Links for Keyword: Obesity

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 854

by Bethany Brookshire You’ve already had a muffin. And a half. You know you’re full. But there they are, fluffy and delicious, waiting for the passersby in the office. Just thinking about them makes your mouth water. Maybe if you just slice one into quarters. I mean, that barely counts… And then we give in, our brains overriding our body’s better judgment. When I catch myself once again polishing off a whole plate of baked goods, I wish that there was something I could do, some little pill I could take that would make that last delicious bite look — and taste — a little less appealing. But the more scientists learn about the human body, the more they come to understand that there is no one set of hormones for hungry, with a separate set that kicks off your ice cream binge. Instead, our guts and their hormones are firmly entwined with our feelings of reward and motivation. That close relationship shows just how important it is to our bodies to keep us fed, and how hard it is to stop us from overeating. Researchers have long divided our feeding behavior into two distinct categories. One, the homeostatic portion, is primarily concerned with making sure we’ve got enough energy to keep going and is localized to the lateral hypothalamus in the brain. The reward-related, or “hedonic,” component is centralized in the mesolimbic dopamine system, areas of the brain usually referenced when we talk about the effects of sex, drugs and rock ’n’ roll. © Society for Science & the Public 2000 - 2015

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 21354 - Posted: 08.28.2015

Dan Charles Ah, sugar — we love the sweetness, but not the calories. For more than a century, food technologists have been on a quest for the perfect, guilt-free substitute. Ah, sugar — we love the sweetness, but not the calories. For more than a century, food technologists have been on a quest for the perfect, guilt-free substitute. Ryan Kellman/NPR There's a new candidate in the century-old quest for perfect, guiltless sweetness. I encountered it at the annual meeting of the Institute of Food Technologists, a combination of Super Bowl, Mecca, and Disneyland for the folks who put the processing in processed food. It was right in the middle of the vast exhibition hall, at the Tate & Lyle booth. This is the company that introduced the British Empire to the sugar cube, back in 1875. A century later, it invented sucralose, aka Splenda. "We have a deep understanding of sweetening," says Michael Harrison, Tate & Lyle's vice president of new product development. This year, his company launched its latest gift to your sweet tooth. It's called allulose. "This is a rare sugar. A sugar that's found in nature," Harrison explains. Chemically speaking, it's almost identical to ordinary sugar. It has the same chemical formula as fructose and glucose, but the atoms of hydrogen and oxygen are arranged slightly differently. © 2015 NPR

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 21342 - Posted: 08.26.2015

By Gretchen Vogel Researchers may have finally explained how an obesity-promoting gene variant induces some people to put on the pounds. Using state-of-the-art DNA editing tools, they have identified a genetic switch that helps govern the body’s metabolism. The switch controls whether common fat cells burn energy rather than store it as fat. The finding suggests the tantalizing prospect that doctors might someday offer a gene therapy to melt extra fat away. Along with calories and exercise, genes influence a person’s tendency to gain—and keep—extra pounds. One of the genes with the strongest link to obesity is called FTO. People with certain versions of the gene are several kilos heavier on average and significantly more likely to be obese. Despite years of study, no one had been able to figure out what the gene does in cells or how it influences weight. There was some evidence FTO helped control other genes, but it was unclear which ones. Some researchers had looked for activity of FTO in various tissues, without finding any clear signals. Melina Claussnitzer, Manolis Kellis, and their colleagues at Harvard University, Massachusetts Institute of Technology, and the Broad Institute in Cambridge, turned to data from the Roadmap Epigenomics Project, an 8-year effort that identified the chemical tags on DNA that influence the function of genes. The researchers used those epigenetic tags to look at whether FTO was turned on or off in 127 cell types. The gene seemed to be active in developing fat cells called adipocyte progenitor cells. © 2015 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 21326 - Posted: 08.22.2015

