Links for Keyword: Learning & Memory

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 947

By Gretchen Reynolds Learning requires more than the acquisition of unfamiliar knowledge; that new information or know-how, if it’s to be more than ephemeral, must be consolidated and securely stored in long-term memory. Mental repetition is one way to do that, of course. But mounting scientific evidence suggests that what we do physically also plays an important role in this process. Sleep, for instance, reinforces memory. And recent experiments show that when mice and rats jog on running wheels after acquiring a new skill, they learn much better than sedentary rodents do. Exercise seems to increase the production of biochemicals in the body and brain related to mental function. Researchers at the Donders Institute for Brain, Cognition and Behavior at Radboud University in the Netherlands and the University of Edinburgh have begun to explore this connection. For a study published this month in Current Biology, 72 healthy adult men and women spent about 40 minutes undergoing a standard test of visual and spatial learning. They observed pictures on a computer screen and then were asked to remember their locations. Afterward, the subjects all watched nature documentaries. Two-thirds of them also exercised: Half were first put through interval training on exercise bicycles for 35 minutes immediately after completing the test; the others did the same workout four hours after the test. Two days later, everyone returned to the lab and repeated the original computerized test while an M.R.I. machine scanned their brain activity. Those who exercised four hours after the test recognized and recreated the picture locations most accurately. Their brain activity was subtly different, too, showing a more consistent pattern of neural activity. The study’s authors suggest that their brains might have been functioning more efficiently because they had learned the patterns so fully. But why delaying exercise for four hours was more effective than an immediate workout remains mysterious. By contrast, rodents do better in many experiments if they work out right after learning. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 22486 - Posted: 07.28.2016

By Tanya Lewis Scientists have made significant progress toward understanding how individual memories are formed, but less is known about how multiple memories interact. Researchers from the Hospital for Sick Children in Toronto and colleagues studied how memories are encoded in the amygdalas of mice. Memories formed within six hours of each other activate the same population of neurons, whereas distinct sets of brain cells encode memories formed farther apart, in a process whereby neurons compete with their neighbors, according to the team’s study, published today (July 21) in Science. “Some memories naturally go together,” study coauthor Sheena Josselyn of the Hospital for Sick Children told The Scientist. For example, you may remember walking down the aisle at your wedding ceremony and, later, your friend having a bit too much to drink at the reception. “We’re wondering about how these memories become linked in your mind,” Josselyn said. When the brain forms a memory, a group of neurons called an “engram” stores that information. Neurons in the lateral amygdala—a brain region involved in memory of fearful events—are thought to compete with one another to form an engram. Cells that are more excitable or have higher expression of the transcription factor CREB—which is critical for the formation of long-term memories—at the time the memory is being formed will “win” this competition and become part of a memory. © 1986-2016 The Scientist

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22467 - Posted: 07.23.2016

By TRIP GABRIEL DO you remember June 27, 2015? If you knew you had been on a sailboat, and that the weather was miserable, and that afterward you had a beer with the other sailors, would you expect to recall — even one year later — at least a few details? I was on that boat, on a blustery Saturday on Long Island Sound. But every detail is missing from my memory, as if snipped out by an overzealous movie editor. The earliest moment I recall from the day is lying in an industrial tube with a kind of upturned colander over my face, fighting waves of claustrophobia. My mind was densely fogged, but I understood that I was in an M.R.I. machine. Someone was scanning my brain. Other hazy scenes followed: being wheeled into a hospital room. My wife, Alice, hovering in the background. A wall clock that read minutes to midnight, an astonishing piece of information. What had happened to the day? Late that night, alone in the room, I noticed two yellow Post-its on the bedside table in Alice’s writing: “You have a condition called transient global amnesia. It will last Hours not DAYS. You’re going to be fine. Your CT scan was clear. You sailed today and drove yourself home,” the note read in part. I had never heard of transient global amnesia, a rare condition in which you are suddenly unable to recall recent events. Its causes are unknown. Unlike other triggers of memory loss, like a stroke or epileptic seizures, the condition is considered harmless, and an episode does not last long. “We don’t understand why it happens,” a neurologist would later tell me. “There are a million theories.” © 2016 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22456 - Posted: 07.19.2016

