by religious bigotry. Instead, Dr. Tyson was fooled by his faith in the accuracy of his own memory. In his post-9/11 speech, Mr. Bush actually said, “The enemy of America is not our many Muslim friends,” and he said nothing about the stars. Mr. Bush had indeed once said something like what Dr. Tyson remembered; in 2003 Mr. Bush said, in tribute to the astronauts lost in the Columbia space shuttle explosion, that “the same creator who names the stars also knows the names of the seven souls we mourn today.” Critics pointed these facts out; some accused Dr. Tyson of lying and argued that the episode should call into question his reliability as a scientist and a public advocate. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20387 - Posted: 12.03.2014

|By David Z. Hambrick If you’ve spent more than about 5 minutes surfing the web, listening to the radio, or watching TV in the past few years, you will know that cognitive training—better known as “brain training”—is one of the hottest new trends in self improvement. Lumosity, which offers web-based tasks designed to improve cognitive abilities such as memory and attention, boasts 50 million subscribers and advertises on National Public Radio. Cogmed claims to be “a computer-based solution for attention problems caused by poor working memory,” and BrainHQ will help you “make the most of your unique brain.” The promise of all of these products, implied or explicit, is that brain training can make you smarter—and make your life better. Yet, according to a statement released by the Stanford University Center on Longevity and the Berlin Max Planck Institute for Human Development, there is no solid scientific evidence to back up this promise. Signed by 70 of the world’s leading cognitive psychologists and neuroscientists, the statement minces no words: "The strong consensus of this group is that the scientific literature does not support claims that the use of software-based “brain games” alters neural functioning in ways that improve general cognitive performance in everyday life, or prevent cognitive slowing and brain disease." The statement also cautions that although some brain training companies “present lists of credentialed scientific consultants and keep registries of scientific studies pertinent to cognitive training…the cited research is [often] only tangentially related to the scientific claims of the company, and to the games they sell.” © 2014 Scientific American,

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20380 - Posted: 12.02.2014

by Andy Coghlan What would Stewart Little make of it? Mice have been created whose brains are half human. As a result, the animals are smarter than their siblings. The idea is not to mimic fiction, but to advance our understanding of human brain diseases by studying them in whole mouse brains rather than in dishes. The altered mice still have mouse neurons – the "thinking" cells that make up around half of all their brain cells. But practically all the glial cells in their brains, the ones that support the neurons, are human. "It's still a mouse brain, not a human brain," says Steve Goldman of the University of Rochester Medical Center in New York. "But all the non-neuronal cells are human." Goldman's team extracted immature glial cells from donated human fetuses. They injected them into mouse pups where they developed into astrocytes, a star-shaped type of glial cell. Within a year, the mouse glial cells had been completely usurped by the human interlopers. The 300,000 human cells each mouse received multiplied until they numbered 12 million, displacing the native cells. "We could see the human cells taking over the whole space," says Goldman. "It seemed like the mouse counterparts were fleeing to the margins." Astrocytes are vital for conscious thought, because they help to strengthen the connections between neurons, called synapses. Their tendrils (see image) are involved in coordinating the transmission of electrical signals across synapses. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20375 - Posted: 12.01.2014

By BENEDICT CAREY Quick: Which American president served before slavery ended, John Tyler or Rutherford B. Hayes? If you need Google to get the answer, you are not alone. (It is Tyler.) Collective cultural memory — for presidents, for example — works according to the same laws as the individual kind, at least when it comes to recalling historical names and remembering them in a given order, researchers reported on Thursday. The findings suggest that leaders who are well known today, like the elder President George Bush and President Bill Clinton, will be all but lost to public memory in just a few decades. The particulars from the new study, which tested Americans’ ability to recollect the names of past presidents, are hardly jaw-dropping: People tend to recall best the presidents who served recently, as well as the first few in the country’s history. They also remember those who navigated historic events, like the ending of slavery (Abraham Lincoln) and World War II (Franklin D. Roosevelt). But the broader significance of the report — the first to measure forgetfulness over a 40-year period, using a constant list — is that societies collectively forget according to the same formula as, say, a student who has studied a list of words. Culture imitates biology, even though the two systems work in vastly different ways. The new paper was published in the journal Science. “It’s an exciting study, because it mixes history and psychology and finds this one-on-one correspondence” in the way memory functions, said David C. Rubin, a psychologist at Duke University who was not involved in the research. The report is based on four surveys by psychologists now at Washington University in St. Louis, conducted from 1974 to 2014. In the first three, in 1974, 1991 and 2009, Henry L. Roediger III gave college students five minutes to write down as many presidents as they could remember, in order. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20364 - Posted: 11.29.2014

