Links for Keyword: Stress

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 460

by Bethany Brookshire We all experience stress, but some handle it better than others. A lot of research has focused on what makes animals and people susceptible to stress and how that, in turn, can trigger depression. It makes sense to study the condition, not the people that don’t experience it. Depression and susceptibility are the broken state. Resilience seems normal by comparison. But resilience is not just the absence of susceptibility. It turns out that a protein called beta-catenin plays an active role in resilience. A new study, from Eric Nestler’s laboratory at the Mount Sinai School of Medicine in New York City, also identifies a large number of new targets that could help scientists understand why some people are susceptible to stress — and how they might be made more resilient. “When people study stress responses, we often just assume that in an animal that’s stressed, there’s an active process that creates these depression-like behaviors,” says Andre Der-Avakian, a neuroscientist at the University of California, San Diego. “But this study and studies from others have shown that resilience is also an active process.” The nucleus accumbens is an area of the brain most often linked with reward and pleasure from items we enjoy, such as food or drugs. But the area also shows changes in people with depression. “It makes sense — here’s a region important in responding to rewards,” Nestler explains. “One of the symptoms of people with depression is that they don’t derive pleasure from things in life.” © Society for Science & the Public 2000 - 2014

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 20363 - Posted: 11.26.2014

BY Bethany Brookshire Stress is our coping response. Whether emotional or physical, stress is how organisms react to upheaval in their lives. And in many cases, that response requires tradeoffs. An animal will make it through now, but may come out with fewer fat stores or a shorter life span. But a new study shows that under certain conditions, developmental stress in male zebra finches might have a positive effect, in the form of more offspring to carry on his genes. Ondi Crino, a biologist now at Macquarie University in Sydney, examined how stress during development might affect reproductive success in male zebra finches. She purchased 10 male and 10 female zebra finches from pet shops near the University of Montana. The birds were allowed to pair off and nest. When the first batch of chicks was 12 days old, Crino fed half of the male offspring peanut oil, and half peanut oil with the hormone corticosterone mixed in. Both humans and finches produce stress-related hormones. Humans produce cortisol, while finches produce corticosterone. These two hormones increase during times of stress and cause many of the negative effects we associate with worry and pressure. So administering corticosterone is one method of “stressing” an animal without changing anything else in its environment. The dose was in the range of what a young bird might experience in the midst of a natural upheaval such as a cold snap or famine. After 16 days of the peanut oil supplement, the young male birds receiving corticosterone were smaller than their relaxed counterparts. They also had a larger spike in their own corticosterone levels when they were stressed. But over time, the chicks that received corticosterone appeared to grow out of their stressful upbringing. By adulthood they were the same size as controls, and they did not show frazzled feathers or pale colors that might indicate a rough chickhood. © Society for Science & the Public 2000 - 2014

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 20209 - Posted: 10.16.2014

By ALINA TUGEND MANY workers now feel as if they’re doing the job of three people. They are on call 24 hours a day. They rush their children from tests to tournaments to tutoring. The stress is draining, both mentally and physically. At least that is the standard story about stress. It turns out, though, that many of the common beliefs about stress don’t necessarily give the complete picture. MISCONCEPTION NO. 1 Stress is usually caused by having too much work. While being overworked can be overwhelming, research increasingly shows that being underworked can be just as challenging. In essence, boredom is stressful. “We tend to think of stress in the original engineering way, that too much pressure or too much weight on a bridge causes it to collapse,” said Paul E. Spector, a professor of psychology at the University of South Florida. “It’s more complicated than that.” Professor Spector and others say too little to do — or underload, as he calls it — can cause many of the physical discomforts we associate with being overloaded, like muscle tension, stomachaches and headaches. A study published this year in the journal Experimental Brain Research found that measurements of people’s heart rates, hormonal levels and other factors while watching a boring movie — men hanging laundry — showed greater signs of stress than those watching a sad movie. “We tend to think of boredom as someone lazy, as a couch potato,” said James Danckert, a professor of neuroscience at the University of Waterloo in Ontario, Canada, and a co-author of the paper. “It’s actually when someone is motivated to engage with their environment and all attempts to do so fail. It’s aggressively dissatisfying.” © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory, Learning, and Development
Link ID: 20161 - Posted: 10.04.2014

