Links for Keyword: Sexual Behavior

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1246

By Kate Yandell Researchers have accumulated detailed knowledge of the neurons that drive male fruit flies’ mating behaviors. But the neurons that prompt females to respond—or not—to male overtures have been less-studied. Three papers published today (July 2) in Neuron and Current Biology begin to change that. They identify sets of neurons in female fruit flies that help process mating signals, modulate the insects’ receptivity to male courtship, and drive mating behavior. “These three groups independently identified important neuronal groups [that] are positioned in different points in the neuronal circuitry for regulating female receptivity,” said Daisuke Yamamoto, a behavioral geneticist at Tohoku University in Japan who was not involved in any of the studies. “We’ve had access to the male circuitry for a while now, and that’s turning out to be a really interesting way to study how behavior works,” said Jennifer Bussell, whose work as a PhD student at Rockefeller University contributed to the Current Biology paper. “Having that complementary circuit in the female can only provide more fodder for interesting experiments.” Female fruit flies’ mating behaviors depend on their reproductive state. They become receptive to mating as they mature, but become less receptive to males’ advances immediately after mating. If a female fruit fly is receptive to mating, she responds to male pheromones and courtship songs by engaging in a behavior called pausing, where she stops in her tracks near males so they can mount her and she opens her vaginal plates—hard coverings that protect her reproductive tract. © 1986-2014 The Scientist

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 19962 - Posted: 08.16.2014

by Laura Sanders In their first year, babies grow and change in all sorts of obvious and astonishing ways. As their bodies become longer, heavier and stronger, so do their brains. Between birth and a child’s first birthday, her brain nearly triples in size as torrents of newborn nerve cells create neural pathways. This incredible growth can be influenced by a baby’s early life environment, scientists have found. Tragic cases of severe neglect or abuse can throw brain development off course, resulting in lifelong impairments. But in happier circumstances, warm caregivers influence a baby’s brain, too. A new study in rats provides a glimpse of how motherly actions influence a pup’s brain. Scientists recorded electrical activity in the brains of rat pups as their mamas nursed, licked and cared for their offspring. The results, published in the July 21 Current Biology, offer a fascinating minute-to-minute look at the effects of parenting. Researchers led by Emma Sarro of New York University’s medical school implanted electrodes near six pups’ brains to record neural activity. Video cameras captured mother-pup interactions, allowing the scientists to link specific maternal behaviors to certain sorts of brain activity. Two types of brain patterns emerged: a highly alert state and a sleepier, zoned-out state, Sarro and colleagues found. Pups’ brains were alert while they were drinking milk and getting groomed by mom. Pups’ brains’ were similarly aroused when the pups were separated from their mom and siblings. Some scientists think that these bursts of brain activity help young brains form the right connections between regions. © Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 13: Memory, Learning, and Development
Link ID: 19927 - Posted: 08.09.2014

By Darryl Fears At first she was surprised. Then she was disturbed. Now she’s a little alarmed. Each time a different batch of male fish with eggs in their testes shows up in the Chesapeake Bay watershed, Vicki Blazer’s eyebrows arch a bit higher. In the latest study, smallmouth bass and white sucker fish captured at 16 sites in the Delaware, Ohio and Susquehanna rivers in Pennsylvania had crossed over into a category called intersex, an organism with two genders. “I did not expect to find it quite as widespread,” said Blazer, a U.S. Geological Survey biologist who studies fish. Since 2003, USGS scientists have discovered male smallmouth and largemouth bass with immature eggs in several areas of the Potomac River, including near the Blue Plains Advanced Wastewater Treatment Plant in the District. The previous studies detected abnormal levels of compounds from chemicals such as herbicides and veterinary pharmaceuticals from farms, and from sewage system overflows near smallmouth-bass nesting areas in the Potomac. Those endocrine-disrupting chemicals throw off functions that regulate hormones and the reproductive system. In the newest findings, at one polluted site in the Susquehanna near Hershey, Pa., 100 percent of male smallmouth bass that were sampled had eggs, Blazer said. With the mutant bass, she said, “we keep seeing . . . a correlation with the percent of agriculture in the watershed where we conduct a study.”