By Linda Searing THE QUESTION Keeping your brain active by working is widely believed to protect memory and thinking skills as we age. Does the type of work matter? THIS STUDY involved 1,066 people who, at an average age of 70, took a battery of tests to measure memory, processing speed and cognitive ability. The jobs they had held were rated by the complexity of dealings with people, data and things. Those whose main jobs required complex work, especially in dealings with people — such as social workers, teachers, managers, graphic designers and musicians — had higher cognitive scores than those who had held jobs requiring less-complex dealings, such as construction workers, food servers and painters. Overall, more-complex occupations were tied to higher cognitive scores, regardless of someone’s IQ, education or environment. WHO MAY BE AFFECTED? Older adults. Cognitive abilities change with age, so it can take longer to recall information or remember where you placed your keys. That is normal and not the same thing as dementia, which involves severe memory loss as well as declining ability to function day to day. Commonly suggested ways to maintain memory and thinking skills include staying socially active, eating healthfully and getting adequate sleep as well as such things as doing crossword puzzles, learning to play a musical instrument and taking varied routes to common destinations when driving.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20359 - Posted: 11.26.2014

By Gary Stix One area of brain science that has drawn intense interest in recent years is the study of what psychologists call reconsolidation—a ponderous technical term that, once translated, means giving yourself a second chance. Memories of our daily experience are formed, often during sleep, by inscribing—or “consolidating”—a record of what happened into neural tissue. Joy at the birth of a child or terror in response to a violent personal assault. A bad memory, once fixed, may replay again and again, turning toxic and all-consuming. For the traumatized, the desire to forget becomes an impossible dream. Reconsolidation allows for a do-over by drawing attention to the emotional and factual content of traumatic experience. In the safety of a therapist’s office, the patient lets demons return and then the goal is to reshape karma to form a new more benign memory. The details remain the same, but the power of the old terror to overwhelm and induce psychic paralysis begins to subside. The clinician would say that the memory has undergone a change in “valence”—from negative to neutral and detached. The trick to undertaking successful reconsolidation requires revival of these memories without provoking panic and chaos that can only makes things worse. Talk therapies and psycho-pharm may not be enough. One new idea just starting to be explored is the toning down of memories while a patient is fast asleep © 2014 Scientific American,

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20357 - Posted: 11.25.2014

By MAX BEARAK MUMBAI, India — The young man sat cross-legged atop a cushioned divan on an ornately decorated stage, surrounded by other Jain monks draped in white cloth. His lip occasionally twitched, his hands lay limp in his lap, and for the most part his eyes were closed. An announcer repeatedly chastised the crowd for making even the slightest noise. From daybreak until midafternoon, members of the audience approached the stage, one at a time, to show the young monk a random object, pose a math problem, or speak a word or phrase in one of at least six different languages. He absorbed the miscellany silently, letting it slide into his mind, as onlookers in their seats jotted everything down on paper. After six hours, the 500th and last item was uttered — it was the number 100,008. An anxious hush descended over the crowd. And the monk opened his eyes and calmly recalled all 500 items, in order, detouring only once to fill in a blank he had momentarily set aside. When he was done, and the note-keepers in the audience had confirmed his achievement, the tense atmosphere dissolved and the announcer led the crowd in a series of triumphant chants. The opportunity to witness the feat of memory drew a capacity crowd of 6,000 to the Sardar Vallabhbhai Patel stadium in Mumbai on Sunday. The exhibition was part of a campaign to encourage schoolchildren to use meditation to build brainpower, as Jain monks have done for centuries in India, a country drawn both toward ancient religious practices and more recent ambitions. But even by Jain standards, the young monk — Munishri Ajitchandrasagarji, 24 — is something special. His guru, P. P. Acharya Nayachandrasagarji, said no other monk in many years had come close to his ability. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 20334 - Posted: 11.20.2014