By Dick Miller, CBC News Dan Campbell felt the bullets whiz past his head. The tracer rounds zipped between his legs. It was his first firefight as a Canadian soldier in Afghanistan. "I was completely frightened and scared like I’d never been before in my life,” he says. As the attack continued, the sights, sounds and smells started to form memories inside his brain. The fear he felt released the hormone norepinephrine, and in the complex chemistry of the brain, the memories of the battle became associated with the fear. 'I think one day, hopefully in the not-too-distant future, we will be able to delete a memory.'- Dr. Sheena Josselyn, senior scientist, Hospital For Sick Children Research Institute Six years later, a sight or sound such as a firecracker or car backfiring can remind him of that night in 2008. The fear comes back and he relives rather than remembers the moments. "It can be hard. Physically, you know, there’s the tapping foot, my heart beating,” he says. Like so many soldiers and victims of assault or people who have experienced horrific accidents, Campbell was diagnosed with post traumatic stress disorder. Now a newspaper reporter in Yellowknife, Campbell thinks one day he may get therapy. But for now he is working on his own to control the fear and anger the memories bring. © CBC 2014

Related chapters from BP7e: Chapter 16: Psychopathology: Biological Basis of Behavior Disorders; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders; Chapter 13: Memory, Learning, and Development
Link ID: 20111 - Posted: 09.24.2014

|By Corinne Iozzio Albert “Skip” Rizzo of the University of Southern California began studying virtual reality (VR) as psychological treatment in 1993. Since then, dozens of studies, his included, have shown the immersion technique to be effective for everything from post-traumatic stress disorder (PTSD) and anxiety to phobias and addiction. But a lack of practical hardware has kept VR out of reach for clinicians. The requirements for a VR headset seem simple—a high-resolution, fast-reacting screen, a field of vision that is wide enough to convince patients they are in another world and a reasonable price tag— yet such a product has proved elusive. Says Rizzo, “It’s been 20 frustrating years.” In 2013 VR stepped into the consumer spotlight in the form of a prototype head- mounted display called the Oculus Rift. Inventor Palmer Luckey’s goal was to create a platform for immersive video games, but developers from many fields—medicine, aviation, tourism—are running wild with possibilities. The Rift’s reach is so broad that Oculus, now owned by Facebook, hosted a conference for developers in September. The Rift, slated for public release in 2015, is built largely from off- the-shelf parts, such as the screens used in smartphones. A multi- axis motion sensor lets the headset refresh imagery in real time as the wearer’s head moves. The kicker is the price: $350. (Laboratory systems start at $20,000.) Rizzo has been among the first in line. His work focuses on combat PTSD. In a 2010 study, he placed patients into controlled traumatic scenarios, including a simulated battlefield, so they could confront and process emotions triggered in those situations. © 2014 Scientific American

Related chapters from BP7e: Chapter 16: Psychopathology: Biological Basis of Behavior Disorders; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20106 - Posted: 09.23.2014