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 8: Hormones and Sex
Link ID: 19916 - Posted: 08.05.2014

by Bethany Brookshire The deep ocean has spawned a new record: the longest egg-brooding period. In April 2007, Bruce Robison of the Monterey Bay Aquarium Research Institute in Moss Landing, Calif., and colleagues sent a remote-operated vehicle down 1,397 meters (4,583 feet) into the Monterey Submarine Canyon. There they saw a deep-sea octopus (Graneledone boreopacifica) making its way toward a stony outcrop. One month later, the scientists spotted the same octopus, which they dubbed ‘Octomom,’ on the rock with a clutch of 155 to 165 eggs. The researchers returned to the site 18 times in total. Each time, there she was with her developing eggs. Most female octopuses lay only one clutch of eggs, staying with the eggs constantly and slowly starving to death while protecting them from predators and keeping them clean. When the eggs hatch, the female dies. The scientists report July 30 in PLOS ONE that the octopus was observed on her eggs for 53 months, until September 2011, the longest brooding period of any known animal. B. Robison et al. Deep-sea octopus (Graneledone boreopacifica) conducts the longest-known egg-brooding period of any animal. PLOS ONE. Published online July 30, 2014. doi: 10.1371/journal.pone.0103437 © Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 19904 - Posted: 07.31.2014

Posted by Celeste Biever | The four females and one male are onboard a satellite as part of an experiment to investigate sexual activity and reproduction in microgravity carried out by Russia’s space agency. Roscosmos launched the lizards using a six-tonne Foton-M4 rocket on 19 July. But the fate of the tiny cosmonauts became uncertain when their satellite briefly lost contact with ground control on Thursday 24 July. Luckily, technicians managed to restore control on Saturday, and Roscosmos announced on its website that since then it has communicated with the satellite 17 times.”Contact is established, the prescribed commands have been conducted according to plan,” said Roscosmos chief Oleg Ostapenko. Keeping the geckos company are Drosophila fruit flies, as well as mushrooms, plant seeds and various microorganisms that are also being studied. There is also a special vacuum furnace on board, which is being used to analyse the melting and solidification of metal alloys in microgravity. Foton-M4 is set to carry out experiments over two months, and involves a “study of the effect of microgravity on sexual behaviour, the body of adult animals and embryonic development”, according to the website of the Institute of Medico-Biological Problems of the Russian Academy of Sciences, which has developed the project along with Roscosmos. Specific aims of the Gecko-F4 mission include: Create the conditions for sexual activity, copulation and reproduction of geckos in orbit Film the geckos’ sex acts and potential egg-laying and maximise the likelihood that any eggs survive Detect possible structural and metabolic changes in the animals, as well as any eggs and foetuses © 2014 Macmillan Publishers Limited.

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 19896 - Posted: 07.30.2014

By Michael Brooks Occasionally, scientific research comes up with banal findings that should nonetheless stop us in our tracks. For example, researchers recently published a study showing that a father’s brain will change its hormonal outputs and neural activity depending on his parenting duties. The conclusion of the research is, in essence, that men make good parents, too. Surely this is not news. Yet it does provide evidence that is sadly still useful. Those involved with issues of adoption, fathers’ rights, gay rights, child custody, and religion-fuelled bigotry will all benefit from understanding what we now know about what makes a good parent. The biggest enemy of progress has been the natural world, or at least our view of it. Females are the primary caregivers in 95 percent of mammal species. That is mainly because of lactation. Infants are nourished by their mothers’ milk, so it makes sense for most early caring to be done by females. Human beings, however, have developed more sophisticated means of nourishing and raising our offspring. Should the circumstances require a different set-up, we have ways to cope. It turns out that this is not just in terms of formula milk, nannies or day care: We also have a flexible brain. The new study, published in Proceedings of the National Academy of Sciences, scanned the brains of parents while they watched videos of their interactions with their children. The researchers found that this stimulated activity in two systems of the brain. One is an emotional network that deals with social bonding, ensures vigilance and coordinates responses to distress, providing chemical rewards for behaviours that maintain the child’s well-being. The other network is concerned with mental processing. It monitors the child’s likely state of mind, emotional condition, and future needs, allowing for planning. 2014 © The New Republic.

