Links for Keyword: Learning & Memory

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 809

Wild marmosets in the Brazilian forest can learn quite successfully from video demonstrations featuring other marmosets, Austrian scientists have reported, showing not only that marmosets are even better learners than previously known, but that video can be used successfully in experiments in the wild. Tina Gunhold, a cognitive biologist at the University of Vienna, had worked with a population of marmoset monkeys in a bit of Brazilian forest before this particular experiment. The forest is not wilderness. It lies near some apartment complexes, and the marmosets are somewhat used to human beings. But the monkeys are wild, and each extended family group has its own foraging territory. Dr. Gunhold and her colleagues reported in the journal Biology Letters this month that they had tested 12 family groups, setting up a series of video monitors, each with a kind of complicated box that they called an “artificial fruit.” All the boxes contained food. Six of the monitors showed just an unchanging image of a marmoset near a similar box. Three of them showed a marmoset opening the box by pulling a drawer, and three others a marmoset lifting a lid to get at the food. Marmosets are very territorial and would not tolerate a strange individual on their turf, but the image of a strange marmoset on video didn’t seem to bother them. Individual marmosets “differed in their reactions to the video,” Dr. Gunhold said. “Some were more shy, some more bold. The younger ones were more attracted to the video, perhaps because of greater curiosity.” © 2014 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20138 - Posted: 09.30.2014

By David Z. Hambrick, Fernanda Ferreira, and John M. Henderson A decade ago, Magnus Carlsen, who at the time was only 13 years old, created a sensation in the chess world when he defeated former world champion Anatoly Karpov at a chess tournament in Reykjavik, Iceland, and the next day played then-top-rated Garry Kasparov—who is widely regarded as the best chess player of all time—to a draw. Carlsen’s subsequent rise to chess stardom was meteoric: grandmaster status later in 2004; a share of first place in the Norwegian Chess Championship in 2006; youngest player ever to reach World No. 1 in 2010; and highest-rated player in history in 2012. What explains this sort of spectacular success? What makes someone rise to the top in music, games, sports, business, or science? This question is the subject of one of psychology’s oldest debates. In the late 1800s, Francis Galton—founder of the scientific study of intelligence and a cousin of Charles Darwin—analyzed the genealogical records of hundreds of scholars, artists, musicians, and other professionals and found that greatness tends to run in families. For example, he counted more than 20 eminent musicians in the Bach family. (Johann Sebastian was just the most famous.) Galton concluded that experts are “born.” Nearly half a century later, the behaviorist John Watson countered that experts are “made” when he famously guaranteed that he could take any infant at random and “train him to become any type of specialist [he] might select—doctor, lawyer, artist, merchant-chief and, yes, even beggar-man and thief, regardless of his talents.” One player needed 22 times more deliberate practice than another player to become a master. © 2014 The Slate Group LLC.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20136 - Posted: 09.30.2014

by Elijah Wolfson @elijahwolfson The class was the most difficult of the fall 2013 semester, and J.D. Leadam had missed all but one lecture. His grandfather’s health had worsened, and he left San Jose State, where he was studying for a degree in business, to return home to Los Angeles to help out. Before he knew it, midterm exams had almost arrived. At this point, Leadam had, for a while, been playing around with transcranial direct-current stimulation, or tDCS, an experimental treatment for all sorts of health issues that, at its most basic, involves running a very weak electric current through the brain. When he first came across tDCS, Leadam was immediately intrigued but thought, “There’s no way I’m gonna put electrodes on my head. It’s just not going to happen.” After extensive research, though, he changed his mind. He looked into buying a device online, but there wasn’t much available — just one extremely expensive machine and then a bare-bones $40 device that didn’t even have a switch. So he dug around online and figured he could build one himself. He bought all the pieces he needed and put it together. He tried it a few times, but didn’t notice much, so he put it aside. But now, with the test looming, he picked it back up. The professor had written a book, and Leadam knew all the information he’d be tested on was written in its pages. “But I’m an auditory learner,” he said, “so I knew it wouldn’t work to just read it.” He strapped on the device, turned it on and read the chapters. “Nothing,” he thought. But when he got to the classroom and put pen to paper, he had a revelation. “I could remember concepts down to the exact paragraphs in the textbook,” Leadam said. “I actually ended up getting an A on the test. I couldn’t believe it.”

