Chapter 6. Evolution of the Brain and Behavior

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 41 - 60 of 1601

By Priyanka Pulla Humans are late bloomers when compared with other primates—they spend almost twice as long in childhood and adolescence as chimps, gibbons, or macaques do. But why? One widely accepted but hard-to-test theory is that children’s brains consume so much energy that they divert glucose from the rest of the body, slowing growth. Now, a clever study of glucose uptake and body growth in children confirms this “expensive tissue” hypothesis. Previous studies have shown that our brains guzzle between 44% and 87% of the total energy consumed by our resting bodies during infancy and childhood. Could that be why we take so long to grow up? One way to find out is with more precise studies of brain metabolism throughout childhood, but those studies don’t exist yet. However, a new study published online today in the Proceedings of the National Academy of Sciences (PNAS) spliced together three older data sets to provide a test of this hypothesis. First, the researchers used a 1987 study of PET scans of 36 people between infancy and 30 years of age to estimate age trends in glucose uptake by three major sections of the brain. Then, to calculate how uptake varied for the entire brain, they combined that data with the brain volumes and ages of 400 individuals between 4.5 years of age and adulthood, gathered from a National Institutes of Health study and others. Finally, to link age and brain glucose uptake to body size, they used an age series of brain and body weights of 1000 individuals from birth to adulthood, gathered in 1978. © 2014 American Association for the Advancement of Science.

Keyword: Development of the Brain; Evolution
Link ID: 19998 - Posted: 08.26.2014

By Meeri Kim From ultrasonic bat chirps to eerie whale songs, the animal kingdom is a noisy place. While some sounds might have meaning — typically something like “I'm a male, aren't I great?” — no other creatures have a true language except for us. Or do they? A new study on animal calls has found that the patterns of barks, whistles, and clicks from seven different species appear to be more complex than previously thought. The researchers used mathematical tests to see how well the sequences of sounds fit to models ranging in complexity. In fact, five species including the killer whale and free-tailed bat had communication behaviors that were definitively more language-like than random. The study was published online Wednesday in the Proceedings of the Royal Society B. “We're still a very, very long way from understanding this transition from animal communication to human language, and it's a huge mystery at the moment,” said study author and zoologist Arik Kershenbaum, who did the work at the National Institute for Mathematical and Biological Synthesis. “These types of mathematical analyses can give us some clues.” While the most complicated mathematical models come closer to our own speech patterns, the simple models — called Markov processes — are more random and have been historically thought to fit animal calls. “A Markov process is where you have a sequence of numbers or letters or notes, and the probability of any particular note depends only on the few notes that have come before,” said Kershenbaum. So the next note could depend on the last two or 10 notes before it, but there is a defined window of history that can be used to predict what happens next. “What makes human language special is that there's no finite limit as to what comes next,” he said.

Keyword: Language; Evolution
Link ID: 19987 - Posted: 08.22.2014

By Jane C. Hu Last week, people around the world mourned the death of beloved actor and comedian Robin Williams. According to the Gorilla Foundation in Woodside, California, we were not the only primates mourning. A press release from the foundation announced that Koko the gorilla—the main subject of its research on ape language ability, capable in sign language and a celebrity in her own right—“was quiet and looked very thoughtful” when she heard about Williams’ death, and later became “somber” as the news sank in. Williams, described in the press release as one of Koko’s “closest friends,” spent an afternoon with the gorilla in 2001. The foundation released a video showing the two laughing and tickling one another. At one point, Koko lifts up Williams’ shirt to touch his bare chest. In another scene, Koko steals Williams’ glasses and wears them around her trailer. These clips resonated with people. In the days after Williams’ death, the video amassed more than 3 million views. Many viewers were charmed and touched to learn that a gorilla forged a bond with a celebrity in just an afternoon and, 13 years later, not only remembered him and understood the finality of his death, but grieved. The foundation hailed the relationship as a triumph over “interspecies boundaries,” and the story was covered in outlets from BuzzFeed to the New York Post to Slate. The story is a prime example of selective interpretation, a critique that has plagued ape language research since its first experiments. Was Koko really mourning Robin Williams? How much are we projecting ourselves onto her and what are we reading into her behaviors? Animals perceive the emotions of the humans around them, and the anecdotes in the release could easily be evidence that Koko was responding to the sadness she sensed in her human caregivers. © 2014 The Slate Group LLC.