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 19883 - Posted: 07.26.2014

By Katherine Harmon Courage Octopuses do the darndest things. Like kill their mate during mating—by strangling him with three arms, according to new observations from the wild. Enterprising scientists Christine Huffard and Mike Bartick watched wild octopuses in action. They found that, for males, mating can be a dangerous game. Especially when your lady has long limbs. Some of the more dicey encounters are detailed in a new paper, published online July 11 in Molluscan Research. Hold on a second, you say. Strangling octopuses? Octopuses don’t even have necks—or inhale air. So how, exactly, does that work? The strangulation seems to happen when “an octopus wraps at least one arm around the base of the mantle of the competitor” (or mate), Huffard wrote in 2010. This constriction then keeps the octopus from taking in fresh water to run past its gills—starving the animal of its oxygen source. Octopuses are not known to get cuddly with one another on a day-to-day basis. In fact, “octopuses touch each other with their arms primarily in the context of mating and aggression,” the researchers write. And in this case it seems to have been both. Huffard came across a pair of mating day octopuses (Octopus cyanea) near Fiabacet Island in Indonesia. The female, as is often the case in this species, was larger—with a body about seven-and-a-half inches long; the male was closer to six inches long. They were positioned on a reef, outside the female’s den, the male’s mating arm (hectocotylus) inserted into the female’s mantle from a (presumably) safe distance. © 2014 Scientific American

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 19869 - Posted: 07.23.2014

By JAN HOFFMAN As it has for decades, the Centers for Disease Control and Prevention last week released its annual National Health Interview Survey on the health of Americans. But this year, there was a difference: For the first time, the respondents were asked about their sexual orientation. Of 34,557 adults ages 18 and older, the survey reported, 1.6 percent said they were gay or lesbian. Some critics say the numbers are low, but they fall in the range of other surveys. In the new survey, however, only 0.7 percent of respondents described themselves as bisexual; other studies have reported higher numbers. Adults who identified themselves as gay, lesbian or bisexual reported some different behaviors and concerns — for example, more alcohol consumption and cigarette smoking — than those who said they were straight. But it can be difficult to elicit information that many people consider private. The New York Times spoke about such challenges with Gary J. Gates, a demographer at the Williams Institute at the U.C.L.A. School of Law, which focuses on law and policy issues related to sexual orientation and gender identity. Some of Dr. Gates’s findings were echoed in the new survey. This interview was edited and condensed. Q.How was this survey conducted? A.Survey takers had a computer that guided them through questions which they asked the respondent in person, and they used flash cards to show them potential answers. Q.Why do you think the figure for bisexuality was lower than in other surveys? A.There is evidence that bisexuals perceive more stigma and discrimination than gay and lesbian people. They are much less likely to tell important people around them that they are bisexual. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 19862 - Posted: 07.22.2014

By Virginia Morell Many moth species sing courtship songs, and until now, scientists knew of only two types of such melodies. Some species imitate attacking bats, causing a female to freeze in place, whereas others croon tunes that directly woo the ladies. But the male yellow peach moth (Conogethes punctiferalis, pictured) belts out a combination song, scientists report online today in the Proceedings of the Royal Society B. These tiny troubadours, which are found throughout Asia, emit ultrasonic refrains composed of short and long pulses by contracting their abdominal tymbals, sound-producing membranes. (Listen to a male’s courtship song above.) The short pulses, the scientists say, are similar to the hunting calls of insectivorous horseshoe bats. However, unlike other moth species, these males aren’t directing the batlike tunes at females, but rather at rival males. Using playback experiments, the scientists showed that a male drives away competitors with the short pulses of his ditty, while inducing a female to mate with the long note. Indeed, a receptive virgin female moth (1 to 3 days old) typically raises her wings after hearing this part of the male’s song—a sign that she accepts the male, the scientists say. It is thus the first moth species known to have a dual-purpose melody. © 2014 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 19804 - Posted: 07.09.2014

