Links for Keyword: Brain imaging

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 389

Jon Hamilton When the brain needs to remember a phone number or learn a new dance step, it creates a circuit by connecting different types of neurons. But scientists still don't know how many types of neurons there are or exactly what each type does. "How are we supposed to understand the brain and help doctors figure out what schizophrenia is or what paranoia is when we don't even know the different components," says Christof Koch, president and chief scientific officer of the Allen Institute for Brain Science, a nonprofit research center in Seattle. So the institute is creating a freely available online database that will eventually include thousands of nerve cells. For now, the Allen Cell Types Database has detailed information on 240 mouse cells, including their distinctive shapes. More than 100 years ago, Golgi staining on nerve cells opened the gates to modern neuroscience. Scientists recently developed the Technicolor version of Golgi staining, Brainbow, allowing more detailed reconstructions of brain circuits. "They look like different trees," Koch says. "Some fan out at the top. Some are like a Christmas tree; they fan out at the bottom. Others are like three-dimensional fuzz balls." The database also describes each cell by the electrical pattern it generates. And eventually it will include information about which genes are expressed. Once researchers have a complete inventory of details about the brain's building blocks, they'll need to know which combinations of blocks can be connected, Koch says. After all, he says, it is these connections that make us who we are. © 2015 NPR

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 20927 - Posted: 05.14.2015

Alison Abbott It is only when you read the words that Andreas Vesalius wrote as an angry young man in the 1540s that you get a feeling for what drove him to document every scrap of human anatomy his eye could see. His anger was directed at Galen, the second-century physician whose anatomical teachings had been held as gospel for more than a millennium. Roman Empire law had barred Galen from dissecting humans, so he had extrapolated as best he could from animal dissections — often wrongly. Human dissections were also banned in most of sixteenth-century Europe, so Vesalius travelled to wherever they were allowed. He saw Galen's errors and dared to report them, most explicitly in his seven-volume De Humani Corporis Fabrica (On the Fabric of the Human Body), which he began aged 24, working with some of the best art professionals of the time. His mission to learn through direct and systematic observation marked the start of a new way of doing science. In Brain Renaissance, neuroscientists Marco Catani and Stefano Sandrone present a translation from the Latin of the Fabrica's last volume, which focuses on the brain. Through it we can appreciate Vesalius's extraordinary attention to detail, and his willingness to believe his eyes, even when what he saw contradicted established knowledge. We learn his anatomical vocabulary. For example, he called the rounded surface protuberances near the brain stem “buttocks” and “testes”; these are now known as the inferior and superior colliculi, or 'little hills', which process sound and vision. © 2015 Macmillan Publishers Limited.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 20924 - Posted: 05.14.2015

Andrew Griffin Companies are taking out a huge amount of patents related to reading brainwaves, according to analysis, with a range of different applications. Fewer than 400 neuro-technology related patents were filed between 2000-2009. But in 2010 alone that reached 800, and last year 1,600 were filed, according to research company SharpBrains. The patents are for a range of uses, not just for the healthcare technology that might be expected. The company with the most patents is market research firm Nielsen, which has 100. Microsoft also has 89 related patents. Other uses of the technology that have been patented include devices that can change the thoughts of feelings of those that they are used on. But there are still medical uses — some of those patents awarded include technology to measure brain lesions and improve vision. The volume and diversity of the patents shows that we are at the beginning of “the pervasive neurotechnology age”, the company’s CEO Alvaro Fernandez said. "Neurotech has gone well beyond medicine, with non-medical corporations, often under the radar, developing neurotechnologies to enhance work and life," said Fernandez.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 5: The Sensorimotor System
Link ID: 20897 - Posted: 05.08.2015

By REUTERS NEW YORK — The mouse walked, the mouse stopped; the mouse ignored a bowl of food, then scampered back and gobbled it up, and it was all controlled by neuroscientists, researchers reported on Thursday. The study, describing a way to manipulate a lab animal's brain circuitry accurately enough to turn behaviors both on and off, is the first to be published under President Barack Obama's 2013 BRAIN Initiative, which aims to advance neuroscience and develop therapies for brain disorders. The point of the remote-control mouse is not to create an army of robo-rodents. Instead, neuroscientists hope to perfect a technique for identifying brain wiring underlying any behavior, and control that behavior by activating and deactivating neurons. If scientists are able do that for the circuitry involved in psychiatric or neurological disorders, it may lead to therapies. That approach reflects a shift away from linking such illnesses to "chemical imbalances" in the brain, instead tracing them to miswiring and misfiring in neuronal circuits. "This tool sharpens the cutting edge of research aimed at improving our understanding of brain circuit disorders, such as schizophrenia and addictive behaviors," said Dr. Francis Collins, director of the National Institutes of Health, which funded the $1 million study. The technique used to control neurons is called DREADDs (designer receptors exclusively activated by designer drugs). Brain neurons are genetically engineered to produce a custom-made - "designer" - receptor. When the receptor gathers in a manmade molecule that fits like a key in a lock, the neuron is activated. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 20881 - Posted: 05.04.2015