By Andy Coghlan There once was a brainy duckling. It could remember whether shapes or colours it saw just after hatching were the same as or different to each other. The feat surprised the researchers, who were initially sceptical about whether the ducklings could grasp such complex concepts as “same” and “different”. The fact that they could suggests the ability to think in an abstract way may be far more common in nature than expected, and not just restricted to humans and a handful of animals with big brains. “We were completely surprised,” says Alex Kacelnik at the University of Oxford, who conducted the experiment along with his colleague Antone Martinho III. Kacelnik and Martinho reasoned that ducklings might be able to grasp patterns relating to shape or colour as part of the array of sensory information they absorb soon after hatching. Doing so would allow them to recognise their mothers and siblings and distinguish them from all others – abilities vital for survival. In ducklings, goslings and other species that depend for survival on following their mothers, newborns learn quickly – a process called filial imprinting. Kacelnik wondered whether this would enable them to be tricked soon after hatching into “following” objects or colours instead of their natural mother, and recognising those same patterns in future. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 22443 - Posted: 07.15.2016

By Tanya Lewis In recent years, research on mammalian navigation has focused on the role of the hippocampus, a banana-shaped structure known to be integral to episodic memory and spatial information processing. The hippocampus’s primary output, a region called CA1, is known to be divided into superficial and deep layers. Now, using two-photon imaging in mice, researchers at Columbia University in New York have found these layers have distinct functions: superficial-layer neurons encode more-stable maps, whereas deep-layer brain cells better represent goal-oriented navigation, according to a study published last week (July 7) in Neuron. “There are lots of catalogued differences in sublayers of pyramidal cells” within the hippocampus, study coauthor Nathan Danielson of Columbia told The Scientist. “The question is, are the principle cells in each subregion doing the same thing? Or is there a finer level of granularity?” For that past few decades, scientists have been chipping away at an explanation of the brain’s “inner GPS.” The 2014 Nobel Prize in Physiology or Medicine honored the discovery of so-called place cells and grid cells in the hippocampus, which keep track of an individual’s location and coordinates in space, respectively. Since then, studies have revealed that neurons in different hippocampal regions have distinct genetic, anatomical, and physiological properties, said Attila Losonczy of Columbia, Danielson’s graduate advisor and a coauthor on the study. © 1986-2016 The Scientist

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22437 - Posted: 07.14.2016

By Gretchen Reynolds To strengthen your mind, you may first want to exert your leg muscles, according to a sophisticated new experiment involving people, mice and monkeys. The study’s results suggest that long-term endurance exercise such as running can alter muscles in ways that then jump-start changes in the brain, helping to fortify learning and memory. I often have written about the benefits of exercise for the brain and, in particular, how, when lab rodents or other animals exercise, they create extra neurons in their brains, a process known as neurogenesis. These new cells then cluster in portions of the brain critical for thinking and recollection. Even more telling, other experiments have found that animals living in cages enlivened with colored toys, flavored varieties of water and other enrichments wind up showing greater neurogenesis than animals in drab, standard cages. But animals given access to running wheels, even if they don’t also have all of the toys and other party-cage extras, develop the most new brain cells of all. These experiments strongly suggest that while mental stimulation is important for brain health, physical stimulation is even more potent. But so far scientists have not teased out precisely how physical movement remakes the brain, although all agree that the process is bogglingly complex. Fascinated by that complexity, researchers at the National Institutes of Health recently began to wonder whether some of the necessary steps might be taking place far from the brain itself, and specifically, in the muscles, which are the body part most affected by exercise. Working muscles contract, burn fuel and pump out a wide variety of proteins and other substances. The N.I.H. researchers suspected that some of those substances migrated from the muscles into the bloodstream and then to the brain, where they most likely contributed to brain health. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 22429 - Posted: 07.13.2016

By Andy Coghlan It could be that romantic restaurant, or your favourite park bench. A specific part of the brain seems to be responsible for learning and remembering the precise locations of places that are special to us, research in mice has shown for the first time. Place cells are neurons that help us map our surroundings, and both mice and humans have such cells in the hippocampus – a brain region vital for learning, memory and navigation. Nathan Danielson at Columbia University in New York and his colleagues focused on a part of the hippocampus that feeds signals to the rest of the brain, called CA1. They found that in mice, the CA1 layer where general environment maps are learned and stored is different to the one for locations that have an important meaning. Treadmill test They discovered this by recording brain activity in the two distinct layers of CA1, using mice placed on a treadmill. The treadmill rotated between six distinctive surface materials – including silky ribbons, green pom-pom fabric and silver glitter masking tape. At all times, the mice were able to lick a sensor to try to trigger the release of drinking water. During the first phase of the experiment, however, the sensor only worked at random times. The mice formed generalised maps of their experience on the multi-surfaced treadmill, and the team found that these were stored in the superficial layer of CA1. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22414 - Posted: 07.09.2016