Karen Ravn To the west, the skies belong to the carrion crow. To the east, the hooded crow rules the roost. In between, in a narrow strip running roughly north to south through central Europe, the twain have met, and mated, for perhaps as long as 10,000 years. But although the crows still look very different — carrion crows are solid black, whereas hooded crows are grey — researchers have found that they are almost identical genetically. The taxonomic status of carrion crows (Corvus corone) and hooded crows (Corvus cornix) has been debated ever since Carl Linnaeus, the founding father of taxonomy, declared them to be separate species in 1758. A century later, Darwin called any such classification impossible until the term 'species' had been defined in a generally accepted way. But the definition is still contentious, and many believe it always will be. The crows are known to cross-breed and produce viable offspring, so lack the reproductive barriers that some biologists consider essential to the distinction of a species, leading to proposals that they are two subspecies of carrion crow. In fact, evolutionary biologist Jochen Wolf from Uppsala University in Sweden and his collaborators have now found that the populations living in the cross-breeding zone are so similar genetically that the carrion crows there are more closely related to hooded crows than to the carrion crows farther west1. Only a small part of the genome — less than 0.28% — differs between the populations, the team reports in this week's Science1. This section is located on chromosome 18, in an area associated with pigmentation, visual perception and hormonal regulation. It is no coincidence, the researchers suggest, that the main differences between carrion and hooded crows are in colouring, mating preferences (both choose mates whose colouring matches theirs), and hormone-influenced social behaviours (carrion crows lord it over hooded ones). © 2014 Nature Publishing Group,

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 19755 - Posted: 06.21.2014

By Denali Tietjen Caffeine isn’t healthy, but that’s no news. The withdrawal headaches, jitteriness and dehydration kind of gave that one way. What is news, however, is that starting at puberty, it’s worse for boys than girls. Girls and boys have the same cardiovascular reactions to caffeine in childhood, but begin to react differently in adolescence, finds a new study conducted by researchers from The University of Buffalo. In the double-blind study published in the June issue of Pediatrics, researchers examined the cardiovascular reactions of 52 pre-pubescent (ages eight to nine) and 49 post-pubescent (ages 15 to 17) children to varying levels of caffeine. Participants consumed either the placebo, 1 mg/kg or 2 mg/kg caffeinated sodas, and then had their heart rates and blood pressures taken. The results found that pre-pubescent children had the same reaction to caffeine regardless of gender, while post-pubescent boys had much stronger cardiovascular reactions to caffeine than girls. The study also examined post-pubescent girls’ reactions to caffeine at various phases of their menstrual cycles. At different stages of the cycle, the girls metabolized caffeine differently. “We found differences in responses to caffeine across the menstrual cycle in post-pubertal girls, with decreases in heart rate that were greater in the mid-luteal phase and blood pressure increases that were greater in the mid-follicular phase of the menstrual cycle,” Dr. Jennifer Temple, one of the researchers who conducted the study said in a University at Buffalo press release announcing the study.

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 19739 - Posted: 06.17.2014

By Jenny Graves The claim that homosexual men share a “gay gene” created a furor in the 1990s. But new research two decades on supports this claim – and adds another candidate gene. To an evolutionary geneticist, the idea that a person’s genetic makeup affects their mating preference is unsurprising. We see it in the animal world all the time. There are probably many genes that affect human sexual orientation. But rather than thinking of them as “gay genes,” perhaps we should consider them “male-loving genes.” They may be common because these variant genes, in a female, predispose her to mate earlier and more often and to have more children. Likewise, it would be surprising if there were not “female-loving genes” in lesbian women that, in a male, predispose him to mate earlier and have more children. We can detect genetic variants that produce differences between people by tracking traits in families that display differences. Patterns of inheritance reveal variants of genes (called “alleles”) that affect normal differences, such as hair color, or disease states, such as sickle cell anemia. Quantitative traits, such as height, are affected by many different genes, as well as environmental factors. It’s hard to use these techniques to detect genetic variants associated with male homosexuality partly because many gay men prefer not to be open about their sexuality. It is even harder because, as twin studies have shown, shared genes are only part of the story. Hormones, birth order and environment play roles, too.