Keyword: Language; Evolution
Link ID: 19986 - Posted: 08.22.2014

|By Jason G. Goldman When you do not know the answer to a question, say, a crossword puzzle hint, you realize your shortcomings and devise a strategy for finding the missing information. The ability to identify the state of your knowledge—thinking about thinking—is known as metacognition. It is hard to tell whether other animals are also capable of metacognition because we cannot ask them; studies of primates and birds have not yet been able to rule out simpler explanations for this complex process. Scientists know, however, that some animals, such as western scrub jays, can plan for the future. Western scrub jays, corvids native to western North America, are a favorite of cognitive scientists because they are not “stuck in time”—that is, they are able to remember past events and are known to cache their food in anticipation of hunger, according to psychologist Arii Watanabe of the University of Cambridge. But the question remained: Are they aware that they are planning? Watanabe devised a way to test them. He let five birds watch two researchers hide food, in this case a wax worm. The first researcher could hide the food in any of four cups lined up in front of him. The second had three covered cups, so he could place the food only in the open one. The trick was that the researchers hid their food at the same time, forcing the birds to choose which one to watch. If the jays were capable of metacognition, Watanabe surmised, the birds should realize that they could easily find the second researcher's food. The wax worm had to be in the singular open cup. They should instead prefer keeping their eyes on the setup with four open cups because witnessing where that food went would prove more useful in the future. And that is exactly what happened: the jays spent more time watching the first researcher. The results appeared in the July issue of the journal © 2014 Scientific American,

Keyword: Learning & Memory; Evolution
Link ID: 19985 - Posted: 08.22.2014

by Sarah Zielinski PRINCETON, N.J. — Learning can be a quick shortcut for figuring out how to do something on your own. The ability to learn from watching another individual — called social learning — is something that hasn’t been documented in many species outside of primates and birds. But now a lizard can be added to the list of critters that can learn from one another. Young eastern water skinks were able to learn by watching older lizards, Martin Whiting of Macquarie University in Sydney reported August 10 at the Animal Behavior Society meeting at Princeton University. The eastern water skink, which reaches a length of about 30 centimeters, can be found near streams and waterways in eastern Australia. The lizards live up to eight years, and while they don’t live in groups, they often see each other in the wild. That could provide an opportunity for learning from each other. Whiting and his colleagues worked with 18 mature (older than 5 years) and 18 young (1.5 to 2 years) male skinks in the lab. The lizards were placed in bins with a barrier in the middle that was either opaque or transparent. In the first of two experiments, the skinks were given a yellow-lidded container with a mealworm inside. They had to learn to open the lid to get the food. In that task, skinks that could see a demonstrator through a transparent barrier were no better at opening the lid than those who had to figure it out on their own. After watching a demonstrator lizard (top row), the skink in the other half of the tub was supposed to have learned that a mealworm was beneath the blue lid. The skink in the middle arena, however, failed the task when he opened the white lid first.D.W.A. Noble et al/Biology Letters 2014 © Society for Science & the Public 2000 - 2013.

Keyword: Learning & Memory; Evolution
Link ID: 19984 - Posted: 08.22.2014

by Philippa Skett It's the strangest sweet tooth in the world. Birds lost the ability to taste sugars, but nectar-feeding hummingbirds re-evolved the capacity by repurposing receptors used to taste savoury food. To differentiate between tastes, receptors on the surface of taste buds on the tongue, known as T1Rs, bind to molecules in certain foods, triggering a neurological response. In vertebrates such as humans, a pair of these receptors – T1R2 and T1R3 – work together to deliver the sweet kick we experience from sugar. But Maude Baldwin at Harvard University and her colleagues found that birds don't have the genes that code for T1R2. They are found in lizards, though, suggesting that they were lost at some point during the evolution of birds or the dinosaurs they evolved from. But hummingbirds clearly can detect sugar: not only do they regularly sup on nectar, taste tests show they prefer sweet tasting foods over blander options. Now Baldwin and her team have worked out why: another pair of receptors – T1R1 and T1R3 – work together to detect sugar. Other vertebrates use T1R1 to taste savoury foods. It seems that in hummingbirds the proteins on the surface of the two receptors have been modified so that they respond to sugars instead. © Copyright Reed Business Information Ltd.