Laura Sanders If you want to lock new information into your brain, try working up a sweat four hours after first encountering it. This precisely timed trick, described June 16 in Current Biology, comes courtesy of 72 people who learned the location of 90 objects on a computer screen. Some of these people then watched relaxing nature videos, while others worked up a sweat on stationary bikes, alternating between hard and easy pedaling for 35 minutes. This workout came either soon after the cram session or four hours later. Compared with both the couch potatoes and the immediate exercisers, the people who worked out four hours after their learning session better remembered the objects’ locations two days later. The delayed exercisers also had more consistent activity in the brain’s hippocampus, an area important for memory, when they remembered correctly. That consistency indicates that the memories were stronger, Eelco van Dongen of the Donders Institute in the Netherlands and colleagues propose. The researchers don’t yet know how exercise works its memory magic, but they have a guess. Molecules sparked by aerobic exercise, including the neural messenger dopamine and the protein BDNF, may help solidify memories by reorganizing brain cell connections. Citations E. van Dongen et al. Physical exercise performed four hours after learning improves memory retention and increases hippocampal pattern similarity during retrieval. Current Biology. Published online June 16, 2016. doi: 10.1016/j.cub.2016.04.071. © Society for Science & the Public 2000 - 2016

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22330 - Posted: 06.18.2016

By Julia Shaw Can you trust your memory? Picture this. You are in a room full of strangers and you are going around introducing yourself. You say your name to about a dozen people, and they say their names to you. How many of these names are you going to remember? More importantly, how many of these names are you going to misremember? Perhaps you call a person you just met John instead of Jack. This kind of thing happens all the time. Now magnify the situation. You are talking to a close friend, and you disclose something important to them, perhaps even something traumatic. You might, for example, say you witnessed the Paris attacks in 2015. But, how can you know for sure that your memory is accurate? Like most people, you probably feel that misremembering someone’s name is totally different from misremembering an important and emotional life event. That you could never forget #JeSuisParis, and will always have stable and reliable memories of such atrocities. I’m sure that is what those who witnessed 9/11, the 7/7 bombings in London or the assassination of JFK also thought. However, when experimenters conduct research on the accuracy of these so-called “flashbulb memories,” they find that many people make grave errors in their recollections of important historical and personal events. And these errors are more than just omissions. © 2016 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22320 - Posted: 06.14.2016

By Julia Shaw A cure for almost every memory ailment seems to be just around the corner. Alzheimer’s affected brains can have their memories restored, we can create hippocampal implants to give us better memory, and we can effectively implant false memories with light. Except that we can’t really do any of these things, at least not in humans. We sometimes forget that developments in memory science need to go through a series of stages in order to come to fruition, each of which requires tremendous knowledge and skill. From coming up with a new idea, to designing an appropriate methodology, obtaining ethical approval, getting research funding, recruiting research assistants and test subjects, conducting the experiment(s), completing complex statistical analysis for which computer code is often required, writing a manuscript, surviving the peer review process, and finally effectively distributing the findings, each part of the process is incredibly complex and takes a long time. On top of it all, this process, which can take decades to complete, typically results in incremental rather than monumental change. Rather than creating massive leaps in technology, in the vast majority of instances, studies add a teeny tiny bit of insight to the greater body of knowledge. These incremental achievements in science are often blown out of proportion by the media. As John Oliver recently said “…[Science] deserves better than to be twisted out of proportion and be turned into morning show gossip.” Moving from science fiction to science fact is harder than the media makes it seem. © 2016 Scientific American,

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22289 - Posted: 06.06.2016

By Gretchen Reynolds A weekly routine of yoga and meditation may strengthen thinking skills and help to stave off aging-related mental decline, according to a new study of older adults with early signs of memory problems. Most of us past the age of 40 are aware that our minds and, in particular, memories begin to sputter as the years pass. Familiar names and words no longer spring readily to mind, and car keys acquire the power to teleport into jacket pockets where we could not possibly have left them. Some weakening in mental function appears to be inevitable as we age. But emerging science suggests that we might be able to slow and mitigate the decline by how we live and, in particular, whether and how we move our bodies. Past studies have found that people who run, weight train, dance, practice tai chi, or regularly garden have a lower risk of developing dementia than people who are not physically active at all. There also is growing evidence that combining physical activity with meditation might intensify the benefits of both pursuits. In an interesting study that I wrote about recently, for example, people with depression who meditated before they went for a run showed greater improvements in their mood than people who did either of those activities alone. But many people do not have the physical capacity or taste for running or other similarly vigorous activities. So for the new study, which was published in April in the Journal of Alzheimer’s Disease, researchers at the University of California, Los Angeles, and other institutions decided to test whether yoga, a relatively mild, meditative activity, could alter people’s brains and fortify their ability to think. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 22270 - Posted: 06.01.2016