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 13: Memory, Learning, and Development
Link ID: 19699 - Posted: 06.06.2014

By MARK OPPENHEIMER When our young daughters first decided to play on top of our Honda minivan, parked in our driveway, my wife was worried. But to me, it seemed no less safe than chasing a ball that frequently ended up in the street. And they loved the height, the novelty, the danger. So I let them stay. They never fell. And with the summer weather here, playing on the car is once again keeping them occupied for hours. Now that I have read Paul Raeburn’s “Do Fathers Matter?,” I know that my comfort with more dangerous play — my willingness to let my daughters stand on top of a minivan — is a typically paternal trait. Dads roughhouse with children more, too. They also gain weight when their wives are pregnant and have an outsize effect on their children’s vocabulary. The presence of dads can delay daughters’ puberty. But older dads have more children with dwarfism and with Marfan syndrome. In Mr. Raeburn’s book, there is plenty of good news for dads, and plenty of bad. A zippy tour through the latest research on fathers’ distinctive, or predominant, contributions to their children’s lives, “Do Fathers Matter?” is filled with provocative studies of human dads — not to mention a lot of curious animal experiments. (You’ll learn about blackbirds’ vasectomies.) But above all, Mr. Raeburn shows how little we know about the role of fathers, and how preliminary his book is. Its end is really a beginning, a prospectus for further research. Mr. Raeburn writes that “as recently as a generation ago, in the 1970s, most psychologists” believed that “with regard to infants, especially, fathers were thought to have little or no role to play.” When it came to toddlers and older children, too, the great parenting theories of the 20th century placed fathers in the background. Freud famously exalted, or damned, the mother for her influence. John Bowlby’s attachment theory, which he developed beginning in the 1940s, focused on the mother or “mother-figure.” © 2014 The New York Times Company

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 19686 - Posted: 06.03.2014

By Denali Tietjen If you watch porn, you probably have a small brain, a new study published in the Journal of the American Medical Association (JAMA) shows. The study, conducted by the Max Plank Institute for Human Development in Berlin, found a significant negative correlation between frequent pornography consumption and grey matter in the brain (that’s the stuff that tells your brain how to react to sensory information.) The keyword here is correlation. While the study’s findings are significant, the researchers don’t know if it’s the porn that causes the low grey-matter volume in porn-watchers, or if it’s the other way around. It could be a neurological pre-condition that makes watching porn particularly satisfying. However, researchers have reason to believe that porn does negatively impact the brain. Previous research proves that frequent porn consumption can cause negative social behavior. Porn consumption can cause viewers to be less satisfied during sex and viewers often want to adopt acts they’ve seen in illegal pornography, according to the report. If porn can affect social behavior, it can probably affect cognitive behavior, too. The study examined the cognitive structure of 64 males ages 21 to 45 years old that consumed porn at varying levels of frequency. While few people openly admit to watching porn, 66 percent of all men and 41 percent of American women view pornography at least once a month, and an estimated 50 percent of internet traffic is sex-related, according to the journal.