Keyword: Chemical Senses (Smell & Taste); Evolution
Link ID: 19983 - Posted: 08.22.2014

By CARL ZIMMER Your body is home to about 100 trillion bacteria and other microbes, collectively known as your microbiome. Naturalists first became aware of our invisible lodgers in the 1600s, but it wasn’t until the past few years that we’ve become really familiar with them. This recent research has given the microbiome a cuddly kind of fame. We’ve come to appreciate how beneficial our microbes are — breaking down our food, fighting off infections and nurturing our immune system. It’s a lovely, invisible garden we should be tending for our own well-being. But in the journal Bioessays, a team of scientists has raised a creepier possibility. Perhaps our menagerie of germs is also influencing our behavior in order to advance its own evolutionary success — giving us cravings for certain foods, for example. “One of the ways we started thinking about this was in a crime-novel perspective,” said Carlo C. Maley, an evolutionary biologist at the University of California, San Francisco, and a co-author of the new paper. “What are the means, motives and opportunity for the microbes to manipulate us? They have all three.” The idea that a simple organism could control a complex animal may sound like science fiction. In fact, there are many well-documented examples of parasites controlling their hosts. Some species of fungi, for example, infiltrate the brains of ants and coax them to climb plants and clamp onto the underside of leaves. The fungi then sprout out of the ants and send spores showering onto uninfected ants below. How parasites control their hosts remains mysterious. But it looks as if they release molecules that directly or indirectly can influence their brains. © 2014 The New York Times Company

Keyword: Obesity; Evolution
Link ID: 19981 - Posted: 08.20.2014

by Bethany Brookshire When a laboratory mouse and a house mouse come nose to nose for the first time, each one is encountering something it has never seen before. They are both Mus musculus. But the wild mouse is facing a larger, fatter, calmer and less aggressive version of itself that’s the result of brother-to-sister inbreeding for generations, resulting in mice that are almost completely genetically identical. Laboratory mice are incredibly valuable tools for research into diseases from Alzheimer’s to Zellweger syndrome. Scientists have a deep understanding of lab mouse DNA, and can use that knowledge to study how specific genes may control certain behaviors and underlie disease. But with all the inbreeding comes some traits that, while desirable in a lab mouse, may not reflect the behavior of an animal in the wild. So for some questions, and some behaviors, scientists might need something a bit wilder. A new study takes lab mice back to their roots and along the way uncovers a new gene function. Lea Chalfin and colleagues at the Weizmann Institute of Science in Rohovot, Israel, bred laboratory mice with wild mice for 10 generations. The result was a mouse with wild mouse genes and wild mouse behavior — with a few important lab mouse genes mixed in. The technique allows scientists to place specific mutations in a wild mouse. The results have interesting implications for studying the mouse species, and might provide some new ways to study human disease as well. Chalfin and her colleagues were especially interested in behaviors linked to female aggression. © Society for Science & the Public 2000 - 2013

Keyword: Aggression; Evolution
Link ID: 19980 - Posted: 08.20.2014

By Victoria Gill Science reporter, BBC News Scientists in Brazil have managed to eavesdrop on underwater "turtle talk". Their recordings have revealed that, in the nesting season, river turtles appear to exchange information vocally - communicating with each other using at least six different sounds. This included chatter recorded between females and hatchlings. The researchers say this is the first record of parental care in turtles. It shows they could be vulnerable to the effects of noise pollution, they warn. The results, published recently in the Journal Herpetologica, include recordings of the strange turtle talk. They reveal that the animals may lead much more socially complex lives than previously thought. The team, including researchers from the Wildlife Conservation Society (WCS) and the National Institute of Amazonian Research carried out their study on the Rio Trombetas in the Amazon between 2009 and 2011. They used microphones and underwater hydrophones to record more than 250 individual sounds from the animals. The scientists then analysed these vocalisations and divided them into six different types, correlating each category with a specific behaviour. Dr Camila Ferrara, of the WCS Brazil programme, told BBC News: "The [exact] meanings aren't clear... but we think they're exchanging information. "We think sound helps the animals to synchronise their activities in the nesting season," she said. The noises the animals made were subtly different depending on their behaviour. For example, there was a specific sound when adults were migrating through the river, and another when they gathered in front of nesting beaches. There was a different sound again made by adults when they were waiting on the beaches for the arrival of their hatchlings. BBC © 2014

