Links for Keyword: Brain imaging

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 61 - 80 of 733

By McKenzie Prillaman Cracking the code to brain cancer treatment might start with cracking the brain’s protective shield. Nearly impenetrable walls of jam-packed cells line most of the brain’s blood vessels. Although this blood-brain barrier protects the organ from harmful invaders, it also prevents many medications from reaching the brain. Now, scientists can get a powerful chemotherapy drug into the human brain by temporarily opening its protective shield with ultrasound and tiny bubbles. The early-stage clinical trial, described May 2 in the Lancet Oncology, could lead to new treatments for those with brain cancer. Better treatments are especially needed for glioblastoma, a common and aggressive type of brain tumor. Even after surgical removal, another mass tends to grow in its place. “There’s really no established treatment for when the tumors come back,” says neurosurgeon Adam Sonabend of the Northwestern University Feinberg School of Medicine in Chicago. Patients with recurrent glioblastomas “don’t have any meaningful therapeutic options, so we were exploring new ways of treating them.” After the initial tumor has been removed, patients typically receive a relatively weak chemotherapy drug that can bypass the brain’s barricade. More potent drugs could help destroy any lingering disease — if the medicines could break through the barrier. © Society for Science & the Public 2000–2023.

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 28763 - Posted: 05.03.2023

By Nora Bradford The classical view of how the human brain controls voluntary movement might not tell the whole story. That map of the primary motor cortex — the motor homunculus — shows how this brain region is divided into sections assigned to each body part that can be controlled voluntarily (SN: 6/16/15). It puts your toes next to your ankle, and your neck next to your thumb. The space each part takes up on the cortex is also proportional to how much control one has over that part. Each finger, for example, takes up more space than a whole thigh. A new map reveals that in addition to having regions devoted to specific body parts, three newfound areas control integrative, whole-body actions. And representations of where specific body parts fall on this map are organized differently than previously thought, researchers report April 19 in Nature. Research in monkeys had hinted at this. “There is a whole cohort of people who have known for 50 years that the homunculus isn’t quite right,” says Evan Gordon, a neuroscientist at Washington University School of Medicine in St. Louis. But ever since pioneering brain-mapping work by neurosurgeon Wilder Penfield starting in the 1930s, the homunculus has reigned supreme in neuroscience. Gordon and his colleagues study synchronized activity and communication between different brain regions. They noticed some spots in the primary motor cortex were linked to unexpected areas involved in action control and pain perception. Because that didn’t fit with the homunculus map, they wrote it off as a result of imperfect data. “But we kept seeing it, and it kept bugging us,” Gordon says. So the team gathered functional MRI data on volunteers as they performed various tasks. Two participants completed simple movements like moving just their eyebrows or toes, as well as complex tasks like simultaneously rotating their wrist and moving their foot from side to side. The fMRI data revealed which parts of the brain activated at the same time as each task was done, allowing the researchers to trace which regions were functionally connected to one another. Seven more participants were recorded while not doing any particular task in order to look at how brain areas communicate during rest. © Society for Science & the Public 2000–2023.

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 5: The Sensorimotor System
Link ID: 28748 - Posted: 04.22.2023

Max Kozlov The bizarre-looking ‘homunculus’ is one of neuroscience’s most fundamental diagrams. Found in countless textbooks, it depicts a deformed constellation of body parts mapped onto a narrow strip of the brain, showing the corresponding brain regions that control each part. But a study published in Nature1 on 19 April reveals that this brain strip, called the primary motor cortex, is much more complex than the famous diagram suggests. It might coordinate complex movements involving multiple muscles through connections to brain regions responsible for critical thinking, maintaining the body’s physiology and planning actions. The new results could help scientists better understand and treat brain injuries. “This study is very interesting and very important,” says Michael Graziano, a neuroscientist at Princeton University in New Jersey. It’s becoming clear that the primary motor cortex isn’t “just a simple roster of muscles down the brain that control the toes to the tongue”, he says. Little man in the brain The idea of the homunculus dates to the late nineteenth century, when researchers noticed that electrically stimulating the primary motor cortex corresponded to specific body parts twitching. Later work found that some body parts, such as the hands, feet and mouth, took up a disproportionate amount of space in the primary motor cortex compared with the rest of the body. In 1937, these findings culminated with the first publication of the motor homunculus, which translates to ‘little man’ in Latin. Neurosurgeon Wilder Penfield’s 1948 diagram of the motor homunculus (left) shows the areas of the primary motor cortex that control each body part. A new study redraws the diagram (right), adding regions connected to brain areas responsible for coordinating complex movements.Credit: E. Gordon et al./Nature © 2023 Springer Nature Limited

