Links for Keyword: Pain & Touch

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 686

By Elizabeth Pennisi Four years ago, Igor Spetic lost his right arm in an industrial accident. Doctors outfitted him with a prosthetic arm that restored some function, but they couldn't restore his sense of touch. Without it, simple tasks like picking up a glass or shaking hands became hit-or-miss propositions. The lack of touch also robs Spetic of basic pleasures. “I would love to feel my wife’s hand,” he says. In time, he may regain that pleasure: Two independent research teams have now equipped artificial hands with sensors that send signals to the wearer’s nerves to recreate this missing sense. The sensing technologies work only in the lab, but they have proved durable, and amputees who have tried them, including Spetic, say that they are effective. One technology advances the range of touch sensations available, while the other promises to enable touch through a better way to attach the prosthesis. “All of these results are very positive,” says Mandayam Srinivasan, a neuroengineer at the Massachusetts Institute of Technology in Cambridge, who was not involved in either project. “Each of them fills a piece of the puzzle in terms of [prosthesis] development.” Almost 40 years ago, researchers tried to provide sensory feedback by adding pressure sensors to prostheses that relayed the sensation through electrodes attached to nerves. But for the most part, they just made it seem like the hand was tingling. And durability has been an issue in such efforts, too. In February, Silvestro Micera, a neuroengineer at the Sant'Anna School of Advanced Studies in Pisa, Italy, and the Swiss Federal Institute of Technology in Lausanne and his team showed that it was possible for sensor-equipped prosthetic arms to gently or powerfully grab objects and even to distinguish a round from a square object. But the study lasted just 4 weeks, in part because of the delicate interface with the body. © 2014 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20187 - Posted: 10.09.2014

Aaron E. Carroll For a drug to be approved by the Food and Drug Administration, it must prove itself better than a placebo, or fake drug. This is because of the “placebo effect,” in which patients often improve just because they think they are being treated with something. If we can’t compare a new drug with a placebo, we can’t be sure that the benefit seen from it is anything more than wishful thinking. But when it comes to medical devices and surgery, the requirements aren’t the same. Placebos aren’t required. That is probably a mistake. At the turn of this century, arthroscopic surgery for osteoarthritis of the knee was common. Basically, surgeons would clean out the knee using arthroscopic devices. Another common procedure was lavage, in which a needle would inject saline into the knee to irrigate it. The thought was that these procedures would remove fragments of cartilage and calcium phosphate crystals that were causing inflammation. A number of studies had shown that people who had these procedures improved more than people who did not. However, a growing number of people were concerned that this was really no more than a placebo effect. And in 2002, a study was published that proved it. A total of 180 patients who had osteoarthritis of the knee were randomly assigned (with their consent) to one of three groups. The first had a standard arthroscopic procedure, and the second had lavage. The third, however, had sham surgery. They had an incision, and a procedure was faked so that they didn’t know that they actually had nothing done. Then the incision was closed. The results were stunning. Those who had the actual procedures did no better than those who had the sham surgery. They all improved the same amount. The results were all in people’s heads. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20167 - Posted: 10.07.2014

By Lisa Sanders, M.D. On Thursday, we challenged Well readers to solve the mystery of a 62-year-old man with severe neck pain that spread down his arm, a facial droop, and numbness on his torso. Nearly 200 of you wrote in, and 20 of you correctly diagnosed the patient. The correct diagnosis is… Lyme disease. And more precisely, the early disseminated form of Lyme disease with neurological involvement The first person with the correct answer was Dr. Arielle Hay, a pediatric rheumatologist in Miami, who nailed it just half an hour after the case was posted. Dr. Hay said that the biggest clue was the UConn letterhead. When combined with the odd neurological symptoms, this reminder of where the case took place brought Lyme disease to mind. Lyme disease is one of those diseases that hardly needs an explanation. It was first described in 1977, in a case series of 51 children and parents who had mysterious episodes of joint pain and swelling. The children were initially diagnosed with juvenile rheumatoid arthritis, but the clustering of cases eventually led the investigators, Dr. Allen Steere and Dr. Stephen Malawista, to consider an infectious disease. The illness was named after the Connecticut town where most of the initial cases were located. The disease is caused by a spirochete, a spiral shaped bacterium carried by the Ixodes tick, and usually presents first with a distinctive, expanding red rash (called erythema migrans) that appears at the site of the bite in the early, localized stage of the disease. It is thought that the rash appears in up to 80 percent of Lyme infections. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 5: The Sensorimotor System
Link ID: 20166 - Posted: 10.07.2014