by Bethany Brookshire Post-traumatic stress disorder, or PTSD, has many different symptoms. Patients may suffer from anxiety, flashbacks, memory problems and a host of other reactions to a traumatic event. But one symptom is especially common: 70 percent of civilian patients and 90 percent of combat veterans with PTSD just can’t get a decent night’s sleep. Problems with sleep, including rapid-eye movement — or REM — sleep, have long been associated with PTSD. “We know that sleep difficulties in the weeks following trauma predict the development of PTSD, and we know that bad sleep makes PTSD symptoms worse,” says Sean Drummond, a clinical psychologist who studies sleep at the University of California at San Diego. Studies in rats show that exposing the animals to traumatic, fearful experiences such as foot shocks disrupts their REM sleep. Drummond and his research assistant Anisa Marshall wanted to connect those findings to humans. But he soon found out that in humans, it’s not fear that predicts REM sleep. Instead, it’s safety. The scientists tested this in 42 people without PTSD using a measure called fear-potentiated startle. Subjects sit in a comfortable chair with an electrode on their wrists. A screen shows blue squares or yellow squares. If participants see blue squares, they run a high risk of receiving an annoying shock to the wrist. If they see yellow squares, they can relax; no shocks are headed their way. During this time, they will also hear random, loud bursts of white noise. The scientists measure how much the subjects startle in response to the noise by measuring the strength of their eyeblinks in response to the noise. In the presence of the blue squares, the blinks become much stronger, an effect called fear-potentiated startle. With yellow squares, the blinks weaken. © Society for Science & the Public 2000 - 2014.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 20072 - Posted: 09.13.2014

By S. Matthew Liao As many as 20 percent of war veterans return from combat in Afghanistan and Iraq with post-traumatic stress disorder (PTSD) or major depression, according to a 2008 report from the RAND Corporation. Many experience constant nightmares and flashbacks and many can’t live normal lives. For significant number of veterans, available medications do not seem to help. In 2010, at least 22 veterans committed suicide each day, according to the Department of Veterans Affairs. In her book, Demon Camp, the author Jen Percy describes damaged veterans who have even resorted to exorcism to alleviate their PTSD symptoms. As part of President Obama’s BRAIN Initiative, the federal Defense Advanced Research Projects Agency (DARPA) plans to spend more than $70 million over five years to develop novel devices that would address neurological disorders such as PTSD. DARPA is particularly interested in a technology called Deep Brain Stimulation (DBS). DBS involves inserting a thin electrode through a small opening in the skull into a specific area in the brain; the electrode is then connected by an insulated wire to a battery pack underneath the skin; the battery pack then sends electrical pulses via the wire to the brain. About 100,000 people around the world today have a DBS implant to ameliorate the effects of Parkinson’s disease, epilepsy and major depression. There is evidence that DBS can also help with PTSD. Functional neuroimaging studies indicate that amygdala hyperactivity is responsible for the symptoms of PTSD and that DBS can functionally reduce the activity of the amygdala. In animal PTSD models, DBS has been found to be more effective than current treatment using selective serotonin reuptake inhibitors. © 2014 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 20039 - Posted: 09.06.2014

|By Christie Nicholson Children who experience neglect, abuse and poverty have a tougher time as adults than do well-cared-for kids. Now there’s evidence that such stress can actually change the size of brain structures responsible for learning, memory and processing emotion. The finding is in the journal Biological Psychiatry. [Jamie L. Hanson et al, Behavioral Problems After Early Life Stress: Contributions of the Hippocampus and Amygdala] Researchers took images of the brains of 12-year-olds who had suffered either physical abuse or neglect or had grown up poor. From the images the scientists were able to measure the size of the amygdala and hippocampus—two structures involved in emotional processing and memory. And they compared the sizes of these structures with those of 12-year-old children who were raised in middle-class families and had not been abused. And they found that the stressed children had significantly smaller amygdalas and hippocampuses than did the kids from the more nurturing environments. Early stress has been associated with depression, anxiety, cancer and lack of career success later on in adulthood. This study on the sizes of brain regions may offer physiological clues to why what happens to toddlers can have such a profound impact decades later. © 2014 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory, Learning, and Development
Link ID: 19967 - Posted: 08.18.2014