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 5: The Sensorimotor System
Link ID: 28747 - Posted: 04.22.2023

BySara Reardon Anyone who’s ever owned a telescope has probably tried looking through the wrong end to see whether it works in reverse—that is, like a microscope. Spoiler alert: It doesn’t. Now, a team of researchers inspired by the strange eyes of a sea creature has figured out a way to do it. By flipping the mirrors and lenses used in certain types of telescopes, they have created a new kind of microscope that can be used to image samples floating in any type of liquid—even the insides of transparent organs—while retaining enough light to allow for high magnification. The design could help scientists achieve high enough magnification to study tiny structures such as the long, skinny axons that connect neurons in the brain or individual proteins or RNA molecules inside cells. “It’s nice to see even something as basic as a lens could still bring interest and there's still room there to do some work that would help a lot of people,” says Kimani Touissant, an electrical engineer at Brown University. He says the design could be useful in his work, in which he uses lasers to etch patterns into gels that mimic collagen and act as scaffolds for cells. At very high magnification, light trained on a sample can scatter around it, blurring and dimming the image. To get around that problem, scientists using traditional, lens-based microscopes cover their sample with a thin layer of oil or water, then dip their device’s lens into the liquid, minimizing the degree of light scattering. But this technique requires instruments to have different lenses for different types of liquid, making it an expensive, finicky process and limiting the ways that samples can be prepared. Enter Fabian Voigt, a molecular biologist at Harvard University and inventor of the new design. He was reading a book about animal vision when he encountered the odd case of scallops’ eyes. Unlike most animals, whose eyes feature retinas that send images to the brain, scallops have mantles covered with hundreds of tiny blue dots, each of which contains a curved mirror at its back. As light passes through each eye’s lens, its inner mirror reflects the light back onto the creature’s photoreceptors to create an image that then allows the scallop to respond to its environment.

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 28742 - Posted: 04.18.2023

By Z Paige L’Erario New Research Points to Causes for Brain Disorders with No Obvious Injury A picture of a human brain taken by a positron emission tomography scanner, also called PET scan, is seen on a screen on January 9, 2019, at the Regional and University Hospital Center of Brest in France. Credit: Fred Tanneau/Getty Images “Stop faking!” Imagine hearing those words moments after your doctor diagnosed you with, say, a stroke or a brain tumor. That sounds absurd but for many people diagnosed with a condition called functional neurological disorder (FND), this is exactly what happens. Although the disorder is not well known to many people, FND is actually one of the most common conditions that neurologists like myself encounter. In it, abnormal brain functioning causes symptoms to appear. FND comes in many forms, with symptoms that can include seizures, feelings of weakness and movement disorders. People may lose consciousness or their ability to move or walk. Or they may experience abnormal tremors or tics. It can be highly disabling and just as costly as structural neurological conditions such as amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, multiple sclerosis and Parkinson’s disease. Although men can develop FND, young to middle-aged women receive this diagnosis most frequently. And during the first two years of the COVID pandemic, FND briefly made international headlines when functional tic-like behaviors spread with social media usage, particularly among adolescent girls.