By BENEDICT CAREY Suzanne Corkin, whose painstaking work with a famous amnesiac known as H.M. helped clarify the biology of memory and its disorders, died on Tuesday in Danvers, Mass. She was 79. Her daughter, Jocelyn Corkin, said the cause was liver cancer. Dr. Corkin met the man who would become a lifelong subject and collaborator in 1964, when she was a graduate student in Montreal at the McGill University laboratory of the neuroscientist Brenda Milner. Henry Molaison — known in published reports as H.M., to protect his privacy — was a modest, middle-aged former motor repairman who had lost the ability to form new memories after having two slivers of his brain removed to treat severe seizures when he was 27. In a series of experiments, Dr. Milner had shown that a part of the brain called the hippocampus was critical to the consolidation of long-term memories. Most scientists had previously thought that memory was not dependent on any one cortical area. Mr. Molaison lived in Hartford, and Dr. Milner had to take the train down to Boston and drive from there to Connecticut to see him. It was a long trip, and transporting him to Montreal proved to be so complicated, largely because of his condition, that Dr. Milner did it just once. Yet rigorous study of H.M., she knew, would require proximity and a devoted facility — with hospital beds — to accommodate extended experiments. The psychology department at the Massachusetts Institute of Technology offered both, and with her mentor’s help, Dr. Corkin landed a position there. Thus began a decades-long collaboration between Dr. Corkin and Mr. Molaison that would extend the work of Dr. Milner, focus intense interest on the hippocampus, and make H.M. the most famous patient in the history of modern brain science. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22258 - Posted: 05.28.2016

By Julia Shaw You see a crime take place. You are interviewed about it. You give a statement about what you saw. Do you think that at a later date you would be able to detect whether someone had tampered with your statement? Or re-written parts of it? This is currently a hot topic in the UK, where a very recently published inquiry into the so-called Hillsborough disaster, in which 96 people were crushed to death during a soccer match in 1989, found that testimonies had been deliberately altered by police. Research published earlier this year by the false memory dream team at the University of California, looked directly into the implications of such police (mis)conduct. They found that it is possible that changed statements can go unnoticed by the person who gave the original testimony, and may even develop into a false memory that accommodates the false account. To describe this effect, the researchers came up with the term "memory blindness"—the phenomenon of failing to recognize our own memories. The term was intended to mirror the ‘choice blindness’ literature. Choice blindness is forgetting choices that we have made. The researchers wanted to know “Can choice blindness have lasting effects on eyewitness memory?” To examine this, PhD Student Kevin Cochran and his colleagues conducted two experiments. © 2016 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22218 - Posted: 05.16.2016

Bret Stetka Last year, in an operating room at the University of Toronto, a 63-year-old women with Alzheimer's disease experienced something she hadn't for 55 years: a memory of her 8-year-old self playing with her siblings on their family farm in Scotland. The woman is a patient of Dr. Andres Lozano, a neurosurgeon who is among a growing number of researchers studying the potential of deep brain stimulation to treat Alzheimer's and other forms of dementia. If the approach pans out it could provide options for patients with fading cognition and retrieve vanished memories. Right now, deep brain stimulation is used primarily to treat Parkinson's disease and tremor, for which it's approve by the Food and Drug Administration. DBS involves delivering electrical impulses to specific areas of the brain through implanted electrodes. The technique is also approved for obsessive-compulsive disorder and is being looked at for a number of other brain disorders, including depression, chronic pain and, as in Lozano's work, dementia. In 2008 Lozano's group published a study in which an obese patient was treated with deep brain stimulation of the hypothalamus. Though no bigger than a pea, the hypothalamus is a crucial bit of brain involved in appetite regulation and other bodily essentials such as temperature control, sleep and circadian rhythms. It seemed like a reasonable target in trying to suppress excessive hunger. To the researcher's surprise, following stimulation the patient reported a sensation of deja vu. He also perceived feeling 20 years younger and recalled a memory of being in a park with friends, including an old girlfriend. With increasing voltages his memories became more vivid. He remembered their clothes. © 2016 npr