by Simon Oxenham As regular readers will be well aware, much of what I've covered on this blog has been about the use and abuse of the prefix "neuro" to mislead. You don't have to look far to see that most people seem to be pretty disconnected from the science of the brain. This becomes a problem once you realize how this allows us to be misled. Take, for example, the adverts for "brain training" games that stalk you on the internet with claims that don't even remotely hold water; or the fact that a laughable technique called "Brain Gym" that involves making children perform pointless exercises and is based on no evidence whatsoever continues to be widespread in schools across the world at a cost of hundreds of thousands of dollars, and has been used by as many as 39 percent of teachers in the UK. Drop a few brain-related words and it seems even teachers can lose the capacity for critical thought en masse. In 2008, a paper titled "The Seductive Allure of Neuroscience Explanations," struck a chord with me when it made the case that we can be suckered into judging bad psychological explanations as better than they really are if they are served with a side order of irrelevant neuroscience. Another paper published the same year suggested that just showing an image of the brain alongside articles describing fictitious neuroscience research (for example claiming that watching TV improves mathematical ability) resulted in people rating the standard of reasoning in the articles as higher. In 2013 however, a paper was published that remains a strong contender for the award of best-named paper of all time: "The Seductive Allure of Seductive Allure." The paper pointed out flaws in both of the 2008 papers: The neuroscience explanations were longer and arguably added to the psychological explanations. It could be the case that more complicated-sounding, or seemingly better-explained explanations are simply more persuasive. © Copyright 2015, The Big Think, Inc.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 20870 - Posted: 05.02.2015

By Laura Sanders Studying the human brain requires grandiose thinking, but rarely do actual theatrical skills come into play. In her latest stint as a video star, MIT neuroscientist Nancy Kanwisher does not buzz saw her skull open to give viewers a glimpse of her brain. But she does perhaps the next best thing: She clips off her shoulder-length gray hair and shaves her head on camera. Kanwisher’s smooth, bald head then becomes a canvas for graduate student and artist Rosa Lafer-Sousa, who meticulously draws in the brain’s wrinkles — the sulci and the gyri that give rise to thoughts, memories and behaviors. All the while, Kanwisher provides a voice-over describing which areas of the brain recognize faces, process language and even think about what another person is thinking. The video is the latest in Kanwisher’s occasional online series, Nancy’s Brain Talks. Pithy, clever and cleanly produced, the more than two dozen videos she has made so far bring brain science to people who might otherwise miss out. In another neurostunt, brain-zapping technology called transcranial magnetic stimulation makes Kanwisher’s hand jump involuntarily. These demonstrations capture people’s attention more than a dry scientific paper would. “I think scientists owe it to the public to share the cool stuff we discover,” Kanwisher says. Her own lab’s discoveries focus on how the brain’s disparate parts work together to construct a mind. Some brain areas have very specific job descriptions while others are far more general. Compiling a tally of brain regions and figuring out what they do is one of the first steps toward understanding the brain. “It starts to give us a set of basic components of the mind,” Kanwisher says. “It’s like a parts list.” © Society for Science & the Public 2000 - 2015.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 1: An Introduction to Brain and Behavior
Link ID: 20853 - Posted: 04.28.2015

By Rachel Feltman This is either fascinating, incredibly creepy, or both. Probably both. But also science! The video wasn't created for an all-MRI production of "The Wizard of Oz." It's an example of a high-speed, high-resolution MRI technique. The technique, which is being developed by the Bioimaging Science and Technology Group at the Beckman Institute, acquires about 100 frames per second. A description of the technique was published Tuesday in the journal Magnetic Resonance in Medicine. Working about 10 times faster than a standard MRI, the machine was able to pick up the muscular nuances required for singing. You can see the vocal folds hard at work creating the tune. These two flaps inside the larynx sit over the windpipe, coming together whenever we're not breathing. Air passes through the closed folds, causing them to vibrate. We use our larynx to control the tension of our vocal folds, which changes the pitch of our vocalizations. The researchers weren't just goofing off in order to display the MRI's capabilities: The high-speed and high-resolution images help them keep tabs on the tongue and neck muscles during vocalization. They're hoping to learn more about what health vocalization looks like, and whether or not singing can be used as a therapy to help the elderly regain more control over their speech.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 20838 - Posted: 04.23.2015

