Links for Keyword: Robotics

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 268

By Liam Drew The first person to receive a brain-monitoring device from neurotechnology company Neuralink can control a computer cursor with their mind, Elon Musk, the firm’s founder, revealed this week. But researchers say that this is not a major feat — and they are concerned about the secrecy around the device’s safety and performance. The company is “only sharing the bits that they want us to know about”, says Sameer Sheth, a neurosurgeon specializing in implanted neurotechnology at Baylor College of Medicine in Houston, Texas. “There’s a lot of concern in the community about that.” Threads for thoughts Musk announced on 29 January that Neuralink had implanted a brain–computer interface (BCI) into a human for the first time. Neuralink, which is headquartered in Fremont, California, is the third company to start long-term trials in humans. Some implanted BCIs sit on the brain’s surface and record the average firing of populations of neurons, but Neuralink’s device, and at least two others, penetrates the brain to record the activity of individual neurons. Neuralink’s BCI contains 1,024 electrodes — many more than previous systems — arranged on innovative pliable threads. The company has also produced a surgical robot for inserting its device. But it has not confirmed whether that system was used for the first human implant. Details about the first recipient are also scarce, although Neuralink’s volunteer recruitment brochure says that people with quadriplegia stemming from certain conditions “may qualify”.

Related chapters from BN: Chapter 11: Motor Control and Plasticity; Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 29163 - Posted: 02.25.2024

Nancy S. Jecker & Andrew Ko Putting a computer inside someone’s brain used to feel like the edge of science fiction. Today, it’s a reality. Academic and commercial groups are testing “brain-computer interface” devices to enable people with disabilities to function more independently. Yet Elon Musk’s company, Neuralink, has put this technology front and center in debates about safety, ethics and neuroscience. In January 2024, Musk announced that Neuralink implanted its first chip in a human subject’s brain. The Conversation reached out to two scholars at the University of Washington School of Medicine – Nancy Jecker, a bioethicst, and Andrew Ko, a neurosurgeon who implants brain chip devices – for their thoughts on the ethics of this new horizon in neuroscience. How does a brain chip work? Neuralink’s coin-size device, called N1, is designed to enable patients to carry out actions just by concentrating on them, without moving their bodies. Subjects in the company’s PRIME study – short for Precise Robotically Implanted Brain-Computer Interface – undergo surgery to place the device in a part of the brain that controls movement. The chip records and processes the brain’s electrical activity, then transmits this data to an external device, such as a phone or computer. The external device “decodes” the patient’s brain activity, learning to associate certain patterns with the patient’s goal: moving a computer cursor up a screen, for example. Over time, the software can recognize a pattern of neural firing that consistently occurs while the participant is imagining that task, and then execute the task for the person. © 2010–2024, The Conversation US, Inc.

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 5: The Sensorimotor System
Link ID: 29151 - Posted: 02.20.2024

By Ben Guarino Billionaire technologist Elon Musk announced this week that his company Neuralink has implanted its brain-computer interface into a human for the first time. The recipient was “recovering well,” Musk wrote on his social media platform X (formerly Twitter) on Monday evening, adding that initial results showed “promising neuron spike detection”—a reference to brain cells’ electrical activity. Each wireless Neuralink device contains a chip and electrode arrays of more than 1,000 superthin, flexible conductors that a surgical robot threads into the cerebral cortex. There the electrodes are designed to register thoughts related to motion. In Musk’s vision, an app will eventually translate these signals to move a cursor or produce text—in short, it will enable computer control by thinking. “Imagine if Stephen Hawking could communicate faster than a speed typist or auctioneer. That is the goal,” Musk wrote of the first Neuralink product, which he said is named Telepathy. The U.S. Food and Drug Administration had approved human clinical trials for Neuralink in May 2023. And last September the company announced it was opening enrollment in its first study to people with quadriplegia. Monday’s announcement did not take neuroscientists by surprise. Musk, the world’s richest man, “said he was going to do it,” says John Donoghue, an expert in brain-computer interfaces at Brown University. “He had done the preliminary work, built on the shoulders of others, including what we did starting in the early 2000s.” Neuralink’s original ambitions, which Musk outlined when he founded the company in 2016, included meshing human brains with artificial intelligence. Its more immediate aims seem in line with the neural keyboards and other devices that people with paralysis already use to operate computers. The methods and speed with which Neuralink pursued those goals, however, have resulted in federal investigations into dead study animals and the transportation of hazardous material. © 2024 SCIENTIFIC AMERICAN

