Links for Keyword: Chemical Senses (Smell & Taste)

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 456

By Christopher Intagliata Two decades ago, Swiss researchers had women smell the tee shirts that various men had slept in for two nights. Turned out that if women liked the aroma of a particular shirt, the guy who’d worn it was likely to have genetically coded immunity that was unlike the woman’s. Well the effect isn't just limited to sweaty shirts. Turns out we all smell things a little differently—you pick up a note of cloves, say, where I smell something more soapy—and that too gives clues to our degree of genetic similarity. Researchers tried that test with 89 people—having them sniff a couple dozen samples, and label each one using terms like lemony, coconut, fishy and floral. And each volunteer classified the scents differently enough that the researchers could single them out in subsequent tests, based on what they called each subject’s "olfactory fingerprint." Researchers then repeated that sniff test on another 130 subjects. But this time they did a blood test, too, to figure out each person's HLA type—an immune factor that determines whether you'll reject someone's organ, for example. They found that people who perceived smells similarly also had similar HLA types. Study author Lavi Secundo, a neuroscientist at the Weizmann Institute of Science in Israel, says the smell test could have real-world applications. "For organ donation you can think of this method as a quick, maybe a quick and dirty, method to sift between the best and the rest." He and his colleagues say it might even eliminate the need for 30 percent of the HLA tests done today. The work appears in the Proceedings of the National Academy of Sciences. [Lavi Secundo et al, Individual olfactory perception reveals meaningful nonolfactory genetic information] © 2015 Scientific American

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 8: Hormones and Sex
Link ID: 21112 - Posted: 06.30.2015

Sarah Schwartz A person’s sense of smell may reveal a lot about his or her identity. A new test can distinguish individuals based upon their perception of odors, possibly reflecting a person’s genetic makeup, scientists report online June 22 in Proceedings of the National Academy of Sciences. Most humans perceive a given odor similarly. But the genes for the molecular machinery that humans use to detect scents are about 30 percent different in any two people, says neuroscientist Noam Sobel of the Weizmann Institute of Science in Rehovot, Israel. This variation means that nearly every person’s sense of smell is subtly different. Nobody had ever developed a way to test this sensory uniqueness, Sobel says. Sobel and his colleagues designed a sensitive scent test they call the “olfactory fingerprint.” In an experiment, test subjects rated how strongly 28 odors such as clove or compost matched 54 adjectives such as “nutty” or “pleasant.” An olfactory fingerprint describes individuals’ perceptions of odors’ similarities, not potentially subjective scent descriptions. All 89 subjects in the study had distinct olfactory fingerprints. The researchers calculated that just seven odors and 11 descriptors could have identified each individual in the group. With 34 odors, 35 descriptors, and around five hours of testing per person, the scientists estimate they could individually identify about 7 billion different people, roughly the entire human population. © Society for Science & the Public 2000 - 2015.

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 21087 - Posted: 06.23.2015

By Brian Handwerk When it comes to mating, female mice must follow their noses. For the first time, scientists have shown that hormones in mice hijack smell receptors in the nose to drive behavior, while leaving the brain completely out of the loop. According to the study, appearing this week in Cell, female mice can smell attractant male pheromones during their reproductive periods. But during periods of diestrus, when the animals are unable to reproduce, the hormone progesterone prompts nasal sensory cells to block male pheromone signals so that they don't reach a female's brain. During this time, female mice display indifference or even hostility toward males. The same sensors functioned normally with regard to other smells, like cat urine, showing they are selective for male pheromones. When ovulation begins, progesterone levels drop, enabling the females to once more smell male pheromones. In short, the system "blinds" female mice to potential mates when the animals are not in estrus. The finding that the olfactory system usurped the brain's role shocked the research team, says lead author Lisa Stowers of the Scripps Research Institute. “The sensory systems are just supposed to sort of suck up everything they can in the environment and pass it all on to the brain. The result just seems wacky to us,” Stowers says. “Imagine this occurring in your visual system," she adds. "If you just ate a big hamburger and then saw a buffet, you might see things like the table and some people and maybe some fruit—but you simply wouldn't see the hamburgers anymore. That's kind of what happens here. Based on this female's internal-state change, she's missing an entire subset of the cues being passed on to her brain.”

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 8: Hormones and Sex
Link ID: 21024 - Posted: 06.06.2015

By Emily DeMarco For owners of picky cats, that disdainful sniff—signaling the refusal of yet another Friskies flavor—can be soul-crushing. Some cats are notoriously finicky eaters, but the reasons behind such fussy behavior remain fuzzy. Previous research has shown that cats can’t taste sweet flavors, but little is known about how they perceive bitter tastes. Now, researchers in the pet food industry have identified two bitter taste receptors in domestic cats, which could help explain why some felines are so choosy when it comes to their chow. In the study, published today in BMC Neuroscience, the scientists used cell-based experiments to see how the two cat taste receptors, known as Tas2r38 and Tas2r43, responded to bitter compounds such as phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP)—which have molecular structures similar to ones in Brussels sprouts and broccoli—as well as aloin (from the aloe plant) and denatonium (used to prevent inadvertent ingestion of some chemicals). When compared with the human versions of these receptors, the researchers found that the cat bitter receptor Tas2r38 was less sensitive to PTC and did not respond to PROP, whereas Tas2r43 was less sensitive to aloin but more sensitive to denatonium, leading the researchers to conclude that cats taste different, and perhaps more narrow, ranges of bitter flavors than humans. The research could help pharmaceutical and pet food manufacturers create compounds that block or inhibit these bitter taste receptors, the team says, potentially leading to more appetizing medicines (if such a thing exists) and foods for our feline companions. © 2015 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 21012 - Posted: 06.03.2015