Tina Hesman Saey Researchers have discovered a “genetic switch” that determines whether people will burn extra calories or save them as fat. A genetic variant tightly linked to obesity causes fat-producing cells to become energy-storing white fat cells instead of energy-burning beige fat, researchers report online August 19 in the New England Journal of Medicine. Previously scientists thought that the variant, in a gene known as FTO (originally called fatso), worked in the brain to increase appetite. The new work shows that the FTO gene itself has nothing to do with obesity, says coauthor Manolis Kellis, a computational biologist at MIT and the Broad Institute. But the work may point to a new way to control body fat. In humans and many other organisms, genes are interrupted by stretches of DNA known as introns. Kellis and Melina Claussnitzer of Harvard Medical School and colleagues discovered that a genetic variant linked to increased risk of obesity affects one of the introns in the FTO gene. It does not change the protein produced from the FTO gene or change the gene’s activity. Instead, the variant doubles the activity of two genes, IRX3 and IRX5, which are involved in determining which kind of fat cells will be produced. FTO’s intron is an enhancer, a stretch of DNA needed to control activity of far-away genes, the researchers discovered. Normally, a protein called ARID5B squats on the enhancer and prevents it from dialing up activity of the fat-determining genes. In fat cells of people who have the obesity-risk variant, ARID5B can’t do its job and the IRX genes crank up production of energy-storing white fat. © Society for Science & the Public 2000 - 2015.

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 13: Memory, Learning, and Development
Link ID: 21321 - Posted: 08.20.2015

By Gretchen Reynolds Sticking to a diet requires self-control and a willingness to forgo present pleasures for future benefits. Not surprisingly, almost everyone yields to temptation at least sometimes, opting for the cookie instead of the apple. Wondering why we so often override our resolve, scientists at the Laboratory for Social and Neural Systems Research at the University of Zurich recently considered the role of stress, which is linked to a variety of health problems, including weight gain. (There’s something to the rom-com cliché of the jilted lover eating ice cream directly from the carton.) But just how stress might drive us to sweets has not been altogether clear. It turns out that even mild stress may immediately alter the workings of our brains in ways that undermine willpower. For their study, published this month in Neuron, researchers recruited 51 young men who said they were trying to maintain a healthy diet and lifestyle. The men were divided into two groups, one of which served as a control, and then all were asked to skim through images of different kinds of food on a computer screen, rating them for taste and healthfulness. Next, the men in the experimental group were told to plunge a hand into a bowl of icy water for as long as they could, a test known to induce mild physiological and psychological stress. Relative to the control group, the men developed higher levels of cortisol, a stress hormone. After that, men from each group sat in a brain-scanning machine and watched pictures of paired foods flash across a screen. Generally, one of the two foods was more healthful than the other. The subjects were asked to click rapidly on which food they would choose to eat, knowing that at the end of the test they would actually be expected to eat one of these picks (chosen at random from all of their choices). © 2015 The New York Times Company

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 11: Emotions, Aggression, and Stress
Link ID: 21320 - Posted: 08.20.2015

By James Gallagher Health editor, BBC News website Fat or carbs? Scientists have shed new light on which diet might be more effective at reducing fat Cutting fat from your diet leads to more fat loss than reducing carbohydrates, a US health study shows. Scientists intensely analysed people on controlled diets by inspecting every morsel of food, minute of exercise and breath taken. Both diets, analysed by the National Institutes of Health, led to fat loss when calories were cut, but people lost more when they reduced fat intake. Experts say the most effective diet is one people can stick to. It has been argued that restricting carbs is the best way to get rid of a "spare tyre" as it alters the body's metabolism. The theory goes that fewer carbohydrates lead to lower levels of insulin, which in turn lead to fat being released from the body's stores. "All of those things do happen with carb reduction and you do lose body fat, but not as much as when you cut out the fat," said lead researchers Dr Kevin Hall, from the US-based National Institute of Diabetes and Digestive and Kidney Diseases. Cutting down on carbohydrates might not be as effective after all, the study suggests In the study, 19 obese people were initially given 2,700 calories a day. Then, over a period of two weeks they tried diets which cut their calorie intake by a third, either by reducing carbohydrates or fat. The team analysed the amount of oxygen and carbon dioxide being breathed out and the amount of nitrogen in participants' urine to calculate precisely the chemical processes taking place inside the body. The results published in Cell Metabolism showed that after six days on each diet, those reducing fat intake lost an average 463g of body fat - 80% more than those cutting down on carbs, whose average loss was 245g. © 2015 BBC.