Related chapters from BN: Chapter 11: Motor Control and Plasticity; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 13: Memory and Learning
Link ID: 29124 - Posted: 01.31.2024

By Ben Guarino Billionaire technologist Elon Musk announced this week that his company Neuralink has implanted its brain-computer interface into a human for the first time. The recipient was “recovering well,” Musk wrote on his social media platform X (formerly Twitter) on Monday evening, adding that initial results showed “promising neuron spike detection”—a reference to brain cells’ electrical activity. Each wireless Neuralink device contains a chip and electrode arrays of more than 1,000 superthin, flexible conductors that a surgical robot threads into the cerebral cortex. There the electrodes are designed to register thoughts related to motion. In Musk’s vision, an app will eventually translate these signals to move a cursor or produce text—in short, it will enable computer control by thinking. “Imagine if Stephen Hawking could communicate faster than a speed typist or auctioneer. That is the goal,” Musk wrote of the first Neuralink product, which he said is named Telepathy. The U.S. Food and Drug Administration had approved human clinical trials for Neuralink in May 2023. And last September the company announced it was opening enrollment in its first study to people with quadriplegia. Monday’s announcement did not take neuroscientists by surprise. Musk, the world’s richest man, “said he was going to do it,” says John Donoghue, an expert in brain-computer interfaces at Brown University. “He had done the preliminary work, built on the shoulders of others, including what we did starting in the early 2000s.” Neuralink’s original ambitions, which Musk outlined when he founded the company in 2016, included meshing human brains with artificial intelligence. Its more immediate aims seem in line with the neural keyboards and other devices that people with paralysis already use to operate computers. The methods and speed with which Neuralink pursued those goals, however, have resulted in federal investigations into dead study animals and the transportation of hazardous material. © 2024 SCIENTIFIC AMERICAN

Related chapters from BN: Chapter 11: Motor Control and Plasticity; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 13: Memory and Learning
Link ID: 29123 - Posted: 01.31.2024

By Benjamin Mueller Once their scalpels reach the edge of a brain tumor, surgeons are faced with an agonizing decision: cut away some healthy brain tissue to ensure the entire tumor is removed, or give the healthy tissue a wide berth and risk leaving some of the menacing cells behind. Now scientists in the Netherlands report using artificial intelligence to arm surgeons with knowledge about the tumor that may help them make that choice. The method, described in a study published on Wednesday in the journal Nature, involves a computer scanning segments of a tumor’s DNA and alighting on certain chemical modifications that can yield a detailed diagnosis of the type and even subtype of the brain tumor. That diagnosis, generated during the early stages of an hourslong surgery, can help surgeons decide how aggressively to operate, the researchers said. In the future, the method may also help steer doctors toward treatments tailored for a specific subtype of tumor. “It’s imperative that the tumor subtype is known at the time of surgery,” said Jeroen de Ridder, an associate professor in the Center for Molecular Medicine at UMC Utrecht, a Dutch hospital, who helped lead the study. “What we have now uniquely enabled is to allow this very fine-grained, robust, detailed diagnosis to be performed already during the surgery.” A brave new world. A new crop of chatbots powered by artificial intelligence has ignited a scramble to determine whether the technology could upend the economics of the internet, turning today’s powerhouses into has-beens and creating the industry’s next giants. Here are the bots to know: ChatGPT. ChatGPT, the artificial intelligence language model from a research lab, OpenAI, has been making headlines since November for its ability to respond to complex questions, write poetry, generate code, plan vacations and translate languages. GPT-4, the latest version introduced in mid-March, can even respond to images (and ace the Uniform Bar Exam). © 2023 The New York Times Company