By Kevin Hartnett You may have seen that deliberately annoying “View of the World from Ninth Avenue” map featured on the cover of the New Yorker a while back. It shows the distorted way geography appears to a Manhattanite: 9th and 10th avenues are the center of the world, New Jersey appears, barely, and everywhere else is just a blip if it registers at all. As it turns out, a similar kind of map exists for the human body — with at least some basis in neuroscience. In August I wrote a story for Ideas on the rise of face transplants and spoke to Michael Sims, author of the book, “Adam’s Navel: A Natural and Cultural History of the Human Form.” During our conversation Sims mentioned an odd diagram published in 1951 by a neurosurgeon named Wilder Penfield. The diagram is known as “Homunculus” (a name taken from a weird and longstanding art form that depicts small human beings); it shows the human body scaled according to the amount of brain tissue dedicated to each part, and arranged according to the locations in the brain that control them. In the diagram, the eyes, lips, nose, and tongue appear grotesquely large, indicating that we devote an outsized amount of brain tissue to operating and receiving sensation from these parts of the body. (Sims’s point was that we devote a lot of processing power to the face, and for that reason find it biologically disorienting that faces could be changeable.) The hand is quite large, too, while the toes, legs, trunks, shoulders, and arms are tiny, the equivalents of Kansas City and Russia on the New Yorker map. “Homunculus” seems like the kind of thing that would have long since been superseded by modern brain science, but it actually continues to have a surprising amount of authority, and often appears in neuroscience textbooks.

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20158 - Posted: 10.04.2014

By Sarah C. P. Williams Press the backs of your hands against the inside of a door frame for 30 seconds—as if you’re trying to widen the frame—and then let your arms down; you’ll feel something odd. Your arms will float up from your sides, as if lifted by an external force. Scientists call this Kohnstamm phenomenon, but you may know it as the floating arm trick. Now, researchers have studied what happens in a person’s brain and nerve cells when they repress this involuntary movement, holding their arms tightly by their sides instead of letting them float up. Two theories existed as to how this repression worked: The brain could send a positive “push down” signal to the arm muscles at the same time as the involuntary “lift up” signal was being transmitted to cancel it out; or the brain could entirely block the involuntary signal at the root of the nerves. The new study, which analyzed brain scans and muscle activity recordings from 39 volunteers, found that the latter was true—when a person stifles Kohnstamm phenomenon, the involuntary “lift” signal is blocked before it reaches the muscle. The difference between the repression mechanisms may seem subtle, but understanding it could help people repress other involuntary movements—including the tremors associated with Parkinson’s disease and the tics associated with Tourette syndrome, the team reports online today in the Proceedings of the Royal Society B. © 2014 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 20113 - Posted: 09.24.2014