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 22213 - Posted: 05.14.2016

By Hazem Zohny Here is a picture of the nine-dot problem. The task seems simple enough: connect all nine dots with four straight lines, but, do so without lifting the pen from the paper or retracing any line. If you don’t already know the solution, give it a try – although your chances of figuring it out within a few minutes hover around 0 percent. In fact, even if I were to give you a hint like “think outside of the box,” you are unlikely to crack this deceptively (and annoyingly!) simple puzzle. And yet, if we were to pass a weak electric current through your brain (specifically your anterior temporal lobe, which sits somewhere between the top of your ear and temple), your chances of solving it may increase substantially. That, at least, was the finding from a study where 40 percent of people who couldn’t initially solve this problem managed to crack it after 10 minutes of transcranial direct current stimulation (tDCS) – a technique for delivering a painlessly weak electric current to the brain through electrodes on the scalp. How to explain this? It is an instance of the alleged power of tDCS and similar neurostimulation techniques. These are increasingly touted as methods that can “overclock” the brain in order to boost cognition, improve our moods, make us stronger, and even alter our moral dispositions. The claims are not completely unfounded: there is evidence that some people become slightly better at holding and manipulating information in their minds after a bout of tDCS. It also appears to reduce some people’s likelihood of formulating false memories, and seems to have a lasting improvement on some people’s ability to work with numbers. It can even appear to boost creativity, enhancing the ability of some to make abstract connections between words to come up with creative analogies. But it goes further, with some evidence that it can help people control their urges as well improve their mood. And beyond these psychological effects, tDCS of the part of the brain responsible for movement seems to improve muscular endurance and reduce fatigue. © 2016 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22205 - Posted: 05.11.2016

By Jessica Lahey Before she became a neuroscientist, Mary Helen Immordino-Yang was a seventh-grade science teacher at a school outside Boston. One year, during a period of significant racial and ethnic tension at the school, she struggled to engage her students in a unit on human evolution. After days of apathy and outright resistance to Ms. Immordino-Yang’s teaching, a student finally asked the question that altered her teaching — and her career path — forever: “Why are early hominids always shown with dark skin?” With that question, one that connected the abstract concepts of human evolution and the very concrete, personal experiences of racial tension in the school, her students’ resistance gave way to interest. As she explained the connection between the effects of equatorial sunlight, melanin and skin color and went on to explain how evolutionary change and geography result in various human characteristics, interest blossomed into engagement, and something magical happened: Her students began to learn. Dr. Immordino-Yang’s eyes light up as she recounts this story in her office at the Brain and Creativity Institute at the University of Southern California. Now an associate professor of education, psychology and neuroscience, she understands the reason behind her students’ shift from apathy to engagement and, finally, to deep, meaningful learning. Her students learned because they became emotionally engaged in material that had personal relevance to them. Emotion is essential to learning, Dr. Immordino-Yang said, and should not be underestimated or misunderstood as a trend, or as merely the “E” in “SEL,” or social-emotional learning. Emotion is where learning begins, or, as is often the case, where it ends. Put simply, “It is literally neurobiologically impossible to think deeply about things that you don’t care about,” she said. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 11: Emotions, Aggression, and Stress
Link ID: 22181 - Posted: 05.05.2016

By Jennifer Jolly Every January for the past decade, Jessica Irish of Saline, Mich., has made the same New Year’s Resolution: to “cut out late night snacking and lose 30 pounds.” Like millions of Americans, Ms. Irish, 31, usually makes it about two weeks. But this year is different. “I’ve already lost 18 pounds,” she said, “and maintained my diet more consistently than ever. Even more amazing — I rarely even think about snacking at night anymore.” Ms. Irish credits a new wearable device called Pavlok for doing what years of diets, weight-loss programs, expensive gyms and her own willpower could not. Whenever she takes a bite of the foods she wants to avoid, like chocolate or Cheez-Its, she uses the Pavlok to give herself a lightning-quick electric shock. “Every time I took a bite, I zapped myself,” she said. “I did it five times on the first night, two times on the second night, and by the third day I didn’t have any cravings anymore.” As the name suggests, the $199 Pavlok, worn on the wrist, uses the classic theory of Pavlovian conditioning to create a negative association with a specific action. Next time you smoke, bite your nails or eat junk food, one tap of the device or a smartphone app will deliver a shock. The zap lasts only a fraction of a second, though the severity of the shock is up to you. It can be set between 50 volts, which feels like a strong vibration, and 450 volts, which feels like getting stung by a bee with a stinger the size of an ice pick. (By comparison, a police Taser typically releases about 50,000 volts.) Other gadgets and apps dabble in behavioral change by way of aversion therapy, such as the $49 MotivAider that is worn like a pager, or the $99 RE-vibe wristband. Both can be set to vibrate at specific intervals as a reminder of a habit to break or a goal to reach. The $80 Lumo Lift posture coach is a wearable disk that vibrates when you slouch. The $150 Spire clip-on sensor tracks physical activity and state of mind by detecting users’ breathing patterns. If it detects you’re stressed or anxious, it vibrates or sends a notification to your smartphone to take a deep breath. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 13: Memory, Learning, and Development
Link ID: 22171 - Posted: 05.03.2016