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 13: Memory and Learning
Link ID: 28958 - Posted: 10.12.2023

Kari Paul and Maanvi Singh Elon Musk’s brain-implant company Neuralink last week received regulatory approval to conduct the first clinical trial of its experimental device in humans. But the billionaire executive’s bombastic promotion of the technology, his leadership record at other companies and animal welfare concerns relating to Neuralink experiments have raised alarm. “I was surprised,” said Laura Cabrera, a neuroethicist at Penn State’s Rock Ethics Institute about the decision by the US Food and Drug Administration to let the company go ahead with clinical trials. Musk’s erratic leadership at Twitter and his “move fast” techie ethos raise questions about Neuralink’s ability to responsibly oversee the development of an invasive medical device capable of reading brain signals, Cabrera argued. “Is he going to see a brain implant device as something that requires not just extra regulation, but also ethical consideration?” she said. “Or will he just treat this like another gadget?” Neuralink is far from the first or only company working on brain interface devices. For decades, research teams around the world have been exploring the use of implants and devices to treat conditions such as paralysis and depression. Already, thousands use neuroprosthetics like cochlear implants for hearing. But the broad scope of capabilities Musk is promising from the Neuralink device have garnered skepticism from experts. Neuralink entered the industry in 2016 and has designed a brain-computer interface (BCI) called the Link – an electrode-laden computer chip that can be sewn into the surface of the brain and connects it to external electronics – as well as a robotic device that implants the chip. © 2023 Guardian News & Media Limited

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 5: The Sensorimotor System
Link ID: 28816 - Posted: 06.07.2023

By Oliver Whang Gert-Jan Oskam was living in China in 2011 when he was in a motorcycle accident that left him paralyzed from the hips down. Now, with a combination of devices, scientists have given him control over his lower body again. “For 12 years I’ve been trying to get back my feet,” Mr. Oskam said in a press briefing on Tuesday. “Now I have learned how to walk normal, natural.” In a study published on Wednesday in the journal Nature, researchers in Switzerland described implants that provided a “digital bridge” between Mr. Oskam’s brain and his spinal cord, bypassing injured sections. The discovery allowed Mr. Oskam, 40, to stand, walk and ascend a steep ramp with only the assistance of a walker. More than a year after the implant was inserted, he has retained these abilities and has actually showed signs of neurological recovery, walking with crutches even when the implant was switched off. “We’ve captured the thoughts of Gert-Jan, and translated these thoughts into a stimulation of the spinal cord to re-establish voluntary movement,” Grégoire Courtine, a spinal cord specialist at the Swiss Federal Institute of Technology, Lausanne, who helped lead the research, said at the press briefing. Jocelyne Bloch, a neuroscientist at the University of Lausanne who placed the implant in Mr. Oskam, added, “It was quite science fiction in the beginning for me, but it became true today.” A brave new world. A new crop of chatbots powered by artificial intelligence has ignited a scramble to determine whether the technology could upend the economics of the internet, turning today’s powerhouses into has-beens and creating the industry’s next giants. Here are the bots to know: © 2023 The New York Times Company

Related chapters from BN: Chapter 11: Motor Control and Plasticity; Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 28801 - Posted: 05.27.2023