By Mo Costandi The nerve endings in your fingertips can perform complex neural computations that were thought to be carried out by the brain, according to new research published in the journal Nature Neuroscience. The processing of both touch and visual information involves computations that extract the geometrical features of objects we touch and see, such as the edge orientation. Most of this processing takes place in the brain, which contains cells that are sensitive to the orientation of edges on the things we touch and see, and which pass this information onto cells in neighbouring regions, that encode other features. The brain has outsourced some aspects of visual processing, such as motion detection, to the retina, and the new research shows that something similar happens in the touch processing pathway. Delegating basic functions to the sense organs in this way could be an evolutionary mechanism that enables the brain to perform other, more sophisticated information processing tasks more efficiently. Your fingertips are among the most sensitive parts of your body. They are densely packed with thousands of nerve endings, which produce complex patterns of nervous impulses that convey information about the size, shape and texture of objects, and your ability to identify objects by touch and manipulate them depends upon the continuous influx of this information. © 2014 Guardian News and Media Limited

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20051 - Posted: 09.09.2014

Erin Allday It's well established that chronic pain afflicts people with more than just pain. With the pain come fatigue and sleeplessness, depression and frustration, and a noticeable disinterest in so many of the activities that used to fill a day. It makes sense that chronic pain would leave patients feeling weary and unmotivated - most people wouldn't want to go to work or shop for a week's worth of groceries or even meet friends for dinner when they're exhausted and in pain. But experts in pain and neurology say the connection between chronic pain and a lousy mood may be biochemical, something more complicated than a dour mood brought on from persistent, long-term discomfort alone. Now, a team of Stanford neurologists have found evidence that chronic pain triggers a series of molecular changes in the brain that may sap patients' motivation. "There is an actual physiologic change that happens," said Dr. Neil Schwartz, a post-doctoral scientist who helped lead the Stanford research. "The behavior changes seem quite primary to the pain itself. They're not just a consequence of living with it." Schwartz and his colleagues hope their work could someday lead to new treatments for the behavior changes that come with chronic pain. In the short term, the research improves understanding of the biochemical effects of chronic pain and may be a comfort to patients who blame themselves for their lack of motivation, pain experts said. © 2014 Hearst Communications, Inc.

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20007 - Posted: 08.28.2014

By Sandra G. Boodman When the Philadelphia specialist gently tweaked a spot deep inside Heidi Gribble Camp’s back, she screamed, an expression of both anguish and elation.Camp’s vindication was fueled in large part by her persistence. In 2006, her complaints of severe abdominal pain early in her first pregnancy were brushed aside by her doctor — until she nearly bled to death from a ruptured ectopic pregnancy. That near-fatal hemorrhage was swiftly followed by her sudden lapse into unconsciousness and the discovery of large blood clots in her lung and abdomen, requiring additional emergency surgery. “I told him, ‘You found the pain, this is the best day of my life!’ ” Camp, 32, recalled saying during the June 18 procedure at the Hospital of the University of Pennsylvania. The fact that the interventional radiologist, an expert in minimally invasive surgical procedures, was able to pinpoint and replicate the stabbing pain she had suffered for more than eight years was sweet validation. It proved that Camp wasn’t exaggerating her pain and that it had an identifiable, physical cause, something a series of doctors had come to doubt. Months of recovery followed — as did the first episode of searing back pain. But doctors in Florida, Toronto and Northern Virginia, where Camp lived at various times with her husband, a recently retired professional baseball player — told her they could not find a reason for her agony. Some implied that she was dramatizing normal aches; others rebuffed her inquires about a potential cause that would later prove to be prescient.

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 19992 - Posted: 08.26.2014

By GRETCHEN REYNOLDS Regular exercise may alter how a person experiences pain, according to a new study. The longer we continue to work out, the new findings suggest, the greater our tolerance for discomfort can grow. For some time, scientists have known that strenuous exercise briefly and acutely dulls pain. As muscles begin to ache during a prolonged workout, scientists have found, the body typically releases natural opiates, such as endorphins, and other substances that can slightly dampen the discomfort. This effect, which scientists refer to as exercise-induced hypoalgesia, usually begins during the workout and lingers for perhaps 20 or 30 minutes afterward. But whether exercise alters the body’s response to pain over the long term and, more pressing for most of us, whether such changes will develop if people engage in moderate, less draining workouts, have been unclear. So for the new study, which was published this month in Medicine & Science in Sports & Exercise, researchers at the University of New South Wales and Neuroscience Research Australia, both in Sydney, recruited 12 young and healthy but inactive adults who expressed interest in exercising, and another 12 who were similar in age and activity levels but preferred not to exercise. They then brought all of them into the lab to determine how they reacted to pain. Pain response is highly individual and depends on our pain threshold, which is the point at which we start to feel pain, and pain tolerance, or the amount of time that we can withstand the aching, before we cease doing whatever is causing it. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 19952 - Posted: 08.13.2014