By Antonio Regalado Various powerful new tools for exploring and manipulating the brain have been developed over the last few years. Some use electronics, while others use light or chemicals. At one MIT lab, materials scientist Polina Anikeeva has hit on a way to manufacture what amounts to a brain-science Swiss Army knife. The neural probes she builds carry light while collecting and transmitting electricity, and they also have tiny channels through which to pump drugs. That’s an advance over metal wires or silicon electrodes conventionally used to study neurons. Anikeeva makes the probes by assembling polymers and metals into large-scale blocks, or preforms, and then stretching them into flexible, ultrathin fibers. Multifunctional fibers offer new ways to study animal behavior, since they can record from neurons as well as stimulating them. New types of medical technology could also result. Imagine, as Anikeeva does, bionic wiring that bridges a spinal-cord injury, collecting electrical signals from the brain and transmitting them to the muscles of a paralyzed hand. Anikeeva made her first multifunctional probe while studying at Stanford. It was crude: she simply wrapped metal wires around a glass filament. But this made it possible to combine standard electrode measurements with a new technology, optogenetics, in which light is fired at neurons to activate them or shut them down.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 20832 - Posted: 04.22.2015

By KEN BELSON The developers of a new drug aimed at diagnosing chronic traumatic encephalopathy, a degenerative brain disease linked to repeated head trauma, are under scrutiny by the Food and Drug Administration. In February, the F.D.A.’s Office of Prescription Drug Promotion sent a letter to two researchers at U.C.L.A. warning them that they had improperly marketed their drug on the Internet and had made overstated claims about the drug’s potential efficacy. The researchers at U.C.L.A. have been developing a biomarker called FDDNP, which aims to identify tau protein deposits in the brain (a signature of C.T.E.) when patients are given a PET scan. To date, researchers have been able to detect C.T.E. only in brain tissue obtained posthumously. The demand for a technique that can diagnose the disease in living patients is potentially large, given growing concerns about the impact of head trauma in athletes, soldiers and others. In its letter, the F.D.A. warned that the researchers, who are partners with the company Taumark, were not allowed to market the drug and make claims about its safety or effectiveness. “Thus, these claims and presentations suggest in a promotional context that FDDNP, an investigational new drug, is safe or effective for such uses, when F.D.A. has not approved FDDNP for any use,” the letter said. The Los Angeles Times first reported the details of the F.D.A.’s letter to the researchers, Dr. Gary Small and Dr. Jorge Barrio. The researchers were told to adjust the language on Taumark’s website, which is now disabled. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 15: Language and Our Divided Brain
Link ID: 20788 - Posted: 04.13.2015

Mo Costandi In 2009, researchers at the University of California, Santa Barbara performed a curious experiment. In many ways, it was routine — they placed a subject in the brain scanner, displayed some images, and monitored how the subject's brain responded. The measured brain activity showed up on the scans as red hot spots, like many other neuroimaging studies. Except that this time, the subject was an Atlantic salmon, and it was dead. Dead fish do not normally exhibit any kind of brain activity, of course. The study was a tongue-in-cheek reminder of the problems with brain scanning studies. Those colorful images of the human brain found in virtually all news media may have captivated the imagination of the public, but they have also been subject of controversy among scientists over the past decade or so. In fact, neuro-imagers are now debating how reliable brain scanning studies actually are, and are still mostly in the dark about exactly what it means when they see some part of the brain "light up." Functional magnetic resonance imaging (fMRI) measures brain activity indirectly by detecting changes in the flow of oxygen-rich blood, or the blood oxygen-level dependent (BOLD) signal, with its powerful magnets. The assumption is that areas receiving an extra supply of blood during a task have become more active. Typically, researchers would home in on one or a few "regions of interest," using 'voxels,' tiny cube-shaped chunks of brain tissue containing several million neurons, as their units of measurement.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 20775 - Posted: 04.10.2015