By Christina Jewett and Cade Metz A jumble of cords and two devices the size of soda cans protrude from Austin Beggin’s head when he undergoes testing with a team of researchers studying brain implants that are meant to restore function to those who are paralyzed. Despite the cumbersome equipment, it is also when Mr. Beggin feels the most free. He was paralyzed from the shoulders down after a diving accident eight years ago, and the brain device picks up the electrical surges that his brain generates as he envisions moving his arm. It converts those signals to cuffs on the major nerves in his arm. They allow him to do things he had not done on his own since the accident, like lift a pretzel to his mouth. “This is like the first time I’ve ever gotten the opportunity or I’ve ever been privileged and blessed enough to think, ‘When I want to open my hand, I open it,’” Mr. Beggin, 30, said. Days like that are always “a special day.” The work at the Cleveland Functional Electrical Stimulation Center represents some of the most cutting-age research in the brain-computer interface field, with the team connecting the brain to the arm to restore motion. It’s a field that Elon Musk wants to advance, announcing in a recent presentation that brain implants from his company Neuralink would someday help restore sight to the blind or return people like Mr. Beggin to “full-body functionality.” Mr. Musk also said the Neuralink device could allow anyone to use phones and other machines with new levels of speed and efficiency. Neuroscientists and Mr. Beggin alike see such giant advances as decades away, though. Scientists who have approval to test such devices in humans are inching toward restoring normal function in typing, speaking and limited movements. Researchers caution that the goal is much harder and more dangerous than it may seem. And they warn that Mr. Musk’s goals may never be possible — if it is even worth doing in the first place. © 2022 The New York Times Company

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 28591 - Posted: 12.13.2022

By Kurt Kleiner The human brain is an amazing computing machine. Weighing only three pounds or so, it can process information a thousand times faster than the fastest supercomputer, store a thousand times more information than a powerful laptop, and do it all using no more energy than a 20-watt lightbulb. Researchers are trying to replicate this success using soft, flexible organic materials that can operate like biological neurons and someday might even be able to interconnect with them. Eventually, soft “neuromorphic” computer chips could be implanted directly into the brain, allowing people to control an artificial arm or a computer monitor simply by thinking about it. Like real neurons — but unlike conventional computer chips — these new devices can send and receive both chemical and electrical signals. “Your brain works with chemicals, with neurotransmitters like dopamine and serotonin. Our materials are able to interact electrochemically with them,” says Alberto Salleo, a materials scientist at Stanford University who wrote about the potential for organic neuromorphic devices in the 2021 Annual Review of Materials Research. Salleo and other researchers have created electronic devices using these soft organic materials that can act like transistors (which amplify and switch electrical signals) and memory cells (which store information) and other basic electronic components. The work grows out of an increasing interest in neuromorphic computer circuits that mimic how human neural connections, or synapses, work. These circuits, whether made of silicon, metal or organic materials, work less like those in digital computers and more like the networks of neurons in the human brain. © 2022 Annual Reviews

Related chapters from BN: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 3: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 13: Memory and Learning
Link ID: 28449 - Posted: 08.27.2022

By Ferris Jabr To hear more audio stories from publications like The New York Times, download Audm for iPhone or Android. On the evening of Oct. 10, 2006, Dennis DeGray’s mind was nearly severed from his body. After a day of fishing, he returned to his home in Pacific Grove, Calif., and realized he had not yet taken out the trash or recycling. It was raining fairly hard, so he decided to sprint from his doorstep to the garbage cans outside with a bag in each hand. As he was running, he slipped on a patch of black mold beneath some oak trees, landed hard on his chin, and snapped his neck between his second and third vertebrae. While recovering, DeGray, who was 53 at the time, learned from his doctors that he was permanently paralyzed from the collarbones down. With the exception of vestigial twitches, he cannot move his torso or limbs. “I’m about as hurt as you can get and not be on a ventilator,” he told me. For several years after his accident, he “simply laid there, watching the History Channel” as he struggled to accept the reality of his injury. Some time later, while at a fund-raising event for stem-cell research, he met Jaimie Henderson, a professor of neurosurgery at Stanford University. The pair got to talking about robots, a subject that had long interested DeGray, who grew up around his family’s machine shop. As DeGray remembers it, Henderson captivated him with a single question: Do you want to fly a drone? Henderson explained that he and his colleagues had been developing a brain-computer interface: an experimental connection between someone’s brain and an external device, like a computer, robotic limb or drone, which the person could control simply by thinking. DeGray was eager to participate, eventually moving to Menlo Park to be closer to Stanford as he waited for an opening in the study and the necessary permissions. In the summer of 2016, Henderson opened DeGray’s skull and exposed his cortex — the thin, wrinkled, outermost layer of the brain — into which he implanted two 4-millimeter-by-4-millimeter electrode arrays resembling miniature beds of nails. Each array had 100 tiny metal spikes that, collectively, recorded electric impulses surging along a couple of hundred neurons or so in the motor cortex, a brain region involved in voluntary movement. © 2022 The New York Times Company