By Sandra G. Boodman At first the rash didn’t bother her, said Julia Omiatek, recalling the itchy red bumps that suddenly appeared one day on her palm, near the base of her first and third fingers. It was January 2013 — the dead of winter in Columbus, Ohio — so when the area reddened and cracked a few weeks later, she assumed her problem was simply dry skin and slathered on some cream. Omiatek, then 35, had little time to ponder the origin of her problem. An occupational therapist who works with adult patients, she was also raising two children younger than 3. A few weeks later when her lips swelled and the rash appeared on her face, she decided it was time to consult her dermatologist. Skin problems were nothing new; Omiatek was so allergic to nickel that her mother had had to sew cloth inside her onesies to prevent the metal snaps from touching her skin and causing a painful irritation. Over the years she had learned to avoid nickel and contend with occasional, inexplicable rashes that seemed to clear up when she used Elidel, a prescription cream that treats eczema. But this time the perpetually itchy rash didn’t go away, no matter what she did. Over the course of 11 months, she saw four doctors, three of whom said they didn’t know what was causing the stubborn eruption that eluded numerous tests. The fourth specialist took one look at her hand and figured it out. “The location was a tip-off,” said Matthew Zirwas, an assistant professor of dermatology at the Ohio State University Wexner Medical Center who specializes in treating unexplained rashes. Omiatek’s case was considerably less severe than that of many of the approximately 300 other patients he has treated for the same problem.

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 19900 - Posted: 07.30.2014

By Janice Lynch Schuster I have never been one to visit a doctor regularly. Even though I had accumulated my share of problems by age 50— arthritic knees, poor hearing — I considered myself to be among the mostly well. But 19 months ago I developed a perplexing problem that forced me to become not only a regular patient but also one of the millions of Americans with chronic pain who struggle to find relief, in part through treatment with opioids. The trouble began with a terrible and persistent pain in my tongue. It alternately throbbed and burned, and it often hurt to eat or speak. The flesh looked red and irritated, and no amount of Orajel or Sensodyne relieved it. My doctor suggested I see my dentist; my dentist referred me to an oral surgeon. The surgeon thought the problem was caused by my being “tongue-tied,” a typically harmless condition in which the little piece of tissue under the tongue, called the frenulum, is too short. It seems I have always had this condition but had never noticed, because it hadn’t affected my ability to eat or speak. Now things had changed. The doctor recommended a frenectomy, a procedure to remove the frenulum and relieve tension on the tongue. “Just a snip,” he promised. It sounded trivial, and I was eager to be done with it. Although I make a living writing about health care, I didn’t even bother to do a Web search on the procedure. It never occurred to me that “a snip” might entail some risks. I trusted the oral surgeon.