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 20130 - Posted: 09.29.2014

By Melissa Dahl Recently, I was visiting my family in Seattle, and we were doing that thing families do: retelling old stories. As we talked, a common theme emerged. My brother hardly remembered anything from our childhood, even the stories in which he was the star player. (That time he fell down the basement steps and needed stitches in the ER? Nope. That panicky afternoon when we all thought he’d disappeared, only to discover he’d been hiding in his room, and then fell asleep? Nothing.) “Boys never remember anything,” my mom huffed. She’s right. Researchers are finding some preliminary evidence that women are indeed better at recalling memories, especially autobiographical ones. Girls and women tend to recall these memories faster and with more specific details, and some studies have demonstrated that these memories tend to be more accurate, too, when compared to those of boys and men. And there’s an explanation for this: It could come down to the way parents talk to their daughters, as compared to their sons, when the children are developing memory skills. To understand this apparent gender divide in recalling memories, it helps to start with early childhood—specifically, ages 2 to 6. Whether you knew it or not, during these years, you learned how to form memories, and researchers believe this happens mostly through conversations with others, primarily our parents. These conversations teach us how to tell our own stories, essentially; when a mother asks her child for more details about something that happened that day in school, for example, she is implicitly communicating that these extra details are essential parts to the story. © 2014 The Slate Group LLC

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 20100 - Posted: 09.22.2014

By Maria Konnikova At the turn of the twentieth century, Ivan Pavlov conducted the experiments that turned his last name into an adjective. By playing a sound just before he presented dogs with a snack, he taught them to salivate upon hearing the tone alone, even when no food was offered. That type of learning is now called classical—or Pavlovian—conditioning. Less well known is an experiment that Pavlov was conducting at around the same time: when some unfortunate canines heard the same sound, they were given acid. Just as their luckier counterparts had learned to salivate at the noise, these animals would respond by doing everything in their power to get the imagined acid out of their mouths, each “shaking its head violently, opening its mouth and making movements with its tongue.” For many years, Pavlov’s classical conditioning findings overshadowed the darker version of the same discovery, but, in the nineteen-eighties, the New York University neuroscientist Joseph LeDoux revived the technique to study the fear reflex in rats. LeDoux first taught the rats to associate a certain tone with an electric shock so that they froze upon hearing the tone alone. In essence, the rat had formed a new memory—that the tone signifies pain. He then blunted that memory by playing the tone repeatedly without following it with a shock. After multiple shock-less tones, the animals ceased to be afraid. Now a new generation of researchers is trying to figure out the next logical step: re-creating the same effects within the brain, without deploying a single tone or shock. Is memory formation now understood well enough that memories can be implanted and then removed absent the environmental stimulus?

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20097 - Posted: 09.19.2014

By Elizabeth Pennisi "What's for dinner?" The words roll off the tongue without even thinking about it—for adults, at least. But how do humans learn to speak as children? Now, a new study in mice shows how a gene, called FOXP2, implicated in a language disorder may have changed between humans and chimps to make learning to speak possible—or at least a little easier. As a uniquely human trait, language has long baffled evolutionary biologists. Not until FOXP2 was linked to a genetic disorder that caused problems in forming words could they even begin to study language’s roots in our genes. Soon after that discovery, a team at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, discovered that just two bases, the letters that make up DNA, distinguished the human and chimp versions of FOXP2. To try to determine how those changes influenced the gene's function, that group put the human version of the gene in mice. In 2009, they observed that these "humanized" mice produced more frequent and complex alarm calls, suggesting the human mutations may have been involved in the evolution of more complex speech. Another study showed that humanized mice have different activity in the part of the brain called the striatum, which is involved in learning, among other tasks. But the details of how the human FOXP2 mutations might affect real-world learning remained murky. To solve the mystery, the Max Planck researchers sent graduate student Christiane Schreiweis to work with Ann Graybiel, a neuroscientist at the Massachusetts Institute of Technology in Cambridge. She's an expert in testing mouse smarts by seeing how quickly they can learn to find rewards in mazes. © 2014 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 15: Language and Our Divided Brain
Link ID: 20081 - Posted: 09.16.2014