Helen Shen Most people gradually recover from trauma, but a small fraction of individuals develop post-traumatic stress disorder (PTSD) — prompting scientists to look for the biological underpinnings of this extreme response to traumatic situations such as warfare, car accidents and natural disasters. Research published on 11 August in Proceedings of the National Academy of Sciences identifies up to 334 genes that may be involved in vulnerability to post-traumatic stress in rats1. Most animal studies of stress use intense stimuli such as electric shocks, designed to produce large, group differences between exposed and unexposed animals. But Nikolaos Daskalakis and his colleagues tried a subtler approach to elicit a wide range of individual responses in rats that had all experienced the same trauma — more closely mimicking the variability of human responses to disturbing events. "We wanted to capture the differences between a susceptible individual and one that is not susceptible to the same experience," says Daskalakis, a neuroendocrinologist at the Icahn School of Medicine at Mount Sinai in New York. The researchers exposed around 100 rats to soiled cat litter — which evokes a feared predator — and tested the animals one week later for lingering effects of the trauma. About one-quarter of the exposed animals were classified as 'extreme' responders, showing high levels of anxiety and startling easily on hearing loud noises. Another quarter of the animals were 'minimal' responders, and exhibited anxiety levels similar to those of non-exposed rats. © 2014 Nature Publishing Group

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 19940 - Posted: 08.12.2014

Simon Makin Fish that have been exposed to a common anti-anxiety drug are more active and have better chances of survival than unexposed fish, researchers report in Environmental Research Letters1. The results suggest that standard methods for assessing the environmental impact of pharmaceuticals in waterways might miss some of the drugs' effects because they focus exclusively on harms, according to the authors. In the study, researchers led by Jonatan Klaminder at Umeå University in Sweden exposed Eurasian perch (Perca fluviatilis) to oxazepam, one of a widely used class of anti-anxiety drugs called benzodiazepines. Standard ecotoxicology experiments use unstressed, healthy fish that have been bred in labs. Control groups are designed to have 100% survival rates so that decreases in survival in the test group are easy to detect by comparison. But it is difficult to detect any increase in survival rates when the control group already has nearly complete survival. So Klaminder and his colleagues used the opposite approach. They exposed fish to the drug at two sensitive life stages: two-year-old wild fish taken from a Swedish lake that had only recently thawed after winter, and strings of roes — fish eggs that contain embryos undergoing development. These are more realistic conditions, the researchers say, as animals in the wild often experience high mortality. The researchers used oxazepam at a high concentration of 1,000 micrograms per litre and at a low concentration of 1 μg l−1. The low dose is relevant to aquatic environments in urban areas, because oxazepam concentrations of 1.9 μg l−1 have been measured in effluents from wastewater treatment plants. © 2014 Nature Publishing Group,

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19928 - Posted: 08.09.2014

By ANNA NORTH What does it mean to be lonely? It’s tempting to equate the feeling with a dearth of social interaction, but some people are now saying that it’s more complicated than that — and that true loneliness might be dangerous. In a story at Medium, Robin Marantz Henig busts some common loneliness myths. Lonely people aren’t necessarily weird or uncool: Ms. Henig cites a study of Ohio State undergrads showing that “those who called themselves lonely had just as much ‘social capital’  —  defined by physical attractiveness, height, weight, socioeconomic status, and academic achievement  —  as their non-lonely peers.” And they may not be actually alone: “The students at Ohio State who were lonely belonged to as many clubs and had as many roommates as those who were ‘socially embedded.’ And while some studies indicate that living alone puts people at greater risk for loneliness, living with a spouse is not necessarily any protection.” Rather, loneliness may be psychological. The lonely, writes Ms. Henig, are more likely than others “to feel put upon and misunderstood” in social situations, to see “social danger even where none might exist.” She writes: “People grow lonely because of the gloomy stories they tell themselves. And, in a cruel twist, the loneliness itself can further distort their thinking, making them misread other people’s good intentions, which in turn causes them to withdraw to protect themselves from further rejection —  and causes other people to keep them at arm’s length.” This distancing can have a physical impact; Ms. Henig argues that loneliness deserves further study, in part because it may increase the risk of high blood pressure, sleep problems and Alzheimer’s disease. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 19899 - Posted: 07.30.2014