Keyword: Animal Communication; Language
Link ID: 19968 - Posted: 08.18.2014

By Victoria Gill Science reporter, BBC News Very mobile ears help many animals direct their attention to the rustle of a possible predator. But a study in horses suggests they also pay close attention to the direction another's ears are pointing in order to work out what they are thinking. Researchers from the University of Sussex say these swivelling ears have become a useful communication tool. Their findings are published in the journal Current Biology. The research team studies animal behaviour to build up a picture of how communication and social skills evolved. "We're interested in how [they] communicate," said lead researcher Jennifer Wathan. "And being sensitive to what another individual is thinking is a fundamental skill from which other [more complex] skills develop." Ms Wathan and her colleague Prof Karen McComb set up a behavioural experiment where 72 individual horses had to use visual cues from another horse in order to choose where to feed. They led each horse to a point where it had to select one of two buckets. On a wall behind this decision-making spot was a life-sized photograph of a horse's head facing either to left or right. In some of the trials, the horses ears or eyes were covered. Horse images used in a study of horse communication The ears have it: Horses in the test followed the gaze of another horse, and the direction its ears pointed If the ears and eyes of the horse in the picture were visible, the horses being tested would choose the bucket towards which its gaze - and its ears - were directed. If the horse in the picture had either its eyes or its ears covered, the horse being tested would just choose a feed bucket at random. Like many mammals that are hunted by predators, horses can rotate their ears through almost 180 degrees - but Ms Wathan said that in our "human-centric" view of the world, we had overlooked the importance of these very mobile ears in animal communication. BBC © 2014

Keyword: Language; Animal Communication
Link ID: 19914 - Posted: 08.05.2014

Nishad Karim African penguins communicate feelings such as hunger, anger and loneliness through six distinctive vocal calls, according to scientists who have observed the birds' behaviour in captivity. The calls of the "jackass" penguin were identified by researchers at the University of Turin, Italy. Four are exclusive to adults and two are exclusive to juveniles and chicks. The study, led by Dr Livio Favaro, found that adult penguins produce distinctive short calls to express their isolation from groups or their mates, known as "contact" calls, or to show aggression during fights or confrontations, known as "agonistic" calls. They also observed an "ecstatic display song", sung by single birds during the mating season and the "mutual display song", a custom duet sung by nesting partners to each other. Juveniles and chicks produce calls relating to hunger. "There are two begging calls; the first one is where chicks utter 'begging peeps', short cheeps when they want food from adults, and the second one we've called 'begging moan', which is uttered by juveniles when they're out of the nest, but still need food from adults," said Favaro. The team made simultaneous video and audio recordings of 48 captive African penguins at the zoo Zoom Torino, over a 104 non-consecutive days. They then compared the audio recordings with the video footage of the birds' behaviour. Additional techniques, including visual inspection of spectrographs, produced statistical and quantifiable results. The research is published in the journal PLOS One. © 2014 Guardian News and Media Limited

Keyword: Language; Evolution
Link ID: 19905 - Posted: 07.31.2014

By Sid Perkins Forget the phrase “blind as a bat.” New experiments suggest that members of one species of these furry flyers—Myotis myotis, the greater mouse-eared bat—can do something no other mammal is known to do: They detect and use polarized light to calibrate their long-distance navigation. Previous research hinted that these bats reset their magnetic compass each night based on cues visible at sunset, but the particular cue or cues hadn’t been identified. In the new study, researchers placed bats in boxes in which the polarization of light could be controlled and shifted. After letting the bats experience sundown at a site near their typical roost, the team waited until after midnight (when polarized light was no longer visible in the sky), transported the animals to two sites between 20 and 25 kilometers from the roost, strapped radio tracking devices to them, and then released them. In general, bats whose polarization wasn’t shifted took off for home in the proper direction. But those that had seen polarization shifted 90° at sunset headed off in directions that, on average, pointed 90° away from the true bearing of home, the researchers report online today in Nature Communications. It’s not clear how the bats discern the polarized light, but it may be related to the type or alignment of light-detecting pigments in their retinas, the team suggests. The bats may have evolved to reset their navigation system using polarized light because that cue persists long after sunset and is available even when skies are cloudy. Besides these bats (and it’s not known whether other species of bat can do this, too), researchers have found that certain insects, birds, reptiles, and amphibians can navigate using polarized light. © 2014 American Association for the Advancement of Science