Helen Shen An ambitious plan is afoot to build the world’s largest public catalogue of neuronal structures. The BigNeuron project, announced on 31 March by the Allen Institute for Brain Science in Seattle, Washington, is designed to help researchers to simulate and understand the human brain. The project might also push neuroscientists to wrestle with fundamental — sometimes even emotional — questions about how to classify neurons. It is the era of the mega-scale brain initiative: Europe’s Human Brain Project aims to model the human brain in a supercomputer, and the US BRAIN Initiative hopes to unravel how networks of neurons work together to produce thoughts and actions. Standing in the way of these projects is a surprising limitation. “We still don’t know how many classes of neurons are in the brain,” says neuroscientist Rafael Yuste at Columbia University in New York City. BigNeuron aims to generate detailed descriptions of tens of thousands of individual neurons from various species, including fruit flies, zebrafish, mice and humans, and to suggest the best computer algorithms for extracting the finely branched shapes of these cells from microscopy data — a difficult and error-prone process. Getting the details of the shapes right is crucial to accurately modelling the behaviour of neurons: their geometry helps to determine how they process and transmit information through electrical and chemical signals. © 2015 Nature Publishing Group

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 20746 - Posted: 04.01.2015

By Emily Underwood Shielded by the skull and packed with fatty tissue, the living brain is perhaps the most difficult organ for scientists to probe. Functional magnetic resonance imaging (fMRI), which noninvasively measures changes in blood flow and oxygen consumption as a proxy for neuronal activation, lags far behind the actual speed of thought. Now, a new technique may provide the fastest yet method of measuring blood flow in the brain, scientists report online today in Nature Methods. The technique, which bounces laser beams off red blood cells, has a resolution of under a millisecond—slightly less time than it takes a neuron to fire—and it has a far higher spatial resolution than fMRI. Even the most powerful fMRI machines, used only on animals, can image only millimeter-wide swaths of tissues including thousands of cells. The new technique, which takes its measurements from sonic waves produced by the beams, can image structures as small as individual blood vessels and cells (see above). Although the technique is not likely to be feasible in humans due to safety concerns, it could provide an important tool to better understand how blood flow and oxygen consumption is related to brain activity. That’s a key question for those relying on cruder and safer tools, such as fMRI, to study the human brain, researchers say. It is also a powerful tool for studying how errant eddies and whorls of blood in blood vessels can sometimes lead to stroke, they say. © 2015 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 20735 - Posted: 03.31.2015

Just like the human brain itself, the European Commission’s billion-euro Human Brain Project (HBP) defies easy explanation. Launched 18 months ago, the massive project is complex and, to most observers, confusing. Many people—both scientists and non-scientists—have thus accepted a description of the project that emerged from its leaders and its publicity machine: the aim of simulating the entire human brain in a supercomputer and so find cures for psychiatric and neurological disorders. Like many simplistic explanations of the brain, that characterization of the project provoked a backlash from neuroscientists. This climaxed in a full-scale uprising last summer, when hundreds of researchers signed a critical open letter to the commission (www.neurofuture.eu). Autocratic management, they complained, was running the project off its scientific course and exaggerating its clinical reach. An independent committee was established to investigate and mediate on the dispute. Last week it published its report. This time, the main points were easier for outsiders to decipher. The rebellious neuroscientists who made the complaints were correct. The brain project is failing and must be fixed. The committee’s criticisms endorse more or less all the concerns of the scientists. The project fails not only in its governance, the report says, but also in its scientific plan—particularly the core aim, the simulation of the entire brain that critics had long dismissed as unrealistic. © 2015 Scientific American

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 20730 - Posted: 03.30.2015

Mo Costandi Two teams of scientists have developed new ways of stimulating neurons with nanoparticles, allowing them to activate brain cells remotely using light or magnetic fields. The new methods are quicker and far less invasive than other hi-tech methods available, so could be more suitable for potential new treatments for human diseases. Researchers have various methods for manipulating brain cell activity, arguably the most powerful being optogenetics, which enables them to switch specific brain cells on or off with unprecedented precision, and simultaneously record their behaviour, using pulses of light. This is very useful for probing neural circuits and behaviour, but involves first creating genetically engineered mice with light-sensitive neurons, and then inserting the optical fibres that deliver light into the brain, so there are major technical and ethical barriers to its use in humans. Nanomedicine could get around this. Francisco Bezanilla of the University of Chicago and his colleagues knew that gold nanoparticles can absorb light and convert it into heat, and several years ago they discovered that infrared light can make neurons fire nervous impulses by heating up their cell membranes. They therefore attached gold nanorods to three different molecules that recognise and bind to proteins in the cell membranes – the scorpion toxin Ts1, which binds to a sodium channel involved in producing nervous impulses, and antibodies that bind the P2X3 and the TRPV1 channels, both found in dorsal root ganglion (DRG) neurons, which transmit touch and pain information up the spinal cord and into the brain. © 2015 Guardian News and Media Limited