by Laura Sanders Some researchers believe that when memories are called to mind, they enter a fragile, wobbly state during which they are vulnerable to being weakened or changed. One way to erode old memories is to learn something new just after recalling the older memory, scientists reported in 2003 (SN: 10/11/2003, p. 228). But that result itself is wobbly, scientists report April 25 in the Proceedings of the National Academy of Sciences. In an attempt to replicate the original finding, experimental psychologist Tom Hardwicke of University College London and colleagues didn’t see any memory alterations in people who learned a new sequence of finger taps shortly after recalling an old sequence. Nor did the researchers turn up signs of this memory interference in other tests. The new study focused specifically on new learning, but the findings cast suspicion on the legitimacy of other ways to interfere with people’s memories, Hardwicke says. Approaches such as brain stimulation or drugs might also be flawed, the researchers argue. © Society for Science & the Public 2000 - 2016

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22141 - Posted: 04.26.2016

Sam Doernberg and Joe DiPietro It’s the first day of class, and we—a couple of instructors from Cornell—sit around a table with a few of our students as the rest trickle in. Anderson, one of the students seated across from us, smiles and says, “I’m going to get an A+ in your class.” “No,” VanAntwerp retorts, “I’m getting the A+.” You might think that this scene is typical of classes at a school like Cornell University, where driven students compete for top marks. But this didn’t happen on a college campus: It took place in a maximum-security prison. To the outside world, they are inmates, but in the classroom, they are students enrolled in the Cornell Prison Education Program, or “CPEP.” Per New York State Department of Corrections rules, we have permission to use the inmates’ last names only—which is also often how we know them best. Those who graduate from the program—taught by Cornell instructors—will receive an associate’s degree from Cayuga Community College. Before teaching neuroscience to prison inmates, we taught it to Cornell undergraduates as part of the teaching staff for Cornell’s Introduction to Neuroscience course. Most Cornell neuroscience students are high-achieving biology majors and premeds, who are well prepared to succeed in a demanding course. They generally have gone from one academic success to another, and it is no secret that they expect a similar level of success in a neuroscience class. © 2016 by The Atlantic Monthly Group

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22093 - Posted: 04.12.2016

Laura Sanders NEW YORK — Cells in a brain structure known as the hippocampus are known to be cartographers, drawing mental maps of physical space. But new studies show that this seahorse-shaped hook of neural tissue can also keep track of social space, auditory space and even time, deftly mapping these various types of information into their proper places. Neuroscientist Rita Tavares described details of one of these new maps April 2 at the annual meeting of the Cognitive Neuroscience Society. Brain scans had previously revealed that activity in the hippocampus was linked to movement through social space. In an experiment reported last year in Neuron, people went on a virtual quest to find a house and job by interacting with a cast of characters. Through these social interactions, the participants formed opinions about how much power each character held, and how kindly they felt toward him or her. These judgments put each character in a position on a “social space” map. Activity in the hippocampus was related to this social mapmaking, Tavares and colleagues found. It turns out that this social map depends on the traits of the person who is drawing it, says Tavares, of Icahn School of Medicine at Mount Sinai in New York City. People with more social anxiety tended to give more power to characters they interacted with. What’s more, these people's social space maps were smaller overall, suggesting that they explored social space less, Tavares says. Tying these behavioral traits to the hippocampus may lead to a greater understanding of social behavior — and how this social mapping may go awry in psychiatric conditions, Tavares said. © Society for Science & the Public 2000 - 2016.

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 22076 - Posted: 04.06.2016