By Gretchen Reynolds Exercise seems to be good for the human brain, with many recent studies suggesting that regular exercise improves memory and thinking skills. But an interesting new study asks whether the apparent cognitive benefits from exercise are real or just a placebo effect — that is, if we think we will be “smarter” after exercise, do our brains respond accordingly? The answer has significant implications for any of us hoping to use exercise to keep our minds sharp throughout our lives. In experimental science, the best, most reliable studies randomly divide participants into two groups, one of which receives the drug or other treatment being studied and the other of which is given a placebo, similar in appearance to the drug, but not containing the active ingredient. Placebos are important, because they help scientists to control for people’s expectations. If people believe that a drug, for example, will lead to certain outcomes, their bodies may produce those results, even if the volunteers are taking a look-alike dummy pill. That’s the placebo effect, and its occurrence suggests that the drug or procedure under consideration isn’t as effective as it might seem to be; some of the work is being done by people’s expectations, not by the medicine. Recently, some scientists have begun to question whether the apparently beneficial effects of exercise on thinking might be a placebo effect. While many studies suggest that exercise may have cognitive benefits, those experiments all have had a notable scientific limitation: They have not used placebos. This issue is not some abstruse scientific debate. If the cognitive benefits from exercise are a result of a placebo effect rather than of actual changes in the brain because of the exercise, then those benefits could be ephemeral and unable in the long term to help us remember how to spell ephemeral. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20329 - Posted: 11.20.2014

Maanvi Singh How does a sunset work? We love to look at one, but Jolanda Blackwell wanted her eighth-graders to really think about it, to wonder and question. So Blackwell, who teaches science at Oliver Wendell Holmes Junior High in Davis, Calif., had her students watch a video of a sunset on YouTube as part of a physics lesson on motion. "I asked them: 'So what's moving? And why?' " Blackwell says. The students had a lot of ideas. Some thought the sun was moving; others, of course, knew that a sunset is the result of the Earth spinning around on its axis. Once she got the discussion going, the questions came rapid-fire. "My biggest challenge usually is trying to keep them patient," she says. "They just have so many burning questions." Students asking questions and then exploring the answers. That's something any good teacher lives for. And at the heart of it all is curiosity. Blackwell, like many others teachers, understands that when kids are curious, they're much more likely to stay engaged. But why? What, exactly, is curiosity and how does it work? A study published in the October issue of the journal Neuron suggests that the brain's chemistry changes when we become curious, helping us better learn and retain information. © 2014 NPR

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 20271 - Posted: 11.03.2014

By Eric Niiler Has our reliance on iPhones and other instant-info devices harmed our memories? Michael Kahana, a University of Pennsylvania psychology professor who studies memory, says maybe: “We don’t know what the long-lasting impact of this technology will be on our brains and our ability to recall.” Kahana, 45, who has spent the past 20 years looking at how the brain creates memories, is leading an ambitious four-year Pentagon project to build a prosthetic memory device that can be implanted into human brains to help veterans with traumatic brain injuries. He spoke by telephone with The Post about what we can do to preserve or improve memory. Practicing the use of your memory is helpful. The other thing which I find helpful is sleep, which I don’t get enough of. As a general principle, skills that one continues to practice are skills that one will maintain in the face of age-related changes in cognition. [As for all those brain games available], I am not aware of any convincing data that mental exercises have a more general effect other than maintaining the skills for those exercises. I think the jury is out on that. If you practice doing crossword puzzles, you will preserve your ability to do crossword puzzles. If you practice any other cognitive skill, you will get better at that as well. Michael Kahana once could name every student in a class of 100. Now, says the University of Pennsylvania psychology professor who studies memory, “I find it too difficult even with a class of 20.” (From Michael Kahana)

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20249 - Posted: 10.28.2014

By PAM BELLUCK Science edged closer on Sunday to showing that an antioxidant in chocolate appears to improve some memory skills that people lose with age. In a small study in the journal Nature Neuroscience, healthy people, ages 50 to 69, who drank a mixture high in antioxidants called cocoa flavanols for three months performed better on a memory test than people who drank a low-flavanol mixture. On average, the improvement of high-flavanol drinkers meant they performed like people two to three decades younger on the study’s memory task, said Dr. Scott A. Small, a neurologist at Columbia University Medical Center and the study’s senior author. They performed about 25 percent better than the low-flavanol group. “An exciting result,” said Craig Stark, a neurobiologist at the University of California, Irvine, who was not involved in the research. “It’s an initial study, and I sort of view this as the opening salvo.” He added, “And look, it’s chocolate. Who’s going to complain about chocolate?” The findings support recent research linking flavanols, especially epicatechin, to improved blood circulation, heart health and memory in mice, snails and humans. But experts said the new study, although involving only 37 participants and partly funded by Mars Inc., the chocolate company, goes further and was a well-controlled, randomized trial led by experienced researchers. Besides improvements on the memory test — a pattern recognition test involving the kind of skill used in remembering where you parked the car or recalling the face of someone you just met — researchers found increased function in an area of the brain’s hippocampus called the dentate gyrus, which has been linked to this type of memory. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20246 - Posted: 10.27.2014