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 20717 - Posted: 03.25.2015

By Martin Enserink The Human Brain Project (HBP) has listened to the critics, the reviewers, and the mediators. At a meeting in Paris, the board of directors of the €1 billion project yesterday approved a series of recommendations for reform, proposed by a mediation committee, which will change both HBP’s governance and its research program. Critics of the troubled project welcome the move. “We are absolutely delighted that the board has adopted these recommendations,” says computational neuroscientist Peter Dayan of University College London, one of the hundreds of researchers who signed an open letter last year calling for a major reorganization of HBP. Dayan was a member of the mediation committee charged with finding a way out of the crisis after the publication of the letter. That panel’s report—a summary of which was released on 10 March—roundly acknowledges that the critics were right. The committee “largely supports and emphasizes the critique voiced by parts of the scientific community regarding objectives, scientific approach, governance and management practices,” the report says. The mediation committee said that HBP, now administered by the Swiss Federal Institute of Technology in Lausanne (EPFL), should be run by a new, international entity. “In a first concrete step towards implementing that vision, the board [of directors] has created a governance working group composed of former or current heads of international scientific organisations,” an HBP press release issued today said. (They include CERN, the European Space Agency, and the European Molecular Biology Laboratory.) © 2015 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 20704 - Posted: 03.21.2015

By Emily Underwood Deep brain stimulation, which now involves surgically inserting electrodes several inches into a person's brain and connecting them to a power source outside the skull, can be an extremely effective treatment for disorders such as Parkinson's disease, obsessive compulsive disorder, and depression. The expensive, invasive procedure doesn't always work, however, and can be risky. Now, a study in mice points to a less invasive way to massage neuronal activity, by injecting metal nanoparticles into the brain and controlling them with magnetic fields. Major technical challenges must be overcome before the approach can be tested in humans, but the technique could eventually provide a wireless, nonsurgical alternative to traditional deep brain stimulation surgery, researchers say. "The approach is very innovative and clever," says Antonio Sastre, a program director in the Division of Applied Science & Technology at the National Institute of Biomedical Imaging and Bioengineering in Bethesda, Maryland. The new work provides "a proof of principle." The inspiration to use magnets to control brain activity in mice first struck materials scientist Polina Anikeeva while working in the lab of neuroscientist-engineer Karl Deisseroth at Stanford University in Palo Alto, California. At the time, Deisseroth and colleagues were refining optogenetics, a tool that can switch specific ensembles of neurons on and off in animals with beams of light. © 2015 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 20690 - Posted: 03.14.2015

Alison Abbott Mediators appointed to analyse the rifts within Europe’s ambitious €1-billion (US$1.1-billion) Human Brain Project (HBP) have called for far-reaching changes both in its governance and its scientific programmes. Most significantly, the report recommends that systems neuroscience and cognitive neuroscience should be reinstated into the HBP. The mediation committee, led by engineer Wolfgang Marquardt, director of Germany’s national Jülich Research Centre, sent its final report to the HBP board of directors on 9 March, and issued a press release summarizing its findings. (The full report will not be published until after the board, a 22-strong team of scientists, discusses its contents at a meeting on 17–18 March). The European Commission flagship project, which launched in October 2013, is intended to boost supercomputing through neuroscience, with the aim of simulating the brain in a computer. But the project has been racked by dissent from the outset. In early 2014, a three-person committee of scientists who ran the HBP’s scientific direction revealed that they planned to eliminate cognitive neuroscience from the initiative, which precipitated a mass protest. More than 150 of Europe’s leading neuroscientists signed a letter to the European Commission, complaining about the project’s management and charging that the HBP plan to simulate the brain using only ‘bottom-up’ data on the behaviour of neurons was doomed to failure if it did not include the top-down constraints provided by systems and cognitive neuroscience. © 2015 Nature Publishing Group