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 21296 - Posted: 08.15.2015

By Dina Fine Maron Don’t stress too much about cutting calories if you want to shed pounds—focus on getting more exercise. That’s the controversial message beverage giant Coca-Cola is backing in its new campaign to curb obesity. Coke is pushing this idea via a new Coke-backed nonprofit called Global Energy Balance Network, The New York Times reported on August 9. Money from Coke, the Times reported, is also financing studies that support the notion that exercise trumps diet. But is there any merit to such a stance? Not much, says Rutgers University–based diet and behavior expert Charlotte Markey. She is the author of an upcoming cover story in Scientific American MIND on this topic, and spoke about the Coke claims with Scientific American on Monday. In your fall Scientific American MIND feature you write “study after study shows that working out is not terribly effective for weight loss on its own.” Why is that? Exercise increases appetite, and most people just make up for whatever they exercised off. There’s a lot of wonderful reasons to exercise and I always suggest it to people who are trying to lose weight—some sort of exercise regimen keeps them focused on their health and doing what is good for them, and it’s psychologically healthy. But in and of itself it won’t usually help people lose weight. Two years ago there was a review study in Frontiers in Psychology that concluded dieting often actually led to weight gain. Why would that happen? When people try to diet, they try to restrict themselves, which often leads to overeating. They cut out food groups which make those food groups more desirable to them. They think too much about short-term goals and don’t think about sustainable changes. But if you are going to lose weight, you have to change your behaviors for the rest of your life or otherwise you gain it back. That’s not a sexy message because it seems daunting. © 2015 Scientific American

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 21285 - Posted: 08.12.2015

By Anahad O’Connor Coca-Cola, the world’s largest producer of sugary beverages, is backing a new “science-based” solution to the obesity crisis: To maintain a healthy weight, get more exercise and worry less about cutting calories. The beverage giant has teamed up with influential scientists who are advancing this message in medical journals, at conferences and through social media. To help the scientists get the word out, Coke has provided financial and logistical support to a new nonprofit organization called the Global Energy Balance Network, which promotes the argument that weight-conscious Americans are overly fixated on how much they eat and drink while not paying enough attention to exercise. “Most of the focus in the popular media and in the scientific press is, ‘Oh they’re eating too much, eating too much, eating too much’ — blaming fast food, blaming sugary drinks and so on,” the group’s vice president, Steven N. Blair, an exercise scientist, says in a recent video announcing the new organization. “And there’s really virtually no compelling evidence that that, in fact, is the cause.” Health experts say this message is misleading and part of an effort by Coke to deflect criticism about the role sugary drinks have played in the spread of obesity and Type 2 diabetes. They contend that the company is using the new group to convince the public that physical activity can offset a bad diet despite evidence that exercise has only minimal impact on weight compared with what people consume. This clash over the science of obesity comes in a period of rising efforts to tax sugary drinks, remove them from schools and stop companies from marketing them to children. In the last two decades, consumption of full-calorie sodas by the average American has dropped by 25 percent. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 21283 - Posted: 08.10.2015

By Mitch Leslie If you need to lose a lot of weight, surgeons have a drastic option: They can reroute and sometimes remove parts of your stomach, making it smaller. But instead of limiting the amount of food you can eat, the surgery may work by triggering long-term changes in the types of microbes that inhabit your intestines, a new study suggests. If so, altering the kinds of microbes that live in your gut may be a simpler—and safer—route to weight loss. The research provides “some of the best evidence in humans so far” that bariatric surgery works “in part by changing the bacteria in your gut,” says David Cummings, an endocrinologist at the University of Washington, Seattle, who was not involved with the work. Weight loss isn’t the only benefit of so-called bariatric surgery. If a patient has diabetes, for instance, it will usually disappear. The surgery alters metabolism and digestive system functions in several ways, and researchers are still trying to pin down why it’s effective. “This is not about making your stomach small,” says Randy Seeley, an obesity and diabetes researcher at the University of Michigan, Ann Arbor, who wasn’t connected to the study. One way that bariatric surgery might trigger its effects is through its influence on the microbiota, the swarms of microbes that dwell in our intestines and help us digest food. Studies have found that bariatric surgery dramatically alters the microbiota’s makeup in mice and humans. Two years ago, scientists put mice through a Roux-en-Y gastric bypass—a type of bariatric surgery that involves reducing the stomach to a small pouch and stitching it to the middle part of the small intestine—and then transplanted microbes from the slimmed down animals into mice that lacked intestinal bacteria. The recipient rodents lost 5% of their body weight in 2 weeks. But these studies only checked for short-term changes. © 2015 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 21269 - Posted: 08.05.2015