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 19672 - Posted: 05.31.2014

Elizabeth Norton Cultures around the world have long assumed that women are hardwired to be mothers. But a new study suggests that caring for children awakens a parenting network in the brain—even turning on some of the same circuits in men as it does in women. The research implies that the neural underpinnings of the so-called maternal instinct aren't unique to women, or activated solely by hormones, but can be developed by anyone who chooses to be a parent. "This is the first study to look at the way dads' brains change with child care experience," says Kevin Pelphrey, a neuroscientist at Yale University who was not involved with the study. "What we thought of as a purely maternal circuit can also be turned on just by being a parent—which is neat, given the way our culture is changing with respect to shared responsibility and marriage equality." The findings come from an investigation of two types of households in Israel: traditional families consisting of a biological mother and father, in which the mother assumed most of the caregiving duties, though the fathers were very involved; and homosexual male couples, one of whom was the biological father, who'd had the child with the help of surrogate mothers. The two-father couples had taken the babies home shortly after birth and shared caregiving responsibilities equally. All participants in the study were first-time parents. Researchers led by Ruth Feldman, a psychologist and neuroscientist at Bar-Ilan University in Ramat Gan, Israel, visited with the families in their homes, videotaping each parent with the child and then the parents and children alone. The team, which included collaborators at the Tel Aviv Sourasky Medical Center in Israel, also took saliva samples from all parents before and after the videotaped sessions to measure oxytocin—a hormone that's released at times of intimacy and affection and is widely considered the "trust hormone.” Within a week of the home visit, the participants underwent functional magnetic resonance imaging scanning to determine how their brains reacted to the videotapes of themselves with their infants. © 2014 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19669 - Posted: 05.28.2014

Eliana Dockterman @edockterman A new study that could affect whether adoption agencies are willing to work with gay couples shows that after adopting, gay men's brain activity resembles that of both new moms and new dads Research has shown that a new mother’s brain activity changes after having a baby. Turns out, gay men’s pattern of brain activity also adapts to parenthood, and resembles that of both new moms and new dads, in findings published Monday. A study published Monday in the Proceedings of the National Academy of Sciences sought to determine whether mothers’ brains became hyper-reactive to emotional cues, like hearing their child cry after birth, because of hormonal changes or parenting experience. Researchers videotaped 89 new moms and dads taking care of their infants at home. They then measured parents’ brain activity in an MRI while the parents watched videos in which their children were not featured, followed by the footage shot in their home with their kids. The 20 mothers in the study—all of whom were the primary caregivers—had heightened activity in the brain’s emotion-processing regions; the amygdala, a set of neurons that processes emotions, was five times more active than the baseline. The 21 heterosexual fathers had increased activity in their cognitive circuits, which helped them determine which of the baby’s body movements indicated the need for a new diaper and which ones signaled hunger. The 48 gay fathers’ brain waves, on the other hand, responded similarly to both the heterosexual mom and dad. Their emotional circuits were as active as mothers’, and their cognitive circuits were as active as the fathers’. Researchers also found that the more time a gay father spent with the baby, the greater a connection there was between the emotional and cognitive structures.

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19658 - Posted: 05.26.2014

By RONI CARYN RABIN For decades, scientists have embarked on the long journey toward a medical breakthrough by first experimenting on laboratory animals. Mice or rats, pigs or dogs, they were usually male: Researchers avoided using female animals for fear that their reproductive cycles and hormone fluctuations would confound the results of delicately calibrated experiments. That laboratory tradition has had enormous consequences for women. Name a new drug or treatment, and odds are researchers know far more about its effect on men than on women. From sleeping pills to statins, women have been blindsided by side effects and dosage miscalculations that were not discovered until after the product hit the market. Now the National Institutes of Health says that this routine gender bias in basic research must end. In a commentary published on Wednesday in the journal Nature, Dr. Francis Collins, director of the N.I.H., and Dr. Janine A. Clayton, director of the institutes’ Office of Research on Women’s Health, warned scientists that they must begin testing their theories in female lab animals and in female tissues and cells. The N.I.H. has already taken researchers to task for their failure to include adequate numbers of women in clinical trials. The new announcement is an acknowledgment that this gender disparity begins much earlier in the research process. “Most scientists want to do the most powerful experiment to get the most durable, powerful answers,” Dr. Collins said in an interview. “For most, this has not been on the radar screen as an important issue. What we’re trying to do here is raise consciousness.” Women now make up more than half the participants in clinical research funded by the institutes, but it has taken years to get to this point, and women still are often underrepresented in clinical trials carried out by drug companies and medical device manufacturers. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 19619 - Posted: 05.15.2014