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 20670 - Posted: 03.10.2015

In Archaeology it is very rare to find any soft tissue remains: no skin, no flesh, no hair and definitely no brains. However, in 2009, archaeologists from York Archaeological Trust found something very surprising at a site in Heslington, York. During the excavation of an Iron-age landscape at the University of York, a skull, with the jaw and two vertebrae still attached, was discovered face down in a pit, without any evidence of what had happened to the rest of its body. At first it looked like a normal skull but it was not until it was being cleaned, that Collection Projects Officer, Rachel Cubitt, discovered something loose inside. “I peered though the hole at the base of the skull to investigate and to my surprise saw a quantity of bright yellow spongy material. It was unlike anything I had seen before.” says Rachel. Sonia O’Connor, from Archaeological Sciences, University of Bradford, was able to confirm that this was brain. With the help of York Hospital’s Mortuary they were able to remove the top of the skull in order to get their first look at this astonishingly well-preserved human brain. Since the discovery, a team of 34 specialists have been working on this brain to study and conserve it as much as possible. By radiocarbon dating a sample of jaw bone, it was determined that this person probably lived in the 6th Century BC, which makes this brain about 2,600 years old. By looking at the teeth and the shape of the skull it is likely this person was a man between 26 and 45 years old. An examination of the vertebrae in the neck tells us that he was first hit hard on the neck, and then the neck was severed with a small sharp knife, for reasons we can only guess. © Copyright York Archaeological Trust 2013-2015.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 20657 - Posted: 03.07.2015

Alison Abbott Europe’s ambitious but contentious €1-billion Human Brain Project (HBP) has announced changes to its organization in a response to criticisms of its management and scientific trajectory by many high-ranking neuroscientists. On 26 February, the HBP's Board of Directors voted narrowly to disband the three-person executive committee that had run the project, which launched in October 2013 and is intended to boost digital technologies such as supercomputing through collaboration with neuroscience. That decision is expected to be endorsed by HBP’s 85 or so partner universities and research institutes by the end of this week. The revamp comes seven months after 150 top neuroscientists signed a protest letter to the European Commission, charging, among other things, that the committee was acting autocratically and running the project's scientific plans off course. Led by the charismatic but divisive figure of Henry Markram, a neuroscientist at the Swiss Federal Institute of Technology in Lausanne (EPFL) which coordinates the HBP, the committee had stirred up anger last spring when it revealed plans to cut cognitive neuroscience from the initiative. The neuroscientists vowed to boycott the HBP's future phases if their concerns were ignored. An independent mediation committee was established to look into the charges and make recommendations. Its report, which is expected to further shake up the HBP's management, will be published in the next few weeks. In the meantime, the three-person committee's responsibilities will be taken on by the HBP's Board of Directors (currently a 22-strong team of scientists that includes the disbanded executive committee, although they do not have voting rights). © 2015 Nature Publishing Group

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 20651 - Posted: 03.05.2015

By Christian Jarrett Imagine a politician from your party is in trouble for alleged misdemeanors. He’s been assessed by an expert who says he likely has early-stage Alzheimer’s. If this diagnosis is correct, your politician will have to resign, and he’ll be replaced by a candidate from an opposing party. This was the scenario presented to participants in a new study by Geoffrey Munro and Cynthia Munro. A vital twist was that half of the 106 student participants read a version of the story in which the dementia expert based his diagnosis on detailed cognitive tests; the other half read a version in which he used a structural MRI brain scan. All other story details were matched, such as the expert’s years of experience in the field, and the detail provided for the different techniques he used. Overall, the students found the MRI evidence more convincing than the cognitive tests. For example, 69.8 percent of those given the MRI scenario said the evidence the politician had Alzheimer’s was strong and convincing, whereas only 39.6 percent of students given the cognitive tests scenario said the same. MRI data was also seen to be more objective, valid and reliable. Focusing on just those students in both conditions who showed skepticism, over 15 percent who read the cognitive tests scenario mentioned the unreliability of the evidence; none of the students given the MRI scenario cited this reason. In reality, a diagnosis of probable Alzheimer’s will always be made with cognitive tests, with brain scans used to rule out other explanations for any observed test impairments. The researchers said their results are indicative of naive faith in the trustworthiness of brain imaging data. “When one contrasts the very detailed manuals accompanying cognitive tests to the absences of formalized operational criteria to guide the clinical interpretation of structural brain MRI in diagnosing disease, the perception that brain MRI is somehow immune to problems of reliability becomes even more perplexing,” they said. WIRED.com © 2015 Condé Nast.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20621 - Posted: 02.26.2015