By Roni Caryn Rabin “Fat” cartoon characters may lead children to eat more junk food, new research suggests, but there are ways to counter this effect. The findings underscore how cartoon characters, ubiquitous in children’s books, movies, television, video games, fast-food menus and graphic novels, may influence children’s behavior in unforeseen ways, especially when it comes to eating. Researchers first randomly showed 60 eighth graders a svelte jelly-bean-like cartoon character or a similar rotund character and asked them to comment on the images. Then they thanked them and gestured toward bowls of Starburst candies and Hershey’s Kisses, saying, “You can take some candy.” Children who had seen the rotund cartoon character helped themselves to more than double the number of candies as children shown the lean character, taking 3.8 candies on average, compared with 1.7 taken by children shown the lean bean character. (Children in a comparison group shown an image of a coffee mug took 1.5 candies on average.) But activating children’s existing health knowledge can counter these effects, the researchers discovered. In a separate experiment, they showed 167 elementary school children two red Gumby-like cartoon characters, one fat and one thin, and then asked them to “taste test” some cookies. But they also asked the children to “think about things that make you healthy,” such as getting enough sleep versus watching TV, or drinking soda versus milk. Some children were asked the health questions before being given the cookie taste test, while others were asked the questions after the taste test. Remarkably, the children who were asked about healthy habits before doing the taste test ate fewer cookies — even if they had first been exposed to the rotund cartoon character. Those who were shown the rotund figure ate 4.2 cookies on average if they were asked about healthy habits after eating the cookies, compared to three cookies if they were asked about healthy habits before doing the taste test. Children who saw the normal weight character and who were asked about healthy habits after the taste test also ate about three cookies. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 14: Attention and Consciousness
Link ID: 21228 - Posted: 07.29.2015

Allison Aubrey Bite into that bread before your main meal, and you'll spike your blood sugar and amp up your appetite. Waiting until the end of your dinner to nosh on bread can blunt those effects. Bite into that bread before your main meal, and you'll spike your blood sugar and amp up your appetite. Waiting until the end of your dinner to nosh on bread can blunt those effects. iStockphoto Ah, the bread basket. You sit down for a nice meal out, and there it appears: piping hot, giving off a waft of yeasty divinity. There's a reason this age-old tradition prevails. Even in the era of paleo and gluten-free, there are still hordes of us who will gladly nosh on crusty, chewy, soul-warming bread. But the downside may be more than just some extra calories. Turns out, eating all those carbs before a meal can amp up our appetites and spike our blood sugar. "The worst situation is having refined carbohydrates on an empty stomach, because there's nothing to slow down the digestion of that carbohydrate into sugar," explains David Ludwig, director of the Optimal Weight for Life Clinic at Boston Children's Hospital. © 2015 NPR