Keyword: Vision; Evolution
Link ID: 19870 - Posted: 07.23.2014

Ewen Callaway One could be forgiven for mistaking anomalocaridids for creatures from another world. The spade-shaped predators, which lived in the seas during the Cambrian — the geological era stretching from 541 million to 485 million years ago — had eyes that protruded from stalks and a pair of giant appendages on the sides of their mouths. But three stunningly well-preserved fossils found in China now show that the anomalocaridid brain was wired much like that of modern creatures called velvet worms, or onychophorans. Both anomalocaridids and onychophorans belong to the arthropods, the group of invertebrates that includes spiders and insects and whose brain structures come in three main types. Two of those were already known to be very ancient, and the new fossils, described today in Nature1, suggest that the third type — the neural architecture found in onychophorans — also has changed little over more than half a billion years of evolution. Named Lyrarapax unguispinus, the three fossils reveal creatures that — at 8 centimetres long — are on the small side for anomalocaridids, some of which are thought to have been as long as 2 to 3 metres. But the fossils’ segmented bodies and frontal appendages are pure anomalocaridid, says Nicholas Strausfeld, a neuroscientist at the University of Arizona in Tucson, who co-led the study. What really grabbed Strausfeld’s attention was the creature’s brain, preserved flattened like a pressed flower: “I said, ‘Holy shit, that’s an onychophoran brain!’” he recalls. The animal’s frontal appendages are connected to nerve bundles, or ganglia, in front of optic nerves. Both the ganglia and the optic nerves lead to a segmented brain. The layout is an uncanny match to the wiring of the velvet worm’s brain, Strausfeld says: “It’s completely unlike anything else in any other arthropod.” © 2014 Nature Publishing Group

Keyword: Evolution
Link ID: 19851 - Posted: 07.19.2014

Sara Reardon For chimps, nature and nurture appear to contribute equally to intelligence. Smart chimpanzees often have smart offspring, researchers suggest in one of the first analyses of the genetic contribution to intelligence in apes. The findings, published online today in Current Biology1, could shed light on how human intelligence evolved, and might even lead to discoveries of genes associated with mental capacity. A team led by William Hopkins, a psychologist at Georgia State University in Atlanta, tested the intelligence of 99 chimpanzees aged 9 to 54 years old, most of them descended from the same group of animals housed at the Yerkes National Primate Research Center in Atlanta. The chimps faced cognitive challenges such as remembering where food was hidden in a rotating object, following a human’s gaze and using tools to solve problems. A subsequent statistical analysis revealed a correlation between the animals' performance on these tests and their relatedness to other chimpanzees participating in the study. About half of the difference in performance between individual apes was genetic, the researchers found. In humans, about 30% of intelligence in children can be explained by genetics; for adults, who are less vulnerable to environmental influences, that figure rises to 70%. Those numbers are comparable to the new estimate of the heritability of intelligence across a wide age range of chimps, says Danielle Posthuma, a behavioural geneticist at VU University in Amsterdam, who was not involved in the research. “This study is much overdue,” says Rasmus Nielsen, a computational biologist at the University of California, Berkeley. “There has been enormous focus on understanding heritability of intelligence in humans, but very little on our closest relatives.” © 2014 Nature Publishing Group