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Link ID: 28725 - Posted: 04.01.2023

By Nora Bradford For the first time, scientists have recorded brain waves from freely moving octopuses. The data reveal some unexpected patterns, though it’s too early to know how octopus brains control the animals’ behavior, researchers report February 23 in Current Biology. “Historically, it’s been so hard to do any recordings from octopuses, even if they’re sedated,” says neuroscientist Robyn Crook of San Francisco State University, who was not involved in the study. “Even when their arms are not moving, their whole body is very pliable,” making attaching recording equipment tricky. Octopuses also tend to be feisty and clever. That means they don’t usually put up with the uncomfortable equipment typically used to record brain waves in animals, says neuroethologist Tamar Gutnick of the University of Naples Federico II in Italy. To work around these obstacles, Gutnick and colleagues adapted portable data loggers typically used on birds, and surgically inserted the devices into three octopuses. The researchers also placed recording electrodes inside areas of the octopus brain that deal with learning and memory. The team then recorded the octopuses for 12 hours while the cephalopods went about their daily lives — sleeping, swimming and self-grooming — in tanks. Some brain wave patterns emerged across all three octopuses in the 12-hour period. For instance, some waves resembled activity in the human hippocampus, which plays a crucial role in memory consolidation. Other brain waves were similar to those controlling sleep-wake cycles in other animals. © Society for Science & the Public 2000–2023.

Related chapters from BN: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 28716 - Posted: 03.25.2023

By McKenzie Prillaman The wiring of one insect’s brain no longer contains much uncharted territory. All of the nerve cells — and virtually every connection between them — in a larval fruit fly brain have now been mapped, researchers report in the March 10 Science. It’s the most complex whole brain wiring diagram yet created. Previously, just three organisms — a sea squirt and two types of worm — had their brain circuitry fully diagrammed to this resolution. But the brains of those creatures have only a few hundred neurons. The scientists who conducted the new study wanted to understand much more complicated brains. Fruit flies (Drosophila melanogaster) share a wide range of behaviors with humans, including integrating sensory information and learning. Larvae perform nearly all the same actions as adult flies — except for some, like flying and mating — but have smaller brains, making data collection much faster (SN: 7/19/18). The idea for this project came 12 years ago, says neuroscientist Marta Zlatic of the MRC Laboratory of Molecular Biology in Cambridge, England. At that time, she and her colleagues captured electron microscope images of the entire larval fruit fly brain. They then stitched those images together in a computer and manually traced each neuron to create a 3-D rendering of the cells. Finally, the team found the connections where information gets passed between the cells, and even determined the sending and receiving ends. Neurons transmit information to one another in circuits. Exploring the neurons’ connectivity patterns — not just directly linked partners, but also the links of linked cells and so on — revealed 93 different types of neurons. The classes were consistent with preexisting groupings characterized by shape and function. And nearly 75 percent of the most well-connected neurons were tied to the brain’s learning center, indicating the importance of learning in animals. © Society for Science & the Public 2000–2023.

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 13: Memory and Learning
Link ID: 28697 - Posted: 03.11.2023

By Sidney Perkowitz In 2019, Edward Chang, a neurosurgeon at the University of California, San Francisco, opened the skull of a 36-year-old man, nicknamed “Pancho,” and placed a thin sheet of electrodes on the surface of his brain.1 The electrodes gather electrical signals from the motor neurons that control the movement of the mouth, larynx, and other body parts to produce speech. A small port, implanted on top of Pancho’s head, relayed the brain signals to a computer. This “brain-computer interface,” or BCI, solved an intractable medical problem. In 2003, Pancho, a field worker in California’s vineyards, was involved in a car crash. Days after undergoing surgery, he suffered a brainstem stroke, reported the New York Times Magazine.2 The stroke robbed Poncho of the power of speech. He could communicate only by laboriously spelling out words one letter at a time with a pointing device. After training with the computer outfitted with deep-learning algorithms that interpreted his brain activity, Pancho could think the words that he wanted to say, and they would appear on the computer screen. Scientists called the results “groundbreaking”; Pancho called them “life-changing.” The clinical success of BCIs (there are other stories to go along with Pancho’s) appear to vindicate the futurists who claim that BCIs may soon enhance the brains of healthy people. Most famously, Ray Kurzweil, author of The Singularity Is Near, has asserted that exponentially rapid developments in neuroscience, bioscience, nanotechnology, and computation will coalesce and allow us to transcend the limitations of our bodies and brains. A major part of this huge shift will be the rise of artificial intelligences that are far more capable than human brains. It is an inevitability of human evolution, Kurzweil thinks, that the two kinds of intelligence will merge to form powerful hybrid brains, which will define the future of humanity. This, he predicted, would happen by 2045. While futuristic scenarios like Kurzweil’s are exciting to ponder, they are brought back down to Earth by the technological capabilities of brain-computer hybrids as they exist today. BCIs are impressive, but the path from helping stroke victims to giving people superpowers is neither direct nor inevitable. © 2022 NautilusThink Inc,