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 28326 - Posted: 05.14.2022

By Pallab Ghosh A paralysed man with a severed spinal cord has been able to walk again, thanks to an implant developed by a team of Swiss researchers. It is the first time someone who has had a complete cut to their spinal cord has been able to walk freely. The same technology has improved the health of another paralysed patient to the extent that he has been able to become a father. The research has been published in the journal Nature Medicine. Michel Roccati was paralysed after a motorbike accident five years ago. His spinal cord was completely severed - and he has no feeling at all in his legs. But he can now walk - because of an electrical implant that has been surgically attached to his spine. Someone this injured has never been able to walk like this before. The researchers stress that it isn't a cure for spinal injury and that the technology is still too complicated to be used in everyday life, but hail it nonetheless as a major step to improving quality of life. I met Michel at the lab where the implant was created. He told me that the technology "is a gift to me". "I stand up, walk where I want to, I can walk the stairs - it's almost a normal life." It was not the technology alone that drove Michel's recovery. The young Italian has a steely resolve. He told me that from the moment of his accident, he was determined to make as much progress as he could. "I used to box, run and do fitness training in the gym. But after the accident, I could not do the things that I loved to do, but I did not let my mood go down. I never stopped my rehabilitation. I wanted to solve this problem." The speed of Michel's recovery amazed the neurosurgeon who inserted the implant and expertly attached electrodes to individual nerve fibres, Prof Jocelyne Bloch at Lausanne University Hospital "I was extremely surprised," she told me. "Michel is absolutely incredible. He should be able to use this technology to progress and be better and better." © 2022 BBC.

Related chapters from BN: Chapter 11: Motor Control and Plasticity; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 13: Memory and Learning
Link ID: 28194 - Posted: 02.09.2022

By Nayef Al-Rodhan o In Chile, the National Commission for Scientific and Technological Research has begun to debate a “neurorights” bill to be written into the country’s constitution. The world, and most importantly the OECD, UNESCO and the United Nations, should be watching closely. The Chilean bill sets out to protect the right to personal identity, free will, mental privacy, equitable access to technologies that augment human capacities, and the right to protection against bias and discrimination. The landmark bill would be the first of its kind to pioneer a regulatory framework which protects human rights from the manipulation of brain activity. The relatively nascent concept of neurorights follows a number of recent medical innovations, most notably brain-computer interface technology (BCI), which has the potential to revolutionize the field of neuroscience. BCI-based therapy may be useful for poststroke motor rehabilitation and may be a potential method for the accurate detection and treatment of neurological diseases such as Alzheimer’s. Advocates claim there is therefore a moral imperative to use the technology, given the benefits it could bring; others worry about its ethical, moral and societal consequences. Many (mistakenly) see this process as being potentially undermined by premature governance restrictions, or accuse any mention of brake mechanisms as an exaggerated reaction to an unlikely science-fiction scenario. © 2021 Scientific American

Related chapters from BN: Chapter 11: Motor Control and Plasticity; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 14: Attention and Higher Cognition
Link ID: 27841 - Posted: 06.02.2021