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 19871 - Posted: 07.23.2014

By Lori Aratani The placebo effect — the idea that a treatment works because a patient believes it does — has long been a footnote to the work of finding ways to counteract disease. Some physicians have dismissed placebos as mere hokum, a trick of the mind. But researchers have found that in some people, placebos elicit similar responses in the brain to actual drug treatments. In one experiment, researchers using a PET scanner found that the brain activity in test subjects who received placebos and reported less pain mirrored that of those who received actual treatment for their pain. As Erik Vance writes in “Why Nothing Works,” published in the July/August 2014 issue of Discover magazine, the work suggests we possess an “inner pharmacy” of some sort that, if harnessed correctly, could be used as a complement to traditional treatments. But as Vance’s overview of recent research on the topic shows, it’s complicated. A placebo’s impact is not universal. Certain individuals — and certain conditions (pain and depression, for example) — seem to respond better than others to placebos. Researchers think that something in a person’s physiological makeup makes him more sensitive to placebos, while others feel little or no impact. There are ethical considerations, too, since it’s considered wrong to mislead volunteers participating in a study. But there are ways to navigate this thicket. In one small study, researchers gave placebos to a group of people with irritable bowel syndrome — after telling them that the pills were just placebos; a second group received no treatment. Surprisingly, many more of those who received the placebos reported improvements in their symptoms than did people in the no-treatment group.

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 19777 - Posted: 07.01.2014

Migraines have been diagnosed in about eight per cent of Canadians, a quarter or more of whom say the severe headaches impact day-to-day life such as getting a good night’s sleep or driving, Statistics Canada says. The federal agency on Wednesday released its first report on the prevalence of migraine, saying an estimated 2.7 million Canadians, or 8.3 per cent, reported they had been diagnosed with the severe headaches in 2010-2011. Chronic migraines are frequent, severe, pulsating headaches accompanied by nausea, vomiting, and sensitivity to light and sound. "I think the key finding that was quite interesting was the impact of migraine," said report author Pamela Ramage-Morin, a senior analyst in Ottawa. "For three-quarters to say that it had an impact on their getting a good night sleep, over half said it prevented them from driving on some occasions, even people feeling left out of things because of their condition. There's some social isolation that could be occurring. It may be limiting on people's education and employment opportunities. That can have a long-term effect." The sleep findings are important given lack of sleep can impact other aspects of life, Ramage-Morin said, noting how the effects can extend beyond the individual to the larger community. For both men and women surveyed, migraines were most common at ages 30 to 49, a group represents 12 per cent of the population and the prime working years. © CBC 2014

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 19745 - Posted: 06.19.2014

Haroon Siddique The forehead and fingertips are the most sensitive parts to pain, according to the first map created by scientists of how the ability to feel pain varies across the human body. It is hoped that the study, in which volunteers had pain inflicted without touching them, could help the estimated 10 million people in the UK who suffer from chronic pain by allowing physicians to use lasers to monitor nerve damage across the body. This would offer a quantitative way to monitor the progression or regression of a condition. Lead author Dr Flavia Mancini, of the UCL Institute of Cognitive Neuroscience, said: "Acuity for touch has been known for more than a century, and tested daily in neurology to assess the state of sensory nerves on the body. It is striking that until now nobody had done the same for pain." In the study, a pair of lasers were used to cause brief sensation of pinprick pain to 26 blindfolded healthy volunteers on various parts of their body without any touch, in order to define our ability to identify where it hurts, known as "spatial acuity". Sometimes only one laser would be activated, and sometimes both. The participants were asked whether they felt one sting or two, at varying distances between the two beams and researchers recorded the minimum distance between the beams at which people were able to accurately say whether it was one sting or two. © 2014 Guardian News and Media Limited

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 19708 - Posted: 06.07.2014

By C. CLAIBORNE RAY Q. WHY WOULD A PAIN MEDICATION LOSE ITS EFFICACY AFTER WORKING WELL FOR SEVERAL YEARS? A. The mechanism is complex, said Dr. Shakil Ahmed, a pain medicine specialist at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. “It is due to a phenomenon called tolerance,” in which there is a decrease in response over time to repeated exposures of the body to pain medication, he said. “This might be due to alteration in the way the body disposes of the medication,” Dr. Ahmed suggested. Or it could occur because drug interactions or bodily changes add a substance that induces an enzyme responsible for disposing of the drug. Another explanation is that long-term administration of pain medications results in a reduction of the number of target drug receptors or a drop in their responsiveness, and in desensitization to the pain medication in question. There is also an increase in the function of other nervous system receptors, called NMDA receptors , which may lead to the development of the tolerance, Dr. Ahmed said. Dr. Ahmed’s practice and research include several alternatives to conventional drug treatment for pain, including spinal cord stimulation, use of radio frequency to interrupt the nerve pathways of pain, delivery of pain medication with a pump directly to the space around the spinal cord, and non-invasive laser therapy. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 19666 - Posted: 05.28.2014