Related chapters from BN: Chapter 11: Motor Control and Plasticity; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 3: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 28570 - Posted: 11.30.2022

By Laura Sanders SAN DIEGO — Scientists have devised ways to “read” words directly from brains. Brain implants can translate internal speech into external signals, permitting communication from people with paralysis or other diseases that steal their ability to talk or type. New results from two studies, presented November 13 at the annual meeting of the Society for Neuroscience, “provide additional evidence of the extraordinary potential” that brain implants have for restoring lost communication, says neuroscientist and neurocritical care physician Leigh Hochberg. Some people who need help communicating can currently use devices that require small movements, such as eye gaze changes. Those tasks aren’t possible for everyone. So the new studies targeted internal speech, which requires a person to do nothing more than think. “Our device predicts internal speech directly, allowing the patient to just focus on saying a word inside their head and transform it into text,” says Sarah Wandelt, a neuroscientist at Caltech. Internal speech “could be much simpler and more intuitive than requiring the patient to spell out words or mouth them.” Neural signals associated with words are detected by electrodes implanted in the brain. The signals can then be translated into text, which can be made audible by computer programs that generate speech. That approach is “really exciting, and reinforces the power of bringing together fundamental neuroscience, neuroengineering and machine learning approaches for the restoration of communication and mobility,” says Hochberg, of Massachusetts General Hospital and Harvard Medical School in Boston, and Brown University in Providence, R.I. © Society for Science & the Public 2000–2022.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 28556 - Posted: 11.16.2022

By Elena Renken The brain’s lifeline, its network of blood vessels, is like a tree, says Mathieu Pernot, deputy director of the Physics for Medicine Paris Lab. The trunk begins in the neck with the carotid arteries, a pair of broad channels that then split into branches that climb into the various lobes of the brain. These channels fork endlessly into a web of tiny vessels that form a kind of canopy. The narrowest of these vessels are only wide enough for a single red blood cell to pass through, and in one important sense these vessels are akin to the tree’s leaves. “When you want to look at pathology, usually you don’t see the sickness in the tree, but in the leaves,” Pernot says. (You can identify Dutch Elm Disease when the tree’s leaves yellow and wilt.) Just like leaves, the tiniest blood vessels in the brain often register changes in neuron and synapse activity first, including illness, such as new growth in a cancerous brain tumor.1, 2 But only in the past decade or so have we developed the technology to detect these microscopic changes in blood flow: It’s called ultrafast ultrasound. Standard ultrasound is already popular in clinical imaging given that it is minimally invasive, low-cost, portable, and can generate images in real time.3 But until now, it has rarely been used to image the brain. That’s partly because the skull gets in the way—bone tends to scatter ultrasound waves—and the technology is too slow to detect blood flow in the smaller arteries that support most brain function. Neurologists have mostly used it in niche applications: to examine newborns, whose skulls have gaps between the bone plates, or to guide surgeons in some brain surgeries, where part of the skull is typically removed. Neuroscience researchers have also used it to study functional differences between the two hemispheres of the brain, based on imaging of the major cerebral arteries, by positioning the device over the temporal bone window, the thinnest area of the skull. © 2022 NautilusThink Inc,

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System; Chapter 9: Hearing, Balance, Taste, and Smell
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 28536 - Posted: 11.02.2022