Keyword: Intelligence; Genes & Behavior
Link ID: 19820 - Posted: 07.12.2014

by Sarah Zielinski Would you recognize a stop sign if it was a different shape, though still red and white? Probably, though there might be a bit of a delay. After all, your brain has long been trained to expect a red-and-white octagon to mean “stop.” The animal and plant world also uses colorful signals. And it would make sense if a species always used the same pattern to signal the same thing — like how we can identify western black widows by the distinctive red hourglass found on the adult spiders’ back. But that doesn’t always happen. Even with really important signals, such as the ones that tell a predator, “Don’t eat me — I’m poisonous.” Consider the dyeing dart frog (Dendrobates tinctorius), which is found in lowland forests of the Guianas and Brazil. The backs of the 5-centimeter-long frogs are covered with a yellow-and-black pattern, which warns of its poisonous nature. But that pattern isn’t the same from frog to frog. Some are decorated with an elongated pattern; others have more complex, sometimes interrupted patterns. The difference in patterns should make it harder for predators to recognize the warning signal. So why is there such variety? Because the patterns aren’t always viewed on a static frog, and the different ways that the frogs move affects how predators see the amphibians, according to a study published June 18 in Biology Letters. Bibiana Rojas of Deakin University in Geelong, Australia, and colleagues studied the frogs in a nature reserve in French Guiana from February to July 2011. They found 25 female and 14 male frogs, following each for two hours from about 2.5 meters away, where the frog wouldn’t notice a scientist. As a frog moved, a researcher would follow, recording how far it went and in what direction. Each frog was then photographed. © Society for Science & the Public 2000 - 2013.

Keyword: Vision; Neurotoxins
Link ID: 19767 - Posted: 06.25.2014

Karen Ravn To the west, the skies belong to the carrion crow. To the east, the hooded crow rules the roost. In between, in a narrow strip running roughly north to south through central Europe, the twain have met, and mated, for perhaps as long as 10,000 years. But although the crows still look very different — carrion crows are solid black, whereas hooded crows are grey — researchers have found that they are almost identical genetically. The taxonomic status of carrion crows (Corvus corone) and hooded crows (Corvus cornix) has been debated ever since Carl Linnaeus, the founding father of taxonomy, declared them to be separate species in 1758. A century later, Darwin called any such classification impossible until the term 'species' had been defined in a generally accepted way. But the definition is still contentious, and many believe it always will be. The crows are known to cross-breed and produce viable offspring, so lack the reproductive barriers that some biologists consider essential to the distinction of a species, leading to proposals that they are two subspecies of carrion crow. In fact, evolutionary biologist Jochen Wolf from Uppsala University in Sweden and his collaborators have now found that the populations living in the cross-breeding zone are so similar genetically that the carrion crows there are more closely related to hooded crows than to the carrion crows farther west1. Only a small part of the genome — less than 0.28% — differs between the populations, the team reports in this week's Science1. This section is located on chromosome 18, in an area associated with pigmentation, visual perception and hormonal regulation. It is no coincidence, the researchers suggest, that the main differences between carrion and hooded crows are in colouring, mating preferences (both choose mates whose colouring matches theirs), and hormone-influenced social behaviours (carrion crows lord it over hooded ones). © 2014 Nature Publishing Group,

Keyword: Sexual Behavior; Evolution
Link ID: 19755 - Posted: 06.21.2014

By Robert Dudley When we think about the origins of agriculture and crop domestication, alcohol isn’t necessarily the first thing that comes to mind. But our forebears may well have been intentionally fermenting fruits and grains in parallel with the first Neolithic experiments in plant cultivation. Ethyl alcohol, the product of fermentation, is an attractive and psychoactively powerful inebriant, but fermentation is also a useful means of preserving food and of enhancing its digestibility. The presence of alcohol prolongs the edibility window of fruits and gruels, and can thus serve as a means of short-term storage for various starchy products. And if the right kinds of bacteria are also present, fermentation will stabilize certain foodstuffs (think cheese, yogurt, sauerkraut, and kimchi, for example). Whoever first came up with the idea of controlling the natural yeast-based process of fermentation was clearly on to a good thing. Using spectroscopic analysis of chemical residues found in ceramic vessels unearthed by archaeologists, scientists know that the earliest evidence for intentional fermentation dates to about 7000 BCE. But if we look deeper into our evolutionary past, alcohol was a component of our ancestral primate diet for millions of years. In my new book, The Drunken Monkey, I suggest that alcohol vapors and the flavors produced by fermentation stimulate modern humans because of our ancient tendencies to seek out and consume ripe, sugar-rich, and alcohol-containing fruits. Alcohol is present because of particular strains of yeasts that ferment sugars, and this process is most common in the tropics where fruit-eating primates originated and today remain most diverse. © 1986-2014 The Scientist