By Gary Stix Scott Small, a professor of neurology at Columbia University’s College of Physicians and Surgeons, researches Alzheimer’s, but he also studies the memory loss that occurs during the normal aging process. Research on the commonplace “senior moments” focuses on the hippocampus, an area of the brain involved with formation of new memories. In particular, one area of the hippocampus, the dentate gyrus, which helps distinguish one object from another, has lured researchers on age-related memory problems. In a study by Small and colleagues published Oct. 26 in Nature Neuroscience, naturally occurring chemicals in cocoa increased dentate gyrus blood flow. Psychological testing showed that the pattern recognition abilities of a typical 60-year-old on a high dose of the cocoa phytochemicals in the 37-person study matched those of a 30-or 40-year old after three months. The study received support from the food company Mars, but Small cautions against going out to gorge on Snickers Bars, as most of the beneficial chemicals, or flavanols, are removed when processing cocoa. An edited transcript of an interview with Small follows: Can you explain what you found in your study? The main motive of the study was to causally establish an anatomical source of age-related memory loss. A number of labs have shown in the last 10 years that there’s one area of the brain called the dentate gyrus that is linked to the aging process. But no one has tested that concept. Until now the observations have been correlational. There is decreased function in that region and, to prove causation, we were trying to see if we could reverse that. © 2014 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 20245 - Posted: 10.27.2014

By PAUL VITELLO Most adults do not remember anything before the age of 3 or 4, a gap that researchers had chalked up to the vagaries of the still-developing infant brain. By some accounts, the infant brain was just not equipped to remember much. Textbooks referred to the deficiency as infant amnesia. Carolyn Rovee-Collier, a developmental psychologist at Rutgers University who died on Oct. 2 at 72, challenged the theory, showing in a series of papers in the early 1980s that babies remember plenty. A 3-month-old can recall what he or she learned yesterday, she found, and a 9-month-old can remember a game for as long as a month and a half. She cited experiments suggesting that memory processes in adults and infants are virtually the same, and argued that infant memories were never lost. They just become increasingly harder to retrieve as the child grows, learns language and loses touch with the visual triggers that had kept those memories sharp — a view from between the bars of a crib, say, or the view of the floor as a crawler, not a toddler, sees it. Not all of Dr. Rovee-Collier’s theories won over the psychology establishment, which still uses the infant amnesia concept to explain why people do not remember life as a baby. But her insights about an infant’s short-term memory and ability to learn have been widely accepted, and have helped recast scientific thinking about the infant mind over the past 30 years. Since the first of her 200 papers was published, infant cognitive studies has undergone a boom in university programs around the country. It was a field that had been largely unexplored in any systematic way by the giants of psychological theory. Freud and Jean Piaget never directly addressed the subject of infant memory. William James, considered the father of American psychology, once hazarded a guess that the human baby’s mind was a place of “blooming, buzzing confusion.” © 2014 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 20233 - Posted: 10.23.2014

By Josie Gurney-Read, Online Education Editor Myths about the brain and how it functions are being used to justify and promote teaching methods that are essentially “ineffective”, according to new research. The study, published today in Nature Reviews Neuroscience, began by presenting teachers in the UK, Turkey, Greece, China and the Netherlands, with seven myths about the brain and asked them whether they believed the myths to be true. According to the figures, over half of teachers in the UK, the Netherlands and China believe that children are less attentive after sugary drinks and snacks and over a quarter of teachers in the UK and Turkey believe that a pupil’s brain will shrink if they drink fewer than six to eight glasses of water a day. Furthermore, over 90 per cent of teachers in all countries believe that a student will learn better if they receive information in their preferred learning style – auditory, visual, kinaesthetic. This is despite the fact that there is "no convincing evidence to support this theory". Dr Paul Howard-Jones, author of the article from Bristol University’s Graduate School of Education, said that many teaching practices are “sold to teachers as based on neuroscience”. However, he added that, in many cases, these ideas have “no educational value and are often associated with poor practice in the classroom.” The prevalence of many of these “neuromyths” in different countries, could reflect the absence of any teacher training in neuroscience, the research concludes. Dr Howard-Jones warned that this could mean that many teachers are “ill-prepared to be critical of ideas and educational programmes that claim a neuroscientific basis.” © Copyright of Telegraph Media Group Limited 2014