McKenzie Prillaman A twist on functional magnetic resonance imaging (fMRI) offers a multi-fold improvement in its time sensitivity, better enabling it to unveil the fine-scale dynamics underlying mental processes. Researchers published the results on 13 October in Science1. Can brain scans reveal behaviour? Bombshell study says not yet A standard fMRI technique measures brain activity indirectly, by tracking increases in blood flow in regions where neurons are suddenly consuming more oxygen. This signal, however, can lag behind neuronal activity by 1 second, which dampens time sensitivity — the speedy cells take mere milliseconds to send messages to one another. Jang-Yeon Park, an MRI physicist at Sungkyunkwan University in Suwon, South Korea, set out to enhance fMRI’s temporal precision to track neuronal activity on the order of milliseconds. He and his colleagues accomplished this by changing the software of a high-intensity MRI scanner to acquire data every 5 milliseconds — about 8 times faster than what the standard technique can capture — and applying frequent, repetitive stimulation to animals they were testing. This suppressed the slower-paced blood oxygenation signal, making it possible to observe faster-paced brain activity. The researchers named their technique direct imaging of neuronal activity, or DIANA. In the study, an anaesthetized mouse inside an MRI scanner received a minor electric shock to its face every 200 milliseconds. Between shocks, the machine acquired data from one tiny region of the mouse’s brain every 5 milliseconds. It moved on to a new area after the next electric shock. After the software stitched everything together, the process produced a head-on image of one full slice of the brain, capturing neuronal activity over a 200-millisecond time period. (Spatial resolution was 0.22 millimetres, which is standard for high-intensity MRI.) During the scan, the facial stimulation activated a part of the brain that processes sensory inputs, causing the region to light up with a signal. The researchers found that this ‘DIANA response’ happened at the same time that neurons fired off signals, or ‘spiked’ — activity that was measured separately, using a surgically inserted probe. Furthermore, the team was able to trace the DIANA signal through a brain circuit as groups of neurons sequentially triggered each other. © 2022 Springer Nature Limited

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 28515 - Posted: 10.15.2022

By Claudia Lopez Lloreda If you look at parts of the circulatory system of whales and dolphins, you might think that you are looking at a Jackson Pollock painting, not blood vessels. These cetaceans have especially dense, complex networks of blood vessels mainly associated with the brain and spine, but scientists didn’t know why. A new analysis suggests that the networks protect cetaceans’ brains from the pulses of blood pressure that the animals endure while diving deep in the ocean, researchers report in the Sept. 23 Science. Whales and dolphins “have gone through these really amazing vascular adaptations to support their brain,” says Ashley Blawas, a marine scientist at the Duke University Marine Lab in Beaufort, N.C., who was not involved with the research. Called retia mirabilia, which means “wonderful nets,” the blood vessel networks are present in some other animals besides cetaceans, including giraffes and horses. But the networks aren’t found in other aquatic vertebrates that move differently from whales, such as seals. So scientists had suspected that the cetaceans’ retia mirabilia play a role in controlling blood pressure surges. When whales and dolphins dive, they move their tail up and down in an undulating manner, which creates surges in blood pressure. Land animals that experience similar surges, like galloping horses, are able to release some of this pressure by exhaling. But some cetaceans hold their breath to dive for long periods of time (SN: 9/23/20). Without a way to relieve that pressure, those blasts could tear blood vessels and harm other organs, including the brain. In the new study, biomechanics researcher Margo Lillie of the University of British Columbia in Vancouver and colleagues used data on the morphology of 11 cetacean species to create a computational model that can simulate the animals’ retia mirabilia. It revealed that the arteries and veins in this tangle of blood vessels are really close and may even sometimes be joined. As a result, the retia mirabilia could equalize the differences in blood pressure generated by diving, perhaps by redistributing the blood pulses from arteries to veins and vice versa. This way, the networks get rid of, or at least weaken, huge blood pressure surges that might otherwise reach and devastate the brain. © Society for Science & the Public 2000–2022.