By BENEDICT CAREY Imagine that on Day 1 of a difficult course, before you studied a single thing, you got hold of the final exam. The motherlode itself, full text, right there in your email inbox — attached mistakenly by the teacher, perhaps, or poached by a campus hacker. No answer key, no notes or guidelines. Just the questions. Would that help you study more effectively? Of course it would. You would read the questions carefully. You would know exactly what to focus on in your notes. Your ears would perk up anytime the teacher mentioned something relevant to a specific question. You would search the textbook for its discussion of each question. If you were thorough, you would have memorized the answer to every item before the course ended. On the day of that final, you would be the first to finish, sauntering out with an A+ in your pocket. And you would be cheating. But what if, instead, you took a test on Day 1 that was just as comprehensive as the final but not a replica? You would bomb the thing, for sure. You might not understand a single question. And yet as disorienting as that experience might feel, it would alter how you subsequently tuned into the course itself — and could sharply improve your overall performance. This is the idea behind pretesting, one of the most exciting developments in learning-­science. Across a variety of experiments, psychologists have found that, in some circumstances, wrong answers on a pretest aren’t merely useless guesses. Rather, the attempts themselves change how we think about and store the information contained in the questions. On some kinds of tests, particularly multiple-choice, we benefit from answering incorrectly by, in effect, priming our brain for what’s coming later. That is: The (bombed) pretest drives home the information in a way that studying as usual does not. We fail, but we fail forward. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20043 - Posted: 09.08.2014

by Sandrine Ceurstemont Screening an instructional monkey movie in a forest reveals that marmosets do not only learn from family members: they also copy on-screen strangers. It is the first time such a video has been used for investigations in the wild. Tina Gunhold at the University of Vienna, Austria, and her colleagues filmed a common marmoset retrieving a treat from a plastic device. They then took the device to the Atlantic Forest near Aldeia in Pernambuco, Brazil, and showed the movie to wild marmosets there. Although monkeys are known to learn from others in their social group, especially when they are youngMovie Camera, little is known about their ability to learn from monkeys that do not belong to the same group. Marmosets are territorial, so the presence of an outsider – even a virtual one on a screen – could provoke an attack. "We didn't know if wild marmosets would be frightened of the video box but actually they were all attracted to it," says Gunhold. Compared to monkeys shown a static image of the stranger, video-watching marmosets were more likely to manipulate the device, typically copying the technique shown (see video). Young monkeys spent more time near the video box than older family members, suggesting that they found the movie more engaging – although as soon as one monkey mastered the task, it was impossible to tell whether the others were learning from the video or from their relative. "We think it's a combination of both," says Gunhold. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20035 - Posted: 09.04.2014

By Virginia Morell Figaro, a Goffin’s cockatoo (Cacatua goffini) housed at a research lab in Austria, stunned scientists a few years ago when he began spontaneously making stick tools from the wooden beams of his aviary. The Indonesian parrots are not known to use tools in the wild, yet Figaro confidently employed his sticks to rake in nuts outside his wire enclosure. Wondering if Figaro’s fellow cockatoos could learn by watching his methods, scientists set up experiments for a dozen of them. One group watched as Figaro used a stick to reach a nut placed inside an acrylic box with a wire-mesh front panel; others saw “ghost demonstrators”—magnets that were hidden beneath a table and that the researchers controlled—displace the treats. Each bird was then placed in front of the box, with a stick just like Figaro’s lying nearby. The group of three males and three females that had watched Figaro also picked up the sticks, and made some efforts reminiscent of his actions. But only those three males, such as the one in the photo above, became proficient with the tool and successfully retrieved the nuts, the scientists report online today in the Proceedings of the Royal Society B. None of the females did so; nor did any of the birds, male or female, in the ghost demonstrator group. Because the latter group failed entirely, the study shows that the birds need living teachers, the scientists say. Intriguingly, the clever observers developed a better technique than Figaro’s for getting the treat. Thus, the cockatoos weren’t copying his exact actions, but emulating them—a distinction that implies some degree of creativity. Two of the successful cockatoos were later given a chance to make a tool of their own. One did so immediately (as in the video above), and the other succeeded after watching Figaro. It may be that by learning to use a tool, the birds are stimulated to make tools of their own, the scientists say. © 2014 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20027 - Posted: 09.03.2014

by Chris Higgins Neuroscientists have pinpointed where imagination hides in the brain and found it to be functionally distinct from related processes such as memory. The team from Brigham Young University (BYU), Utah-- including research proposer, undergraduate student Stefania Ashby -- used functional Magnetic Resonance Imaging (fMRI) to observe brain activity when subjects were remembering specific experiences and putting themselves in novel ones. "I was thinking a lot about planning for my own future and imagining myself in the future, and I started wondering how memory and imagination work together," Ashby said. "I wondered if they were separate or if imagination is just taking past memories and combining them in different ways to form something I've never experienced before." The two processes of remembering and imagining have been previously proposed to be the same cognitive task, and so thought to be carried out by the same areas of the brain. However, the experiments derived by Ashby and her mentor (and coauthor) BYU professor Brock Kirwan have refuted these ideas. The studies -- published in the journal Cognitive Neuroscience -- required participants to submit 60 photographs of previous life events and use them to create prompts for the "remember" sections. They then carried out a questionnaire before putting the subject into the MRI scanner to determine what scenarios were the most novel to them and force them into imagination. Then, under fMRI testing, the subjects were prompted with various scenarios and the areas of their brain that became active during each scenario was correlated with each scene's familiarity -- pure memory, or imagination. © Condé Nast UK 2014