by Bethany Brookshire Even when we love our jobs, we all look forward to some time away. During the week, as stress builds up and deadlines accumulate, Friday looks better and better. Then, with a sigh of relief, the weekend arrives. But come Monday, it seems like the whole weight of responsibility just comes crashing down again. It’s not just you. Rats feel it, too. Rats given a two-day break from a stressful procedure show more signs of strain on “Monday” than rats who never got the weekend, researchers report July 11 in PLOS ONE. The results show that in some cases, an unpredictable getaway can cause more stress than just working through the pressure. Wei Zang, J. Amiel Rosenkranz and colleagues at the Rosalind Franklin University of School of Medicine and Science in Chicago wanted to understand how changes to a stressful situation alter an animal’s response to stress. Normally, when rats are exposed over and over to a stress such as a restraint (in which a rat is placed in a small tube where it can’t turn around or get out), they begin to get used to the stress. Over a few days, rats stop avoiding the tube and stay calmly in the restraint without struggling, until they are set free. Hormones like corticosterone — which spikes in response to stress — go down. This phenomenon is called habituation. Zhang and colleagues wanted to see what happens when this pattern of stress is interrupted. They restrained rats for 20 minutes each for five days. By day five, the animals were hanging out comfortably in the tubes. Then, the scientists introduced an interruption: They gave half of the rats two days off, a science-induced weekend. The scientists continued to restrain the other group of rats daily. © Society for Science & the Public 2000 - 2013

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19872 - Posted: 07.23.2014

Sarah C. P. Williams The wheezing, coughing, and gasping for breath that come with a sudden asthma attack aren’t just the fault of an overactive immune system. A particularly sensitive bundle of neurons stretching from the brain to the lungs might be to blame as well, researchers have found. Drugs that alter these neurons could provide a new way to treat some types of asthma. “This is an exciting confirmation of an idea that’s been around for decades,” says Allison Fryer, a pulmonary pharmacology researcher at Oregon Health & Science University in Portland, who was not involved in the new study. An asthma attack can be brought on by a variety of triggers, including exercise, cold temperatures, pollen, and dust. During an attack, a person’s airways become inflamed, mucus clogs their lungs, and the muscles surrounding their airways tighten. Asthma is often considered a disease of the immune system because immune cells go into overdrive when they sense a trigger and cause inflammation. But a bundle of nerves that snakes through the neck and chest, the vagus nerve, has long been suspected to play a role; the cells it contains, after all, control the airway muscles. Studying which cell types and molecular pathways within the thick nerve bundle are involved, though, has been tough—the vagus contains a multitude of different cells that are physically intertwined. Working together at the Howard Hughes Medical Institute’s Janelia Farm Research Campus in Ashburn, Virginia, neurobiologists Dimitri Tränkner, now at the University of Utah in Salt Lake City, and Charles Zuker of Columbia University turned to genetics to work out the players. They selectively shut off different sets of the neurons in mice based on which genes each neuron expressed, rather than their physical location. Then, through a series of injections, they gave the animals an egg white allergy that causes asthmalike symptoms. © 2014 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19866 - Posted: 07.22.2014

By ANNA ALTMAN NPR conducted a study about how stressed out we are as a country, and the results, released last week, show that one in four Americans reported feeling stressed in the last month and one in two has experienced a major stressful event in the last year. Smithsonian Magazine, recommending the study, reports that this likely underestimates the actual stress load on Americans: “The survey only measures stress that people are conscious of, NPR explains, but research shows that people can suffer unaware from other forms of stress.” In short, according to Smithsonian, “stress is becoming the national psyche.” So we are barraged with new studies and ideas about stress and how it may be harming us — but many of them are contradictory. Stress can hurt your health, but stressing too much about stress is even worse for your health. Stress can make you sleep badly or it can make you fall asleep. People are most stressed out on Wednesday at 3:30 p.m. And BuzzFeed made a cute video asking whether stress can actually kill you. (“Those under significant stress can have more clogged arteries” and that “can ultimately lead to heart attack.”) Nevertheless, longstanding medical studies do show that chronic stress can lead to anxiety, depression, digestive problems, trouble sleeping, heart disease, weight gain and memory or concentration impairment. Alexandra Drane, a health care consultant, told NPR that those experiencing “toxic stress” were “2.6 times as likely to have diabetes, 2.9 times as likely to have back pain. They were 5 times as likely to be having mental health issues.” Our economy is contributing to the strain, as elevated stress levels often correlate with downturns. In the United States, the Great Recession brought a spike in stress and anxiety. The Gallup-Healthways Well-Being Index polls more than a thousand people each day and in 2008, the study’s first year, showed the definitive effects of economic hardship on stress and mental well-being. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19847 - Posted: 07.17.2014