Pain is a symptom of many disorders; chronic pain can present as a disease in of itself. The economic cost of pain is estimated to be hundreds of billions of dollars annually in lost wages and productivity. “This database will provide the public and the research community with an important tool to learn more about the breadth and details of pain research supported across the federal government. They can search for individual research projects or sets of projects grouped by themes uniquely relevant to pain,” said Linda Porter, Ph.D., Policy Advisor for Pain at the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health (NIH). “It also can be helpful in identifying potential collaborators by searching for topic areas of interest or for investigators.” Users of the database easily can search over 1,200 research projects in a multi-tiered system. In Tier 1, grants are organized as basic, translational (research that can be applied to diseases), or clinical research projects. In Tier 2, grants are sorted among 29 scientific topic areas related to pain, such as biobehavioral and psychosocial mechanisms, chronic overlapping conditions, and neurobiological mechanisms. The Tier 2 categories are also organized into nine research themes: pain mechanisms, basic to clinical, disparities, training and education, tools and instruments, risk factors and causes, surveillance and human trials, overlapping conditions, and use of services, treatments, and interventions.

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 13: Memory, Learning, and Development
Link ID: 19665 - Posted: 05.28.2014

By Sandra G. Boodman, Cheron Wicker sank to her knees and began weeping, the contents of her purse and the bags of groceries she had dropped littering the floor of her suburban Maryland kitchen. As the searing pain in her index finger left her unable to reach the counter with the bags, Wicker felt an overwhelming sense of despair. Looking up, her gaze fell on a rack of kitchen knives. An idea that would have been unthinkable months earlier flickered through her mind. That morning in the fall of 2012 when she briefly considered cutting off her finger was the lowest point in her seven-year ordeal, recalled Wicker, a former public affairs official at the U.S. Maritime Administration. The Columbia resident had repeatedly consulted pain specialists and orthopedic surgeons, as well as her internist and endocrinologist; all were mystified by the persistence of her constant, excruciating pain. Wicker had even undergone two operations to replace the herniated disks in her neck that were believed to be the cause of the pain. She had taken all sorts of painkillers and become dependent on the sleeping pill Ambien to buy her a few hours of relief each night. She was increasingly convinced that she must be crazy; madness seemed to be the only reason that nothing had worked. The real reason, she would learn weeks later when she saw a new doctor, was simple: The pain in her fingertip was caused by something inside it, not by a pinched nerve in her neck. In December 2012, after a third surgery, her pain vanished. “I had to convince her that I knew what I was doing,” recalled Baltimore orthopedic surgeon Raymond Pensy, who diagnosed Wicker’s unusual disorder minutes after meeting her. “She was at her wit’s end.” © 1996-2014 The Washington Post