R. Douglas Fields The raging bull locked its legs mid-charge. Digging its hooves into the ground, the beast came to a halt just before it would have gored the man. Not a matador, the man in the bullring standing eye-to-eye with the panting toro was the Spanish neuroscientist José Manuel Rodriguez Delgado, in a death-defying public demonstration in 1963 of how violent behavior could be squelched by a radio-controlled brain implant. Delgado had pressed a switch on a hand-held radio transmitter to energize electrodes implanted in the bull’s brain. Remote-controlled brain implants, Delgado argued, could suppress deviant behavior to achieve a “psychocivilized society.” Unsurprisingly, the prospect of manipulating the human mind with brain implants and radio beams ignited public fears that curtailed this line of research for decades. But now there is a resurgence using even more advanced technology. Laser beams, ultrasound, electromagnetic pulses, mild alternating and direct current stimulation and other methods now allow access to, and manipulation of, electrical activity in the brain with far more sophistication than the needlelike electrodes Delgado stabbed into brains. Billionaires Elon Musk of Tesla and Mark Zuckerberg of Facebook are leading the charge, pouring millions of dollars into developing brain-computer interface (BCI) technology. Musk says he wants to provide a “superintelligence layer” in the human brain to help protect us from artificial intelligence, and Zuckerberg reportedly wants users to upload their thoughts and emotions over the internet without the bother of typing. But fact and fiction are easily blurred in these deliberations. How does this technology actually work, and what is it capable of? All Rights Reserved © 2021

Related chapters from BN: Chapter 11: Motor Control and Plasticity; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 13: Memory and Learning
Link ID: 27827 - Posted: 05.19.2021

By Christine Kenneally The first thing that Rita Leggett saw when she regained consciousness was a pair of piercing blue eyes peering curiously into hers. “I know you, don’t I?” she said. The man with the blue eyes replied, “Yes, you do.” But he didn’t say anything else, and for a while Leggett just wondered and stared. Then it came to her: “You’re my surgeon!” It was November, 2010, and Leggett had just undergone neurosurgery at the Royal Melbourne Hospital. She recalled a surge of loneliness as she waited alone in a hotel room the night before the operation and the fear she felt when she entered the operating room. She’d worried about the surgeon cutting off her waist-length hair. What am I doing in here? she’d thought. But just before the anesthetic took hold, she recalled, she had said to herself, “I deserve this.” Leggett was forty-nine years old and had suffered from epilepsy since she was born. During the operation, her surgeon, Andrew Morokoff, had placed an experimental device inside her skull, part of a brain-computer interface that, it was hoped, would be able to predict when she was about to have a seizure. The device, developed by a Seattle company called NeuroVista, had entered a trial stage known in medical research as “first in human.” A research team drawn from three prominent epilepsy centers based in Melbourne had selected fifteen patients to test the device. Leggett was Patient 14. © 2021 Condé Nast.

Related chapters from BN: Chapter 11: Motor Control and Plasticity; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 3: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 27791 - Posted: 04.28.2021

By Tanya Lewis During Musk’s demonstration, he strolled near a pen containing several pigs, some of which had Neuralink implants. One animal, named Gertrude, had hers for two months. The device’s electrodes were situated in a part of Gertrude’s cortex that connected to neurons in her snout. And for the purposes of the demo, her brain signals were converted to audible bleeps that became more frequent as she sniffed around the pen and enjoyed some tasty treats. Musk also showed off a pig whose implant had been successfully removed to show that the surgery was reversible. Some of the other displayed pigs had multiple implants. Neuralink implantable device Neuralink implantable device, v0.9. Credit: Neuralink Neuralink, which was founded by Musk and a team of engineers and scientists in 2016, unveiled an earlier, wired version of its implant technology in 2019. It had several modules: the electrodes were connected to a USB port in the skull, which was intended to be wired to an external battery and a radio transmitter that were located behind the ear. The latest version consists of a single integrated implant that fits in a hole in the skull and relays data through the skin via a Bluetooth radio. The wireless design makes it seem much more practical for human use but limits the bandwidth of data that can be sent, compared with state-of-the-art brain-computer interfaces. The company’s goal, Musk said in the demo, is to “solve important spine and brain problems with a seamlessly implanted device”—a far cry from his previously stated, much more fantastic aim of allowing humans to merge with artificial intelligence. This time Musk seemed more circumspect about the device’s applications. As before, he insisted the demonstration was purely intended as a recruiting event to attract potential staff. Neuralink’s efforts build on decades of work from researchers in the field of brain-computer interfaces. Although technically impressive, this wireless brain implant is not the first to be tested in pigs or other large mammals.] © 2020 Scientific American,