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 20026 - Posted: 09.03.2014

Memory can be boosted by using a magnetic field to stimulate part of the brain, a study has shown. The effect lasts at least 24 hours after the stimulation is given, improving the ability of volunteers to remember words linked to photos of faces. Scientists believe the discovery could lead to new treatments for loss of memory function caused by ageing, strokes, head injuries and early Alzheimer's disease. Dr Joel Voss, from Northwestern University in Chicago, said: "We show for the first time that you can specifically change memory functions of the brain in adults without surgery or drugs, which have not proven effective. "This non-invasive stimulation improves the ability to learn new things. It has tremendous potential for treating memory disorders." The scientists focused on associative memory, the ability to learn and remember relationships between unrelated items. An example of associative memory would be linking someone to a particular restaurant where you both once dined. It involves a network of different brain regions working in concert with a key memory structure called the hippocampus, which has been compared to an "orchestra conductor" directing brain activity. Stimulating the hippocampus caused the "musicians" – the brain regions – to "play" more in time, thereby tightening up their performance. A total of 16 volunteers aged 21-40 took part in the study, agreeing to undergo 20 minutes of transcranial magnetic stimulation (TMS) every day for five days. © 2014 Guardian News and Media Limited

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20015 - Posted: 08.30.2014

by Michael Slezak It's odourless, colourless, tasteless and mostly non-reactive – but it may help you forget. Xenon gas has been shown to erase fearful memories in mice, raising the possibility that it could be used to treat post-traumatic stress disorder (PTSD) if the results are replicated in a human trial next year. The method exploits a neurological process known as "reconsolidation". When memories are recalled, they seem to get re-encoded, almost like a new memory. When this process is taking place, the memories become malleable and can be subtly altered. This new research suggests that at least in mice, the reconsolidation process might be partially blocked by xenon, essentially erasing fearful memories. Among other things, xenon is used as an anaesthetic. Frozen in fear Edward Meloni and his colleagues at Harvard Medical School in Boston trained mice to be afraid of a sound by placing them in a cage and giving them an electric shock after the sound was played. Thereafter, if the mice heard the noise, they would become frightened and freeze. Later, the team played the sound and then gave the mice either a low dose of xenon gas for an hour or just exposed them to normal air. Mice that were exposed to xenon froze for less time in response to the sound than the other mice. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20014 - Posted: 08.30.2014

By PAM BELLUCK Memories and the feelings associated with them are not set in stone. You may have happy memories about your family’s annual ski vacation, but if you see a tragic accident on the slopes, those feelings may change. You might even be afraid to ski that mountain again. Now, using a technique in which light is used to switch neurons on and off, neuroscientists at the Massachusetts Institute of Technology appear to have unlocked some secrets about how the brain attaches emotions to memories and how those emotions can be adjusted. Their research, published Wednesday in the journal Nature, was conducted on mice, not humans, so the findings cannot immediately be translated to the treatment of patients. But experts said the experiments may eventually lead to more effective therapies for people with psychological problems such as depression, anxiety or post-traumatic stress disorder. “Imagine you can go in and find a particular traumatic memory and turn it off or change it somehow,” said David Moorman, an assistant professor of psychological and brain sciences at the University of Massachusetts Amherst, who was not involved in the research. “That’s still science fiction, but with this we’re getting a lot closer to it.” The M.I.T. scientists labeled neurons in the brains of mice with a light-sensitive protein and used pulses of light to switch the cells on and off, a technique called optogenetics. Then they identified patterns of neurons activated when mice created a negative memory or a positive one. A negative memory formed when mice received a mild electric shock to their feet; a positive one was formed when the mice, all male, were allowed to spend time with female mice. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20010 - Posted: 08.28.2014