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 19660 - Posted: 05.26.2014

Jasmin Fox-Skelly Scientists have found a way to beat back the hands of time and fight the ravages of old age, at least in mice. A new study finds that mice bred without a specific pain sensor, or receptor, live longer and are less likely to develop diseases such as diabetes in old age. What’s more, exposure to a molecule found in chili peppers and other spicy foods may confer the same benefits as losing this pain receptor—meaning that humans could potentially benefit, too. When you touch something hot or get a nasty paper cut, pain receptors in your skin are activated, causing neurons to relay a message to your brain: “Ouch!” Although pain protects your body from damage, it also causes harm. People who experience chronic pain, for example, are more likely to have shorter lifespans, but the reason for this has remained unclear. To investigate further, researchers from the University of California (UC), Berkeley, bred mice without a pain receptor called TRPV1. Found in the skin, nerves, and joints, it’s known to be activated by the spicy compound found in chili peppers, known as capsaicin. (When you feel like your mouth is burning after eating a jalapeño, that’s TRPV1 at work.) Surprisingly, the mice without TRPV1 lived on average 14% longer than their normal counterparts, the team reports today in Cell. (Meanwhile, calorie restriction—another popular way of lengthening mouse lifespans—can make them live up to 40% longer.) When the TRPV1-less mice got old, they still showed signs of fast, youthful metabolisms. Their bodies continued to quickly clear sugar from the blood—a trait called glucose tolerance that usually declines with age—and they burned more calories during exercise than regular elderly mice. © 2014 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 19652 - Posted: 05.23.2014

Four common chronic pain conditions share a genetic element, suggesting they could - at least in part - be inherited diseases, say UK researchers. The four include irritable bowel syndrome, musculoskeletal pain, pelvic pain and dry eye disease. The study of more than 8,000 sets of twins found the ailments were common in identical pairs sharing the same DNA. The King's College London team say the discovery could ultimately help with managing these debilitating diseases. While environmental factors probably still play a role in the four conditions, genes could account for as much as two-thirds of someone's chances of developing the disease, they believe. They told the journal Pain that more research is needed to pinpoint the precise genes involved. Chronic pain - pain which persists or recurs for months on end - is common and has many different causes, which can make it difficult to diagnose and treat. While the pain can be related to other medical conditions, it is thought to be caused by problems with the nervous system, sending pain signals to the brain despite no obvious tissue damage. Experts are keen to understand more about chronic pain to improve the quality of life of the millions of people who have to endure it. Some have suspected that some people may have a genetic predisposition to chronic pain since many sufferers share similar symptoms and often have more than one of the different types of chronic pain conditions. The team at King's College London decided to study identical and non-identical twins because these two groups provide an ideal comparison for investigating inherited genes - identical twins share the same DNA while non-identical twins do not. BBC © 2014

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 19643 - Posted: 05.21.2014

By BARRY MEIER Four years and a lifetime ago, a new war began for Sgt. Shane Savage. On Sept. 3, 2010, the armored truck he was commanding near Kandahar, Afghanistan, was blown apart by a roadside bomb. His head hit the ceiling so hard that his helmet cracked. His left foot was pinned against the dashboard, crushing 24 bones. Sergeant Savage came home eight days later, at age 27, with the signature injuries of the conflicts in Iraq and Afghanistan: severe concussion, post-traumatic stress and chronic pain. Doctors at Fort Hood in Killeen, Tex., did what doctors across the nation do for millions of ordinary Americans: They prescribed powerful narcotic painkillers. What followed was a familiar arc of abuse and dependence and despair. At one point, Sergeant Savage was so desperate that he went into the bathroom and began swallowing narcotic tablets. He would have died had his wife, Hilary, not burst through the door. Today Sergeant Savage has survived, even prevailed, through grit, his family and a radical experiment in managing pain without narcotics. When off-duty, he pulls on cowboy boots and plays with his children, does charity work and, as part of a therapy program, rides horses. The only medication he takes for pain is Celebrex, a non-narcotic drug. “You have to find alternative ways to get out and do stuff to stay active, to get your brain off the thought process of ‘I’m in pain,’ ” said Sergeant Savage, whose ears push out from under a Texas A&M baseball cap. The story of Sergeant Savage illuminates an effort by experts inside and outside the military to change how chronic, or long-term, pain is treated. By some estimates, tens of millions of Americans suffer from chronic pain, and the use of opioids — drugs like hydrocodone, methadone and oxycodone (the active ingredient in painkillers like OxyContin) — to treat such conditions has soared over the last decade. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 19600 - Posted: 05.12.2014