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 28499 - Posted: 10.05.2022

Scientists know both a lot and very little about the brain. With billions of neurons and trillions of connections among them, and the experimental limitations of examining the seat of consciousness and bodily function, studying the human brain is a technical, theoretical and ethical challenge. And one of the biggest challenges is perhaps one of the most fundamental – seeing what it looks like in action. The U.S. Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative is a collaboration among the National Institutes of Health, Defense Advanced Research Projects Agency, National Science Foundation, Food and Drug Administration and Intelligence Advanced Research Projects Activity and others. Since its inception in 2013, its goal has been to develop and use new technologies to examine how each neuron and neural circuit comes together to “record, process, utilize, store, and retrieve vast quantities of information, all at the speed of thought.” Just as genomic sequencing enabled the creation of a comprehensive map of the human genome, tools that elucidate the connection between brain structure and function could help researchers answer long-standing questions about how the brain works, both in sickness and in health. These five stories from our archives cover research that has been funded by or advances the goals of the BRAIN Initiative, detailing a slice of what’s next in neuroscience. Attempts to map the structure of the brain date back to antiquity, when philosophers and scholars had only the unaided eye to map anatomy to function. New visualization techniques in the 20th century led to the discovery that, just like all the other organs of the body, the brain is composed of individual cells – neurons. © 2010–2022, The Conversation US, Inc.

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 13: Memory and Learning
Link ID: 28421 - Posted: 08.06.2022

By Hilary Achauer I sat in a dark room, eyes closed, with a device strapped to my head that looked like a futuristic bike helmet. For 10 minutes, while I concentrated on not accidentally opening my eyes, the prongs sticking out of this gadget and onto my scalp measured a health marker I never thought to assess: my cognitive health. When I booked my brain wave recording (also known as electroencephalography, or EEG), I expected to pull up to an office park with medical clinic vibes, but instead my GPS led me to an ocean-view storefront decorated like a cross between a surf shop and a luxury spa, with a sign in the window promising “Mental Wellness, Reimagined.” Located in Cardiff-by-the-Sea, a wealthy coastal town north of San Diego, Wave Neuroscience promises to help your brain perform better with a noninvasive treatment that uses magnets on the brain. We’re talking mental clarity, improved focus and concentration, and even a shift in mood. As a 48-year-old whose work requires focus and creativity, I was intrigued, but also nervous. Should I mess with a brain that, while not perfect, functions reasonably well? Advertisement Getting the EEG, which costs $100, was like meditating with a device strapped to my head, but it was more relaxing than that sounds. The tech gave me periodic updates, letting me know how much time had elapsed, and afterward I was ushered into an office where I met with Alexander Ring, director of applied science at Wave Neuroscience, via Zoom. Together we reviewed my “braincare report,” a one-page analysis generated in five minutes, comparing my brain waves with Wave Neuroscience’s database of tens of thousands of EEGs. Ring said my brain was generally performing well and that I showed cognitive flexibility and a capability to focus under pressure, but that I had a little bit more theta activity, or slow brain waves, than they normally like to see. He also pointed out a slight frequency mismatch between the back and front of my brain, which might affect my concentration and cause me to have to reread a paragraph to absorb the information. Rude, but accurate. © 2022 The Slate Group LLC. All rights reserved.

Related chapters from BN: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 3: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 14: Attention and Higher Cognition
Link ID: 28347 - Posted: 06.01.2022

By Monique Brouillette Neuroscientists have long aspired to understand the intangible properties of the mind. Our most treasured cerebral qualities, like the ability to think, write poetry, fall in love and even envision a higher spiritual realm, are all generated in the brain. But how the squishy, pinkish-gray, wrinkled mass of the physical brain gives rise to these impalpable experiences remains a mystery. Some neuroscientists think the key to cracking that mystery is a better map of the brain’s circuitry. Nearly 40 years ago, scientists achieved a milestone by completing a wiring diagram that traced all the connections of the 302 neurons of the roundworm Caenorhabditis elegans. They were traced by hand on printed sheets of electron microscope images, a meticulous and herculean task that took years to complete. The project marked the first-ever complete connectome — a comprehensive map of the neuronal connections in an animal’s nervous system. Today, thanks to advances in computing and image analysis algorithms, it can take less than a month to map a roundworm’s connectome. These technological improvements mean that scientists can set their sights on larger animals. They are closing in on the connectome of fruit fly larvae, with more than 9,000 cells, and adult flies, with 100,000 neurons. Next, they hope to map the brain of a developing fish and, perhaps within the next decade, a mouse, with roughly 70 million neurons — a project nearly a thousand times more ambitious than any done so far. And they have already started to map small pieces of the human brain, an unfathomable quest when the worm connectome was initially mapped. © 2022 Annual Reviews