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 21108 - Posted: 06.30.2015

By Mitch Leslie After years of fasting, the Buddha’s “legs were like bamboo sticks, his backbone was like a rope, his chest was like an incomplete roof of a house, his eyes sank right inside, like stones in a deep well,” according to one account. The Buddha didn’t get what he wanted from this extreme fasting—enlightenment—but a new study suggests that a diet that replicates some effects of milder deprivation may not only lower your weight but also confer other benefits. Researchers report that following the diet for just 5 days a month improves several measures of health, including reducing the risk of developing cardiovascular disease. Eating shortens life, and not just because overindulgence can lead to diseases such as diabetes. A diet that cuts food intake by up to 40%, known as calorie restriction, increases longevity in a variety of organisms and forestalls cancer, heart disease, and other late-life illnesses. Although some short-term studies suggest that calorie restriction provides metabolic benefits to people, nobody has confirmed that it also increases human life span. The closest researchers have come are two large, long-term studies of monkeys, and they conflict about whether meager rations increase longevity. Even if calorie restriction could add years to our lives, almost no one can muster the willpower to eat so little day after day, year after year. An alternative that might be more, er, palatable is fasting, the temporary abstinence from food. Gerontological researcher Valter Longo of the University of Southern California in Los Angeles and colleagues have shown that fasting eases side effects of chemotherapy such as fatigue and weakness, and animal studies suggest that it produces health advantages similar to calorie restriction. © 2015 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 21077 - Posted: 06.20.2015

Aaron E. Carroll One of my family’s favorite shows is “The Biggest Loser.” Although some viewers don’t appreciate how it pushes people so hard to lose weight, the show probably inspires some overweight people to regain control of their lives. But one of the most frustrating parts of the show, at least for me, is its overwhelming emphasis on exercise. Because when it comes to reaching a healthy weight, what you don’t eat is much, much more important. Think about it this way: If an overweight man is consuming 1,000 more calories than he is burning and wants to be in energy balance, he can do it by exercising. But exercise consumes far fewer calories than many people think. Thirty minutes of jogging or swimming laps might burn off 350 calories. Many people, fat or fit, can’t keep up a strenuous 30-minute exercise regimen, day in and day out. They might exercise a few times a week, if that. Or they could achieve the same calorie reduction by eliminating two 16-ounce sodas each day. Proclamations that people need to be more active are ubiquitous in the media. The importance of exercise for proper weight management is reinforced when people bemoan the loss of gym class in schools as a cause of the obesity epidemic. Michelle Obama’s Let’s Move program places the focus on exercise as a critical component in combating excess weight and obesity. Exercise has many benefits, but there are problems with relying on it to control weight. First, it’s just not true that Americans, in general, aren’t listening to calls for more activity. From 2001 to 2009, the percentage of people who were sufficiently physically active increased. But so did the percentage of Americans who were obese. The former did not prevent the latter. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 21054 - Posted: 06.15.2015

By Gretchen Reynolds Treadmill desks are popular, even aspirational, in many offices today since they can help those of us who are deskbound move more, burn extra calories and generally improve our health. But an interesting new study raises some practical concerns about the effects of walking at your workspace and suggests that there may be unacknowledged downsides to using treadmill desks if you need to type or think at the office. The drumbeat of scientific evidence about the health benefits of sitting less and moving more during the day continues to intensify. One study presented last month at the 2015 annual meeting of the American College of Sports Medicine in San Diego found that previously sedentary office workers who walked slowly at a treadmill desk for two hours each workday for two months significantly improved their blood pressure and slept better at night. But as attractive as the desks are for health reasons, they must be integrated into a work setting so it seems sensible that they should be tested for their effects on productivity. But surprisingly little research had examined whether treadmill desks affect someone’s ability to get work done. So for the new study, which was published in April in PLOS One, researchers at Brigham Young University in Provo, Utah, recruited 75 healthy young men and women and randomly assigned them to workspaces outfitted with a computer and either a chair or a treadmill desk. The treadmill desk was set to move at a speed of 1.5 miles per hour with zero incline. None of the participants had used a treadmill desk before, so they received a few minutes of instruction and practice. Those assigned a chair were assumed to be familiar with its use. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 14: Attention and Consciousness
Link ID: 21036 - Posted: 06.10.2015