Ewen Callaway In the silk business, sex is money. Male silkworms weave cocoons with more silk of a higher quality than females do, and the multibillion dollar sericulture industry has long sought an easy way to breed only males. That might now be a realistic goal, as researchers have identified the process that determines sex in the silkworm Bombyx mori1. The sex factor is found to be a small RNA molecule — the first time that anything other than a protein has been implicated in a sex-detemination process. In nearly all Lepidoptera — the order that includes moths and butterflies — sex is determined in silkworms by a WZ chromosome system, in contrast to the XY system used in mammals. Female silkworms carry W and Z sex chromosomes, whereas males boast a pair of Z chromosomes. Last year, researchers showed how to genetically modify silkworms so that the females would express a deadly protein (see 'Genetic kill switch eradicates female silkworms for a better crop'). But efforts to identify the genes on the W chromosome that make silkworms female have come up short: the W does not seem to have any protein-making genes, and is instead almost completely filled with parasitic, mobile genetic elements called transposons. In 2011, a team led by entomologist Susumu Katsuma at the University of Tokyo reported that the W chromosome produces short RNA molecules that keep transposons at bay in newly formed egg cells2. Katsuma and his team report in Nature today1 that one such molecule, which the authors called Fem, is specific to female silkworms, suggesting that it has a role in sex determination. The Fem RNA breaks down a corresponding molecule made by a gene known as Masculinizer, which is found on the Z chromosome. When the researchers silenced Masculinizer, embryos execute a genetic programme that makes female tissue. © 2014 Nature Publishing Group

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 19611 - Posted: 05.15.2014

|By Jason G. Goldman When a male fallow deer wants to mate, he isn't shy about letting everyone around him know. The males, also called fallow bucks, can produce their mating calls as many as 3,000 times each hour during the mating season. Those calls serve two functions: to attract females and to deter rival males. Yet there is more hidden in the groans of fallow bucks than first meets the ear, according to a new study in Behavioral Ecology. Every October around 25 bucks gather in Petworth Park in England's county of West Sussex, where each stakes out a territory, hoping to entice a female at a feral conclave of romance, combat and deer calling, an event known as a lek. “Leks are really rare in mammals, and they're really rare in ungulates. Fallow deer are the only species of deer that we know that lek,” says Alan McElligott of Queen Mary, University of London, who oversaw the study. Mating calls reveal information about the caller, such as body size or dominance rank, which is useful both to interested females and to rival males—and every conceivable type of fallow deer utterance turns up at the lek. In one study, McElligott found that the quality of groans decreased over time. “The mature bucks stop eating for a couple of weeks,” over the course of the lek, McElligott explains, so “they are really worn out.” That fatigue is reflected in their calls, but do other males notice? Because the lek is such a spectacle, the deer in Petworth Park are accustomed to human interlopers, which allowed Queen Mary postdoctoral scholar Benjamin J. Pitcher to cart a sound system around without interrupting the festivities. © 2014 Scientific American

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 19599 - Posted: 05.12.2014

The gene that most likely determines the sex of the platypus and echidna has been identified by Australian and Swiss researchers. The study also shows that the Y chromosome, contrary to previous assumptions, carries genes that are important to the basic viability of male mammals, says geneticist Dr Paul Waters from the University of New South Wales. Although the Y chromosome is known to be important in sex determination, little is known about the function and evolution of its genes, says Waters. He says this is because it has so many repetitive and palindromic sequences, which make it hard to reconstruct the true sequences of its genes from fragments of sequenced DNA. Monotremes (the platypus and the echidna), whose males have 5 X chromosomes and 5 Y chromosomes, are especially challenging. "No one had really characterised any Y chromosomes in platypus before because they've got quite a complex sex chromosome system," says Waters. Waters and colleagues from the University of Adelaide and the University of Lausanne now report on their new analysis of male and female DNA from 15 representative mammals, including human, elephants, marsupials and monotremes. The study, reported recently in the journal Nature, is the largest of its kind, and relied on a rapid new sequencing technique. © 2014 Discovery Communications, LLC.

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 19582 - Posted: 05.07.2014