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 28308 - Posted: 04.30.2022

By Kim Tingley In March, neuroscientists and psychiatrists from the School of Medicine at Washington University, St. Louis, along with colleagues elsewhere, published a study in the journal Nature that sparked widespread discussion in their fields. Researchers, the study noted, are increasingly using magnetic resonance imaging — which can reveal the brain’s structure and activity — to try to find links between what is seen on an M.R.I., like cortical thickness or patterns of connection, and complicated psychological traits, like cognitive ability or mental-health conditions. In theory, such so-called brain-wide association studies could yield incredibly valuable insights. Knowing that a particular neurological feature makes someone more vulnerable to autism, Alzheimer’s or another disorder, for example, could help predict, prevent or treat that condition. Likewise, if we can link certain features to desirable traits, like academic achievement, it might be possible to take advantage of that knowledge. The problem, the Nature authors argued, is that neuroscientists often are searching for those associations in groups of study subjects that are too small, leading to results that are statistically “underpowered.” In general, they calculated, thousands of subjects should be included for a brain-wide association study to produce a finding that other studies can replicate. This was unwelcome news to many, in large part because M.R.I. machines are incredibly expensive to use, often at about $1,000 per hour, and funding is limited. Specific instances of underpowered studies are legion. So much so, says Terry Jernigan, director of the Center for Human Development at the University of California, San Diego, that singling out an example “would simply be unfair.” Indeed, according to a paper from 2020 in NeuroImage, the average number of study subjects in more than a thousand of the most cited brain-imaging papers, published between 1990 and 2012, was 12; the Nature paper calculated that the median sample size for neuroimaging studies uploaded to a popular open-access platform as of September 2021 was 23. © 2022 The New York Times Company

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 28294 - Posted: 04.20.2022

Liam Drew James Johnson hopes to drive a car again one day. If he does, he will do it using only his thoughts. In March 2017, Johnson broke his neck in a go-carting accident, leaving him almost completely paralysed below the shoulders. He understood his new reality better than most. For decades, he had been a carer for people with paralysis. “There was a deep depression,” he says. “I thought that when this happened to me there was nothing — nothing that I could do or give.” But then Johnson’s rehabilitation team introduced him to researchers from the nearby California Institute of Technology (Caltech) in Pasadena, who invited him to join a clinical trial of a brain–computer interface (BCI). This would first entail neurosurgery to implant two grids of electrodes into his cortex. These electrodes would record neurons in his brain as they fire, and the researchers would use algorithms to decode his thoughts and intentions. The system would then use Johnson’s brain activity to operate computer applications or to move a prosthetic device. All told, it would take years and require hundreds of intensive training sessions. “I really didn’t hesitate,” says Johnson. The first time he used his BCI, implanted in November 2018, Johnson moved a cursor around a computer screen. “It felt like The Matrix,” he says. “We hooked up to the computer, and lo and behold I was able to move the cursor just by thinking.” Johnson has since used the BCI to control a robotic arm, use Photoshop software, play ‘shoot-’em-up’ video games, and now to drive a simulated car through a virtual environment, changing speed, steering and reacting to hazards. “I am always stunned at what we are able to do,” he says, “and it’s frigging awesome.” © 2022 Springer Nature Limited

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 28292 - Posted: 04.20.2022

by Niko McCarty A new miniature, head-mounted microscope can simultaneously record the activity of thousands of neurons at different depths within the brains of freely moving mice. The smallest functional two-photon microscope to date, it can image neurons almost anywhere in the brain, with subcellular resolution. The device, called MINI2P (miniature two-photon microscope), can also collect data from the same cluster of neurons over several weeks, making it useful for long-term behavioral studies. “If you really want to understand what is behind cognition or failures in cognition, like in autism, you need to look at the interaction between neurons,” says lead investigator Edvard Moser, professor of neuroscience at the Kavli Institute for Systems Neuroscience in Trondheim, Norway. Other devices that measure neuronal activity, such as Neuropixels 2.0, record signals from more than 10,000 sites in the brain at once. But they have a low spatial resolution and cannot always determine which specific neuron is firing at any given time. Other miniature microscopes have also, traditionally, relied on visible light, which illuminates the surface of tissue, but are limited to imaging about 2,000 neurons. The new device can monitor a brain area measuring 500 by 500 micrometers and can capture data on more than 10,000 neurons at once. A typical mouse brain is roughly the size of a pea and contains about 85 million neurons. The MINI2P uses infrared light to capture the activity of neurons engineered to express GCaMP, a protein that binds to calcium ions during an action potential and emits a fluorescent signal in reply. The microscope measures that fluorescence using an infrared laser beam. © 2022 Simons Foundation