By SABRINA TAVERNISE WASHINGTON — The global diabetes rate has risen by nearly half over the past two decades, according to a new study, as obesity and the health problems it spawns have taken hold across the developing world. The prevalence of diabetes has been rising in rich countries for several decades, largely driven by increases in the rate of obesity. More recently, poorer countries have begun to follow the trend, with major increases in countries like China, Mexico and India. The study, published Monday in the British medical journal The Lancet, reported a 45 percent rise in the prevalence of diabetes worldwide from 1990 to 2013. Nearly all the rise was in Type 2, which is usually related to obesity and is the most common form of the disease. A major shift is underway in the developing world, in which deaths from communicable diseases like malaria and tuberculosis have declined sharply, and chronic diseases like cancer and diabetes are on the rise. The pattern is linked to economic improvement and more people living longer, but it has left governments in developing countries scrambling to deal with new and often more expensive ways to treat illnesses. The study, led by the Institute for Health Metrics and Evaluation, a research group, was funded by the Bill and Melinda Gates Foundation. It is the largest analysis of global disability data to date, drawing on more than 35,000 data sources in 188 countries. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 21026 - Posted: 06.08.2015

By Roberto A. Ferdman In 2007, the Food and Drug administration approved the first ever over-the-counter diet drug. Alli, as the pill was (and still is) called, could be taken by anyone, without a prescription. And it worked, so long as those who took it also maintained a healthy lifestyle. That last bit—persuading people who take diet drugs to also eat well and exercise—is the oft overlooked key with weight-loss remedies. And GlaxoSmithKline, which manufactures the drug, knew it. Marketing around the pill made it clear that Alli was not some miracle drug. But getting people to treat diet drugs for what they are—helpers, not fix alls—is actually a lot harder than it sounds. Some diet drugs have been shown to work. But a growing pool of research suggests people are prone to use them improperly. "There's a funny, kind of counterintuitive thing that happens when many people take weight-loss drugs: they gain weight," said Amit Battacharjee, an assistant professor at The Tuck School of Business, whose research focuses on consumer beliefs and well-being. "But it isn't necessarily because the drugs themselves don't work." Battacharjee has a new study titled 'The Perils of Marketing Weight-Management Remedies,' which looks closely at how the way in which weight-loss drugs are pitched to people can significantly affect the way in which people understand them.

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 20996 - Posted: 05.30.2015

John Bohannon “Slim by Chocolate!” the headlines blared. A team of German researchers had found that people on a low-carb diet lost weight 10 percent faster if they ate a chocolate bar every day. It made the front page of Bild, Europe’s largest daily newspaper, just beneath their update about the Germanwings crash. From there, it ricocheted around the internet and beyond, making news in more than 20 countries and half a dozen languages. It was discussed on television news shows. It appeared in glossy print, most recently in the June issue of Shape magazine (“Why You Must Eat Chocolate Daily”, page 128). Not only does chocolate accelerate weight loss, the study found, but it leads to healthier cholesterol levels and overall increased well-being. The Bild story quotes the study’s lead author, Johannes Bohannon, Ph.D., research director of the Institute of Diet and Health: “The best part is you can buy chocolate everywhere.” I am Johannes Bohannon, Ph.D. Well, actually my name is John, and I’m a journalist. I do have a Ph.D., but it’s in the molecular biology of bacteria, not humans. The Institute of Diet and Health? That’s nothing more than a website. Other than those fibs, the study was 100 percent authentic. My colleagues and I recruited actual human subjects in Germany. We ran an actual clinical trial, with subjects randomly assigned to different diet regimes. And the statistically significant benefits of chocolate that we reported are based on the actual data. It was, in fact, a fairly typical study for the field of diet research. Which is to say: It was terrible science. The results are meaningless, and the health claims that the media blasted out to millions of people around the world are utterly unfounded.