Keyword: Drug Abuse; Evolution
Link ID: 19751 - Posted: 06.21.2014

by Colin Barras The Neanderthals knew how to make an entrance: teeth first. Our sister species' distinctive teeth were among the first unique aspects of their anatomy to evolve, according to a study of their ancestors. These early Neanderthals may have used their teeth as a third hand, gripping objects that they then cut with tools. The claim comes from a study of fossils from Sima de los Huesos in northern Spain. This "pit of bones" may be an early burial site, and 28 near-complete skeletons have been pulled from it, along with a large hand-axe that might be a funeral gift. The hominins in the pit look like Neanderthals, but are far too old. That suggests they are forerunners of the Neanderthals, and if that is the case they can tell us how the species evolved. To find out, Juan Luis Arsuaga Ferreras at the UCM-ISCIII Joint Centre for Research into Human Evolution and Behaviour in Madrid, Spain, and colleagues studied 17 of the skulls. They found that the brain case was still the same shape as in older species. But the skulls' protruding faces and small molar teeth were much more Neanderthal-like. This suggests the earliest Neanderthals used their jaws in a specialised way. It's not clear how, but it probably wasn't about food, says Ferreras. "There are no indications of any dietary specialisation in the Neanderthals and their ancestors. They were basically carnivores." © Copyright Reed Business Information Ltd.

Keyword: Evolution
Link ID: 19750 - Posted: 06.21.2014

Virginia Morell Teaching isn’t often seen in animals other than humans—and it’s even more difficult to demonstrate in animals living in the wild rather than in a laboratory setting. But researchers studying the Australian superb fairy-wren (Malurus cyaneus) in the wild think the small songbirds (a male is shown in the photo above) practice the behavior. They regard a female fairy-wren sitting on her nest and incubating her eggs as the teacher, and her embryonic chicks as her pupils. She must teach her unhatched chicks a password—a call they will use after emerging to solicit food from their parents; the better they learn the password, the more they will be fed. Since 1992, there’s been a well-accepted definition of teaching that consists of three criteria. First, the teacher must modify his or her behavior in the presence of a naive individual—which the birds do; the mothers increase their teaching (that is, the rate at which they make the call) when their chicks are in a late stage of incubation. Second, there must be a benefit to the pupil, which there clearly is. Scientists reported online yesterday in Behavioral Ecology that the fairy-wrens also pass the third criteria: There must be a cost to the teacher. And for the small birds, there can be a hefty price to pay. The more often a female repeats the password, the more likely she is to attract a parasitical cuckoo, which will sneak in and lay its eggs in her nest. From careful field observations, the scientists discovered that at nests that were parasitized, the females had recited their password 20 times an hour. But at nests that were not parasitized, the females had called only 10 times per hour. Superb fairy-wrens thus join a short but growing list of animal-teachers, such as rock ants, meerkats, and pied babblers. © 2014 American Association for the Advancement of Science.

Keyword: Learning & Memory; Evolution
Link ID: 19721 - Posted: 06.12.2014

By Jonathan Webb Science reporter, BBC News A new theory suggests that our male ancestors evolved beefy facial features as a defence against fist fights. The bones most commonly broken in human punch-ups also gained the most strength in early "hominin" evolution. They are also the bones that show most divergence between males and females. The paper, in the journal Biological Reviews, argues that the reinforcements evolved amid fighting over females and resources, suggesting that violence drove key evolutionary changes. For many years, this extra strength was seen as an adaptation to a tough diet including nuts, seeds and grasses. But more recent findings, examining the wear pattern and carbon isotopes in australopith teeth, have cast some doubt on this "feeding hypothesis". "In fact, [the australopith] boisei, the 'nutcracker man', was probably eating fruit," said Prof David Carrier, the new theory's lead author and an evolutionary biologist at the University of Utah. Masculine armour Instead of diet, Prof Carrier and his co-author, physician Dr Michael Morgan, propose that violent competition demanded the development of these facial fortifications: what they call the "protective buttressing hypothesis". In support of their proposal, Carrier and Morgan offer data from modern humans fighting. Several studies from hospital emergency wards, including one from the Bristol Royal Infirmary, show that faces are particularly vulnerable to violent injuries. BBC © 2014

Keyword: Aggression; Evolution
Link ID: 19710 - Posted: 06.09.2014