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 3: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 28282 - Posted: 04.13.2022

By Benjamin Ehrlich Hour after hour, year after year, Santiago Ramón y Cajal sat alone in his home laboratory, head bowed and back hunched, his black eyes staring down the barrel of a microscope, the sole object tethering him to the outside world. His wide forehead and aquiline nose gave him the look of a distinguished, almost regal, gentleman, although the crown of his head was as bald as a monk’s. He had only a crowd of glass bottles for an audience, some short and stout, some tall and thin, stopped with cork and filled with white powders and colored liquids; the other chairs, piled high with journals and textbooks, left no room for anyone else to sit. Stained with dye, ink and blood, the tablecloth was strewn with drawings of forms at once otherworldly and natural. Colorful transparent slides, mounted with slivers of nervous tissue from sacrificed animals still gummy to the touch from chemical treatments, lay scattered on the worktable. With his left thumb and forefinger, Cajal adjusted the corners of the slide as if it were a miniature picture frame under the lens of his microscope. With his right hand, he turned the brass knob on the side of the instrument, muttering to himself as he drew the image into focus: brownish-black bodies resembling inkblots and radiating threadlike appendages set against a transparent yellow background. The wondrous landscape of the brain was finally revealed to him, more real than he could have ever imagined. In the late 19th century most scientists believed the brain was composed of a continuous tangle of fibers as serpentine as a labyrinth. Cajal produced the first clear evidence that the brain is composed of individual cells, later termed neurons, that are fundamentally the same as those that make up the rest of the living world. He believed that neurons served as storage units for mental impressions such as thoughts and sensations, which combined to form our experience of being alive: “To know the brain is equivalent to ascertaining the material course of thought and will,” he wrote. The highest ideal for a biologist, he declared, is to clarify the enigma of the self. In the structure of neurons, Cajal thought he had found the home of consciousness itself. © 2022 Scientific American

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 28278 - Posted: 04.13.2022

By Matt Richtel For two decades, researchers have used brain-imaging technology to try to identify how the structure and function of a person’s brain connects to a range of mental-health ailments, from anxiety and depression to suicidal tendencies. But a new paper, published Wednesday in Nature, calls into question whether much of this research is actually yielding valid findings. Many such studies, the paper’s authors found, tend to include fewer than two dozen participants, far shy of the number needed to generate reliable results. “You need thousands of individuals,” said Scott Marek, a psychiatric researcher at the Washington University School of Medicine in St. Louis and an author of the paper. He described the finding as a “gut punch” for the typical studies that use imaging to try to better understand mental health. Studies that use magnetic-resonance imaging technology commonly temper their conclusions with a cautionary statement noting the small sample size. But enlisting participants can be time-consuming and expensive, ranging from $600 to $2,000 an hour, said Dr. Nico Dosenbach, a neurologist at Washington University School of Medicine and another author on the paper. The median number of subjects in mental-health-related studies that use brain imaging is around 23, he added. But the Nature paper demonstrates that the data drawn from just two dozen subjects is generally insufficient to be reliable and can in fact yield “massively inflated” findings,” Dr. Dosenbach said. For their analysis, the researchers examined three of the largest studies using brain-imaging technology to reach conclusions about brain structure and mental health. All three studies are ongoing: the Human Connectome Project, which has 1,200 participants; the Adolescent Brain Cognitive Development, or A.B.C.D., study, with 12,000 participants; and the U.K. Biobank study, with 35,700 participants. The authors of the Nature paper looked at subsets of data within those three studies to determine whether smaller slices were misleading or “reproducible,” meaning that the findings could be considered scientifically valid. © 2022 The New York Times Company

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 28245 - Posted: 03.19.2022