Related chapters from BN: Chapter 11: Motor Control and Plasticity; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 27457 - Posted: 09.07.2020

By Benjamin Powers On the 10th floor of a nondescript building at Columbia University, test subjects with electrodes attached to their heads watch a driver’s view of a car going down a street through a virtual reality headset. All the while, images of pianos and sailboats pop up to the left and right of each test subject’s field of vision, drawing their attention. The experiment, headed by Paul Sajda, a biomedical engineer and the director of Columbia’s Laboratory for Intelligent Imaging and Neural Computing, monitors the subjects’ brain activity through electroencephalography technology (EEG), while the VR headset tracks their eye movement to see where they’re looking — a setup in which a computer interacts directly with brain waves, called a brain computer interface (BCI). In the Columbia experiment, the goal is to use the information from the brain to train artificial intelligence in self-driving cars, so they can monitor when, or if, drivers are paying attention. BCIs are popping up in a range of fields, from soldiers piloting a swarm of drones at the Defense Advanced Research Projects Agency (DARPA) to a Chinese school monitoring students’ attention. The devices are also used in medicine, including versions that let people who have been paralyzed operate a tablet with their mind or that give epileptic patients advance warning of a seizure. And in July 2019, Elon Musk, the CEO and founder of Tesla and other technology companies, showed off the work of his venture Neuralink, which could implant BCIs in people’s brains to achieve “a symbiosis with artificial intelligence.”

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 1: Cells and Structures: The Anatomy of the Nervous System; Chapter 14: Attention and Higher Cognition
Link ID: 27209 - Posted: 04.22.2020

By Karen Weintraub At age 16, German Aldana was riding in the back seat of a car driven by a friend when another car headed straight for them. To avoid a collision, his friend swerved and hit a concrete pole. The others weren’t seriously injured, but Aldana, unbuckled, was tossed around enough to snap his spine just below his neck. For the next five years, he could move only his neck, and his arms a little. Right after he turned 21 and met the criteria, Aldana signed up for a research project at the University of Miami Miller School of Medicine near his home. Researchers with the Miami Project to Cure Paralysis carefully opened Aldana's skull and, at the surface of the brain, implanted electrodes. Then, in the lab, they trained a computer to interpret the pattern of signals from those electrodes as he imagines opening and closing his hand. The computer then transfers the signal to a prosthetic on Aldana's forearm, which then stimulates the appropriate muscles to cause his hand to close. The entire process takes 400 milliseconds from thought to grasp. A year after his surgery, Aldana can grab simple objects, like a block. He can bring a spoon to his mouth, feeding himself for the first time in six years. He can grasp a pen and scratch out some legible letters. He has begun experimenting with a treadmill that moves his limbs, allowing him to take steps forward or stop as he thinks about clenching or unclenching the fingers of his right hand. But only in the lab. Researchers had permission to test it only in their facility, but they’re now applying for federal permission to extend their study. The hope is that by the end of this year, Aldana will be able to bring his device home — improving his ability to feed himself, open doors and restoring some measure of independence.