The modern idea of stress began on a rooftop in Canada, with a handful of rats freezing in the winter wind. This was 1936 and by that point the owner of the rats, an endocrinologist named Hans Selye, had become expert at making rats suffer for science. "He would subject them to extreme temperatures, make them go hungry for long periods, or make them exercise a lot," the medical historian says. "Then what he would do is kill the rats and look at their organs." What was interesting to Selye was that no matter how different the tortures he devised for the rats were — from icy winds to painful injections — when he cut them open to examine their guts it appeared that the physical effects of his different tortures were always the same. "Almost universally these rats showed a particular set of signs," Jackson says. "There would be changes particularly in the adrenal gland. So Selye began to suggest that subjecting an animal to prolonged stress led to tissue changes and physiological changes with the release of certain hormones, that would then cause disease and ultimately the death of the animal." And so the idea of stress — and its potential costs to the body — was born. But here's the thing: The idea of stress wasn't born to just any parent. It was born to Selye, a scientist absolutely determined to make the concept of stress an international sensation. © 2014 NPR

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19809 - Posted: 07.09.2014

—By Chris Mooney The United States has a voting problem. In the 2012 presidential election, only about 57 percent of eligible American voters turned out, a far lower participation rate than in comparable democracies. That means about 93 million people who were eligible to vote didn't bother. Clearly, figuring out why people vote (and why they don't) is of premium importance to those who care about the health of democracy, as well as to campaigns that are becoming ever more sophisticated in targeting individual voters. To that end, much research has shown that demographic factors such as age and poverty affect one's likelihood of voting. But are there individual-level biological factors that also influence whether a person votes? The idea has long been heretical in political science, and yet the logic behind it is unavoidable. People vary in all sorts of ways—ranging from personalities to genetics—that affect their behavior. Political participation can be an emotional, and even a stressful activity, and in an era of GOP-led efforts to make voting more difficult, voting in certain locales can be a major hassle. To vote, you need both to be motivated and also not so intimidated you stay away from the polls. So are there biological factors that can shape these perceptions? "Our study is unique in that it is the first to examine whether differences in physiology may be causally related to differences in political activity," says lead study author Jeffrey French. ©2014 Mother Jones

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19790 - Posted: 07.04.2014

Sarah C. P. Williams There’s a reason people say “Calm down or you’re going to have a heart attack.” Chronic stress—such as that brought on by job, money, or relationship troubles—is suspected to increase the risk of a heart attack. Now, researchers studying harried medical residents and harassed rodents have offered an explanation for how, at a physiological level, long-term stress can endanger the cardiovascular system. It revolves around immune cells that circulate in the blood, they propose. The new finding is “surprising,” says physician and atherosclerosis researcher Alan Tall of Columbia University, who was not involved in the new study. “The idea has been out there that chronic psychosocial stress is associated with increased cardiovascular disease in humans, but what’s been lacking is a mechanism,” he notes. Epidemiological studies have shown that people who face many stressors—from those who survive natural disasters to those who work long hours—are more likely to develop atherosclerosis, the accumulation of fatty plaques inside blood vessels. In addition to fats and cholesterols, the plaques contain monocytes and neutrophils, immune cells that cause inflammation in the walls of blood vessels. And when the plaques break loose from the walls where they’re lodged, they can cause more extreme blockages elsewhere—leading to a stroke or heart attack. Studying the effect of stressful intensive care unit (ICU) shifts on medical residents, biologist Matthias Nahrendorf of Harvard Medical School in Boston recently found that blood samples taken when the doctors were most stressed out had the highest levels of neutrophils and monocytes. To probe whether these white blood cells, or leukocytes, are the missing link between stress and atherosclerosis, he and his colleagues turned to experiments on mice. © 2014 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19761 - Posted: 06.23.2014