by Penny Sarchet Memory is a fickle beast. A bad experience can turn a once-loved coffee shop or holiday destination into a place to be avoided. Now experiments in mice have shown how such associations can be reversed. When forming a memory of a place, the details of the location and the associated emotions are encoded in different regions of the brain. Memories of the place are formed in the hippocampus, whereas positive or negative associations are encoded in the amygdala. In experiments with mice in 2012, a group led by Susumo Tonegawa of the Massachusetts Institute of Technology managed to trigger the fear part of a memory associated with a location when the animals were in a different location. They used a technique known as optogenetics, which involves genetically engineering mice so that their brains produce a light-sensitive protein in response to a certain cue. In this case, the cue was the formation of the location memory. This meant the team could make the mouse recall the location just by flashing pulses of light down an optical fibre embedded in the skull. The mice were given electric shocks while their memories of the place were was being formed, so that the animals learned to associate that location with pain. Once trained, the mice were put in a new place and a pulse of light was flashed into their brains. This activated the neurons associated with the original location memory and the mice froze, terrified of a shock, demonstrating that the emotion associated with the original location could be induced by reactivating the memory of the place. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20009 - Posted: 08.28.2014

Learning is easier when it only requires nerve cells to rearrange existing patterns of activity than when the nerve cells have to generate new patterns, a study of monkeys has found. The scientists explored the brain’s capacity to learn through recordings of electrical activity of brain cell networks. The study was partly funded by the National Institutes of Health. “We looked into the brain and may have seen why it’s so hard to think outside the box,” said Aaron Batista, Ph.D., an assistant professor at the University of Pittsburgh and a senior author of the study published in Nature, with Byron Yu, Ph.D., assistant professor at Carnegie Mellon University, Pittsburgh. The human brain contains nearly 86 billion neurons, which communicate through intricate networks of connections. Understanding how they work together during learning can be challenging. Dr. Batista and his colleagues combined two innovative technologies, brain-computer interfaces and machine learning, to study patterns of activity among neurons in monkey brains as the animals learned to use their thoughts to move a computer cursor. “This is a fundamental advance in understanding the neurobiological patterns that underlie the learning process,” said Theresa Cruz, Ph.D., a program official at the National Center for Medical Rehabilitations Research at NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). “The findings may eventually lead to new treatments for stroke as well as other neurological disorders.”

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 20008 - Posted: 08.28.2014

|By Roni Jacobson Children are notoriously unreliable witnesses. Conventional wisdom holds that they frequently “remember” things that never happened. Yet a large body of research indicates that adults actually generate more false memories than children. Now a new study finds that children are just as susceptible to false memories as adults, if not more so. Scientists may simply have been using the wrong test. Traditionally, researchers have explored false memories by presenting test subjects with a list of associated words (for instance, “weep,” “sorrow” and “wet”) thematically related to a word not on the list (in this case, “cry”) and then asking them what words they remember. Adults typically mention the missing related word more often than children do—possibly because their life experiences enable them to draw associations between concepts more readily, says Henry Otgaar, a forensic psychologist at Maastricht University in the Netherlands and co-author of the new paper, published in May in the Journal of Experimental Child Psychology. Instead of using word lists to investigate false memories, Otgaar and his colleagues showed participants pictures of scenes, including a classroom, a funeral and a beach. After a short break, they asked those participants whether they remembered seeing certain objects in each picture. Across three experiments, seven- and eight-year-old children consistently reported seeing more objects that were not in the pictures than adults did. © 2014 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 19999 - Posted: 08.27.2014

|By Jason G. Goldman When you do not know the answer to a question, say, a crossword puzzle hint, you realize your shortcomings and devise a strategy for finding the missing information. The ability to identify the state of your knowledge—thinking about thinking—is known as metacognition. It is hard to tell whether other animals are also capable of metacognition because we cannot ask them; studies of primates and birds have not yet been able to rule out simpler explanations for this complex process. Scientists know, however, that some animals, such as western scrub jays, can plan for the future. Western scrub jays, corvids native to western North America, are a favorite of cognitive scientists because they are not “stuck in time”—that is, they are able to remember past events and are known to cache their food in anticipation of hunger, according to psychologist Arii Watanabe of the University of Cambridge. But the question remained: Are they aware that they are planning? Watanabe devised a way to test them. He let five birds watch two researchers hide food, in this case a wax worm. The first researcher could hide the food in any of four cups lined up in front of him. The second had three covered cups, so he could place the food only in the open one. The trick was that the researchers hid their food at the same time, forcing the birds to choose which one to watch. If the jays were capable of metacognition, Watanabe surmised, the birds should realize that they could easily find the second researcher's food. The wax worm had to be in the singular open cup. They should instead prefer keeping their eyes on the setup with four open cups because witnessing where that food went would prove more useful in the future. And that is exactly what happened: the jays spent more time watching the first researcher. The results appeared in the July issue of the journal © 2014 Scientific American,