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 27107 - Posted: 03.09.2020

By Kelly Servick Building a beautiful robotic hand is one thing. Getting it to do your bidding is another. For all the hand-shaped prostheses designed to bend each intricate joint on cue, there’s still the problem of how to send that cue from the wearer’s brain. Now, by tapping into signals from nerves in the arm, researchers have enabled amputees to precisely control a robotic hand just by thinking about their intended finger movements. The interface, which relies on a set of tiny muscle grafts to amplify a user’s nerve signals, just passed its first test in people: It translated those signals into movements, and its accuracy stayed stable over time. “This is really quite a promising and lovely piece of work,” says Gregory Clark, a neural engineer at the University of Utah who was not involved in the research. It “opens up new opportunities for better control.” Most current robotic prostheses work by recording—from the surface of the skin—electrical signals from muscles left intact after an amputation. Some amputees can guide their artificial hand by contracting muscles remaining in the forearm that would have controlled their fingers. If those muscles are missing, people can learn to use less intuitive movements, such as flexing muscles in their upper arm. These setups can be finicky, however. The electrical signal changes when a person’s arm sweats, swells, or slips around in the socket of the prosthesis. As a result, the devices must be recalibrated over and over, and many people decide that wearing a heavy robotic arm all day just isn’t worth it, says Shriya Srinivasan, a biomedical engineer at the Massachusetts Institute of Technology. © 2020 American Association for the Advancement of Science

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 27095 - Posted: 03.05.2020

By Matthew Cobb We are living through one of the greatest of scientific endeavours – the attempt to understand the most complex object in the universe, the brain. Scientists are accumulating vast amounts of data about structure and function in a huge array of brains, from the tiniest to our own. Tens of thousands of researchers are devoting massive amounts of time and energy to thinking about what brains do, and astonishing new technology is enabling us to both describe and manipulate that activity. A neuroscientist explains: the need for ‘empathetic citizens’ - podcast We can now make a mouse remember something about a smell it has never encountered, turn a bad mouse memory into a good one, and even use a surge of electricity to change how people perceive faces. We are drawing up increasingly detailed and complex functional maps of the brain, human and otherwise. In some species, we can change the brain’s very structure at will, altering the animal’s behaviour as a result. Some of the most profound consequences of our growing mastery can be seen in our ability to enable a paralysed person to control a robotic arm with the power of their mind. Every day, we hear about new discoveries that shed light on how brains work, along with the promise – or threat – of new technology that will enable us to do such far-fetched things as read minds, or detect criminals, or even be uploaded into a computer. Books are repeatedly produced that each claim to explain the brain in different ways. And yet there is a growing conviction among some neuroscientists that our future path is not clear. It is hard to see where we should be going, apart from simply collecting more data or counting on the latest exciting experimental approach. As the German neuroscientist Olaf Sporns has put it: “Neuroscience still largely lacks organising principles or a theoretical framework for converting brain data into fundamental knowledge and understanding.” Despite the vast number of facts being accumulated, our understanding of the brain appears to be approaching an impasse. © 2020 Guardian News & Media Limited

Related chapters from BN: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 11: Emotions, Aggression, and Stress
Link ID: 27084 - Posted: 02.28.2020

Ian Sample Science editor Scientists have created artificial neurons that could potentially be implanted into patients to overcome paralysis, restore failing brain circuits, and even connect their minds to machines. The bionic neurons can receive electrical signals from healthy nerve cells, and process them in a natural way, before sending fresh signals on to other neurons, or to muscles and organs elsewhere in the body. One of the first applications may be a treatment for a form of heart failure that develops when a particular neural circuit at the base of the brain deteriorates through age or disease and fails to send the right signals to make the heart pump properly. Rather than implanting directly into the brain, the artificial neurons are built into ultra-low power microchips a few millimetres wide. The chips form the basis for devices that would plug straight into the nervous system, for example by intercepting signals that pass between the brain and leg muscles. “Any area where you have some degenerative disease, such as Alzheimer’s, or where the neurons stop firing properly because of age, disease, or injury, then in theory you could replace the faulty biocircuit with a synthetic circuit,” said Alain Nogaret, a physicist who led the project at the University of Bath. The breakthrough came when researchers found they could model live neurons in a computer program and then recreate their firing patterns in silicon chips with more than 94% accuracy. The program allows the scientists to mimic the full variety of neurons found in the nervous system. © 2019 Guardian News & Media Limited

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 4: Development of the Brain; Chapter 4: Development of the Brain
Link ID: 26872 - Posted: 12.04.2019