by Laura Sanders Some brain cells need a jolt of stress to snap to attention. Cells called astroglia help regulate blood flow, provide energy to nearby cells and even influence messages’ movement between nerve cells. Now, scientists report June 18 in Neuron that astroglia can be roused by the stress molecule norepinephrine, an awakening that may help the entire brain jump into action. As mice were forced to walk on a treadmill, an activity that makes them alert, astroglia in several parts of their brains underwent changes in calcium levels, a sign of activity, neuroscientist Dwight Bergles of Johns Hopkins University School of Medicine and colleagues found. Norepinephrine, which acts as a fight-or-flight hormone in the body and a neural messenger in the brain, seemed to cause the cell activity boost. When researchers depleted norepinephrine, treadmill walking no longer activated astroglia. It’s not clear whether astroglia in all parts of the brain heed this wake-up call, nor is it clear whether this activation influences behavior. Norepinephrine might help shift brain cells, both neurons and astroglia, into a state of heightened vigilance, the authors write. © Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 19744 - Posted: 06.19.2014

By JAMES GORMAN Crazed commuters, fretful parents and overwrought executives are not the only ones to suffer from anxiety — or to benefit from medication for it. The simple crayfish has officially entered the age of anxiety, too. This presumably was already clear to crayfish, which have been around for more than 200 million years and, what with predatory fish — and more recently, étouffée — have long had reasons to worry. But now scientists from France have documented behavior in crayfish that fits the pattern of a certain type of anxiety in human beings and other animals. Although the internal life of crayfish is still unknown, the findings, reported on Thursday in the journal Science, suggest that the external hallmarks of anxiety have been around for a very long time — and far down the food chain. Beyond that, a precursor of Valium changed the behavior back to normal. That does not mean that the crayfish are ready for the therapist’s couch, but it does reinforce the sometimes surprising connections humans have with other living things. Humans share genes with yeast as well as apes, the brains of flies can yield insights into the brains of humans, and even a tiny roundworm has mating behaviors that depend on a molecule very similar to a human hormone. The response to a threat or danger that the scientists found in crayfish had been documented before in other animals, like mice, but not in invertebrates like insects and crustaceans. Researchers including Pascal Fossat and Daniel Cattaert at the University of Bordeaux reported that after crayfish were exposed to electric shocks, they would not venture out of comfortable dark areas in an elaborate aquarium into scarier (for a crayfish) brightly lit areas. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19733 - Posted: 06.14.2014

By Denali Tietjen Meditation has long been known for its mental health benefits, but new research shows that just a few minutes of mindfulness can improve physical health and personal life as well. A recent study conducted by researchers at INSEAD and The Wharton School found that 15 minutes of mindful meditation can help you make better decisions. The research, published in the Association for Psychological Science’s journal Psychological Science, comes from four studies (varying in sample size from 69 to 178 adults) in which participants responded to sunk-cost scenarios at different degrees of mindful awareness. The results consistently showed that increased mindfulness decreases the sunk-cost bias. WOAH, hold the phone. What’s a sunk cost and what’s a sunk-cost bias?? Sunk cost is an economics term that psychologists have adopted. In economics, sunk costs are defined as non-recoverable investment costs like the cost of employee training or a lease on office space. In psychology, sunk costs are basically the same thing: The time and energy we put into our personal lives. Though we might not sit down with a calculator at the kitchen table when deciding who to take as our plus one to our second cousin’s wedding next weekend, we do a cost-benefit analysis every time we make a decision. And we take these sunk costs into account. The sunk-cost bias, then, is the tendency to allow sunk costs to overly influence current decisions. Mindfulness meditation can provide improved clarity, which helps you stay present and make better decisions, the study says. This protects you from that manipulative sunk-cost bias.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 14: Attention and Consciousness
Link ID: 19693 - Posted: 06.05.2014