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 1: An Introduction to Brain and Behavior
Link ID: 20995 - Posted: 05.28.2015

By ANDREW POLLACK A study of an obesity drug has ended after the manufacturer released early and ultimately misleading data, researchers said on Tuesday. The company, Orexigen Therapeutics, disclosed in March that early results from a clinical trial of its drug Contrave had shown a 41 percent reduction in the risk of heart attacks, strokes and death from cardiovascular causes. Orexigen’s stock shot up, and the information no doubt helped lift sales of Contrave. But the academic researchers who oversaw the study said on Tuesday that Orexigen had violated an agreement that the early results were not going to be shared widely, even within the company. Moreover, as participants in the trial were followed for a longer period of time, the benefit of the drug in reducing cardiovascular risks vanished. The researchers, in a news release issued by the Cleveland Clinic, said they took the unusual step of terminating the study and releasing the more updated results. “We felt it was unacceptable to allow misleading interim data to be in the public domain and be acted upon by patients and providers,” Dr. Steven Nissen, chairman of cardiovascular medicine at the Cleveland Clinic and head of the trial’s steering committee, said in an interview. He said Orexigen had “acted improperly and unethically in violating the data access agreement” and the premature release of data had made it difficult to continue the study. It’s unlikley that patients would want to stay in the trial and risk getting a placebo if they thought the drug, which is already available on the market, could reduce their risk of heart attacks. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 20921 - Posted: 05.13.2015

By David Shultz We no longer live in a world governed by the sun. Artificial light lets millions of people stay up late, or work in the predawn hours. But the price many of us pay for this extra illumination is a disrupted internal clock—and, growing evidence suggests, obesity. Now, a study of mice suggests that excessive light exposure causes the rodents to burn less fat, a finding that if confirmed could lead to new paths to weight loss in humans. Many mammals have two types of tissues that store fat: brown fat and white fat. Both store energy, but white fat releases its energy stores to power other cells, while brown fat produces heat from metabolizing its contents. For years, scientists have been trying to coax brown fat into action as a way to stimulate weight loss. They’ve identified a protein called β3 adrenergic receptor that, when activated, encourages brown fat cells to burn off more fat and produce more heat. To test the relationship between light exposure and brown fat activity, researchers exposed groups of mice to artificial light for 12, 16, or 24 hours per day and monitored their levels of β3 adrenergic receptor activity. The team also monitored the rate at which energy molecules such as glucose and fatty acids were absorbed from the bloodstream by brown fat tissue to test whether the tissue was using less energy to begin with. Both metrics showed the same trend: Brown fat in mice exposed to prolonged periods of light, 16 or 24 hours compared with a normal 12, absorbed less nutrients from the blood and burned less fat as a result of reduced β3 adrenergic receptor activity. In essence, their furnaces were using less fuel and burning less intensely. To compound the problem, the fatty molecules left in the blood stream were absorbed elsewhere—often in white adipose tissue that makes up the classical body fat that causes obesity, says team leader Patrick Rensen, a biochemist at Leiden University Medical Center in the Netherlands. © 2015 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 10: Biological Rhythms and Sleep
Link ID: 20913 - Posted: 05.12.2015

By Nicholas Bakalar The type of sugar you eat may affect your cravings for high-calorie foods, researchers report. An experiment with 24 healthy volunteers found that compared with consuming glucose, consuming fructose — the sugar found in fruits, honey and corn syrup — resulted in more activity in the brain’s reward regions, increased responses to images of food and a tendency to choose eating a high-calorie food over a future monetary reward. The volunteers drank a 10-ounce glass of cherry-flavored liquid that contained two and a half ounces of fructose or glucose. (Table sugar, or sucrose, extracted from sugar cane or sugar beets, is a compound of glucose and fructose.) Researchers also took blood samples to measure levels of glucose, fructose and insulin, and of leptin and ghrelin, enzymes involved in controlling hunger and feelings of fullness. Before having their drinks, the participants rated their desire to eat on a one-to-10 scale from “not at all” to “very much.” Then they drank the liquids and had functional magnetic resonance imaging brain scans while looking at images of food and of neutral objects like buildings or baskets. As they did so, they rated their hunger using the scale. The volunteers were then presented with images of high-calorie foods and asked whether they would like to have the food now, or a monetary award a month later instead. The study, published in the journal PNAS, found that compared with glucose, consuming fructose produced greater responses to food cues in the orbital frontal cortex of the brain, a region that plays an important role in reward processing. The fructose drink also produced greater activity in the visual cortex when volunteers looked at images of food, a finding that suggests increased craving compared with glucose. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 20883 - Posted: 05.05.2015