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20207 - Posted: 10.16.2014

Ann Robinson Neuroscience research got a huge boost last week with news of Professor John O’Keefe’s Nobel prize for work on the “brain’s internal GPS system”. It is an exciting new part of the giant jigsaw puzzle of our brain and how it functions. But how does cutting-edge neuroscience research translate into practical advice about how to pass exams, remember names, tot up household bills and find where the hell you left the car in a crowded car park? O’Keefe’s prize was awarded jointly with Swedish husband and wife team Edvard and May-Britt Moser for their discovery of “place and grid cells” that allow rats to chart where they are. When rats run through a new environment, these cells show increased activity. The same activity happens much faster while the rats are asleep, as they replay the new route. We already knew that the part of the brain known as the hippocampus was involved in spatial awareness in birds and mammals, and this latest work on place cells sheds more light on how we know where we are and where we’re going. In 2000, researchers at University College London led by Dr Eleanor Maguire showed that London taxi drivers develop a pumped-up hippocampus after years of doing the knowledge and navigating the backstreets of the city. MRI scans showed that cabbies start off with bigger hippocampuses than average, and that the area gets bigger the longer they do the job. As driver David Cohen said at the time to BBC News: “I never noticed part of my brain growing – it makes you wonder what happened to the rest of it!” © 2014 Guardian News and Media Limited

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 20199 - Posted: 10.13.2014

By Carl T. Hall Even Clayton Kershaw, the Los Angeles Dodgers’ pitching ace, makes mistakes now and then. And although very few of his mistakes seemed to do Giants hitters much good this season, a team of San Francisco scientists found a way to take full advantage. A new study by UCSF researchers revealed a tendency of the brain’s motion-control system to run off track in a predictable way when we try to perform the same practiced movement over and over. The scientists found the phenomenon first in macaque monkeys, then documented exactly the same thing in Kershaw’s game video. Although he struggled in a playoff appearance last week, the left-hander’s pitching performance during the regular season was among the best on record. It included a minuscule 1.77 earned run average, a nearly flawless no-hitter in June, 239 strikeouts and only 31 walks. He led the major leagues with 10.85 strikeouts per nine innings pitched. In what turned out to be an early warm-up to the playoffs, UCSF scientists Kris Chaisanguanthum, Helen Shen and Philip Sabes delved into the motor-control system of the primate brain. Their study, published in the Journal of Neuroscience, could help design better prosthetic limbs — or make robots that move less like robots and more like Kershaw. Unlike most machines, our brains seem to never stop trying to adapt to new information, making subtle adjustments each time we repeat a particular movement no matter how practiced. This trial-by-trial form of learning has obvious advantages in a fast-changing world, but also seems prone to drift away from spot-on accuracy as those small adjustments go too far.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20193 - Posted: 10.11.2014

|By Tori Rodriguez Imagining your tennis serve or mentally running through an upcoming speech might help you perform better, studies have shown, but the reasons why have been unclear. A common theory is that mental imagery activates some of the same neural pathways involved in the actual experience, and a recent study in Psychological Science lends support to that idea. Scientists at the University of Oslo conducted five experiments investigating whether eye pupils adjust to imagined light as they do to real light, in an attempt to see whether mental imagery can trigger automatic neural processes such as pupil dilation. Using infrared eye-tracking technology, they measured the diameter of participants' pupils as they viewed shapes of varying brightness and as they imagined the shapes they viewed or visualized a sunny sky or a dark room. In response to imagined light, pupils constricted 87 percent as much as they did during actual viewing, on average; in response to imagined darkness, pupils dilated to 56 percent of their size during real perception. Two other experiments ruled out the possibility that participants were able to adjust their pupil size at will or that pupils were changing in response to mental effort, which can cause dilation. The finding helps to explain why imagined rehearsals can improve your game. The mental picture activates and strengthens the very neural circuits—even subconscious ones that control automated processes like pupil dilation—that you will need to recruit when it is time to perform. © 2014 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 20176 - Posted: 10.08.2014