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19985 - Posted: 08.22.2014

by Sarah Zielinski PRINCETON, N.J. — Learning can be a quick shortcut for figuring out how to do something on your own. The ability to learn from watching another individual — called social learning — is something that hasn’t been documented in many species outside of primates and birds. But now a lizard can be added to the list of critters that can learn from one another. Young eastern water skinks were able to learn by watching older lizards, Martin Whiting of Macquarie University in Sydney reported August 10 at the Animal Behavior Society meeting at Princeton University. The eastern water skink, which reaches a length of about 30 centimeters, can be found near streams and waterways in eastern Australia. The lizards live up to eight years, and while they don’t live in groups, they often see each other in the wild. That could provide an opportunity for learning from each other. Whiting and his colleagues worked with 18 mature (older than 5 years) and 18 young (1.5 to 2 years) male skinks in the lab. The lizards were placed in bins with a barrier in the middle that was either opaque or transparent. In the first of two experiments, the skinks were given a yellow-lidded container with a mealworm inside. They had to learn to open the lid to get the food. In that task, skinks that could see a demonstrator through a transparent barrier were no better at opening the lid than those who had to figure it out on their own. After watching a demonstrator lizard (top row), the skink in the other half of the tub was supposed to have learned that a mealworm was beneath the blue lid. The skink in the middle arena, however, failed the task when he opened the white lid first.D.W.A. Noble et al/Biology Letters 2014 © Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19984 - Posted: 08.22.2014

|By Annie Sneed It's easy to recall events of decades past—birthdays, high school graduations, visits to Grandma—yet who can remember being a baby? Researchers have tried for more than a century to identify the cause of “infantile amnesia.” Sigmund Freud blamed it on repression of early sexual experiences, an idea that has been discredited. More recently, researchers have attributed it to a child's lack of self-perception, language or other mental equipment required to encode memories. Neuroscientists Paul Frankland and Sheena Josselyn, both at the Hospital for Sick Children in Toronto, do not think linguistics or a sense of self offers a good explanation, either. It so happens that humans are not the only animals that experience infantile amnesia. Mice and monkeys also forget their early childhood. To account for the similarities, Frankland and Josselyn have another theory: the rapid birth of many new neurons in a young brain blocks access to old memories. In a new experiment, the scientists manipulated the rate at which hippocampal neurons grew in young and adult mice. The hippocampus is the region in the brain that records autobiographical events. The young mice with slowed neuron growth had better long-term memory. Conversely, the older mice with increased rates of neuron formation had memory loss. Based on these results, published in May in the journal Science, Frankland and Josselyn think that rapid neuron growth during early childhood disrupts the brain circuitry that stores old memories, making them inaccessible. Young children also have an underdeveloped prefrontal cortex, another region of the brain that encodes memories, so infantile amnesia may be a combination of these two factors. © 2014 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 19901 - Posted: 07.31.2014

By DOUGLAS QUENQUA Like Pavlov’s dogs, most organisms can learn to associate two events that usually occur together. Now, a team of researchers says they have identified a gene that enables such learning. The scientists, at the University of Tokyo, found that worms could learn to avoid unpleasant situations as long as a specific insulin receptor remained intact. Roundworms were exposed to different concentrations of salt; some received food during the initial exposure, others did not. Later, when exposed to various concentrations of salt again, the roundworms that had been fed during the first stage gravitated toward their initial salt concentrations, while those that had been starved avoided them. But the results changed when the researchers repeated the experiment using worms with a defect in a particular receptor for insulin, a protein crucial to metabolism. Those worms could not learn to avoid the salt concentrations associated with starvation. “We looked for different forms of the receptor and found that a new one, which we named DAF-2c, functions in taste-aversion learning,” said Masahiro Tomioka, a geneticist at the University of Tokyo and an author of the study, which was published in the journal Science. “It turned out that only this form of the receptor can support learning” in roundworms. While human insulin receptors bear some resemblance to those of a roundworm, more study is needed to determine if it plays a similar role in memory and decision-making, Dr. Tomioka said. But studies have suggested a link between insulin levels and Alzheimer’s disease in humans. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 19888 - Posted: 07.28.2014