By Paca Thomas Wasabi and Sriracha each activate different receptors on the tongue, both of which warn your brain of the atomic reaction to come. These key flavor receptors, TRPA1 and TRPV1, have been the subject of recent research—but why all the scientific study of hot and spicy condiments? One word: pain. The video above explains how our tongues react to heat in our food, and how that often triggers the body’s own bespoke painkiller.

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 20879 - Posted: 05.04.2015

Nala Rogers People who are ill often complain of changes in their sense of taste. Now, researchers report that this sensory shift may be caused by a protein that triggers inflammation. Mice that cannot produce the protein, called tumour necrosis factor-α (TNF-α), are less sensitive to bitter flavours than normal mice, according to a study published on 21 April in Brain, Behavior, and Immunity1. People with infections, autoimmune disease or other inflammatory conditions have higher levels of TNF-α than healthy people, and the protein has been shown to reduce food intake2. To investigate the influence of TNF-α on taste, researchers at the Monell Chemical Senses Center in Philadelphia, Pennsylvania, used engineered mice that could not produce the protein. The researchers offered the engineered mice and normal mice water that contained different types and concentrations of flavours. The mice that could not produce TNF-α had normal reactions to sweet, sour, salty and umami flavours, but were less sensitive to bitter ones. “Normal mice will pick up [that taste] at a much lower concentration. They will know this is bitter; they will not like it,” says Hong Wang, a molecular biologist at Monell and an author of the study. “But if the TNF-α gene is not there, then the mice will only start to avoid the bitter solution at higher concentrations.” © 2015 Nature Publishing Group

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20868 - Posted: 04.30.2015

By Rachel E. Gross “By being a guy’s best first move … Axe is designed to keep guys a step ahead in the dating game,” boasts Unilever, the company that sells Axe products. Of course, if you don’t happen to be a gullible 13-year-old boy, you probably don’t believe that body spray or deodorant is a magic elixir with the power to turn nice girls naughty. But what if it were possible to change a person’s mood with just a scent? The idea may not be that far-fetched, according to a new study in the journal Psychological Science—reporting work that was funded by Unilever. The study found that it might be possible to subconsciously trigger a state of happiness using the scent of—deep breath now—human sweat. People send all kinds of secret messages through their secretions. When smelling chemicals in male sweat, women become more alert, and they can even tell whether that sweat was made by a guy who was particularly turned on. (Cautions the New York Times: “No man should imagine that based on these conclusions he can improve his sex life by refraining from bathing.”) But until now, most sweat studies have focused on sexual arousal or negative emotions like fear. For obvious reasons, these emotions are crucial to survival and evolutionary success. If your friend spots a puma, it may be helpful for you to be able to sniff out instant cues to be on the alert or flee for cover. Being able to transmit positive emotions may also have a profound social impact, says Gün Semin, a psychologist at Utrecht University in the Netherlands and lead researcher on the study. After all, “the pursuit of happiness is not an individual enterprise,” as he and his fellow researchers write rather eloquently in the new study. So Semin’s team decided to test whether people could communicate happiness via sweat.

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20863 - Posted: 04.30.2015

By James Gallagher Health editor, BBC News website, San Diego A dog has been used to sniff out thyroid cancer in people who had not yet been diagnosed, US researchers say. Tests on 34 patients showed an 88% success rate in finding tumours. The team, presenting their findings at the annual meeting of the Endocrine Society, said the animal had an "unbelievable" sense of smell. Cancer Research UK said using dogs would be impractical, but discovering the chemicals the dogs can smell could lead to new tests. The thyroid is a gland in the neck that produces hormones to regulate metabolism. Thyroid tumours are relatively rare and are normally diagnosed by testing hormone levels in the blood and by using a needle to extract cells for testing. Cancers are defective, out-of-control cells. They have their own unique chemistry and release "volatile organic compounds" into the body. The canine approach relies on dogs having 10 times the number of smell receptors as people and being able to pick out the unique smells being released by cancers. The man's best friend approach has already produced promising results in patients with bowel and lung cancers. A team at the University of Arkansas for Medical Sciences (UAMS) had previously showed that a dog could be trained to smell the difference between urine samples of patients with and without thyroid cancer. Frankie the dog Frankie gave the correct diagnosis in 30 out of 34 cases The next step was to see if it could be used as a diagnostic test. Frankie the German Shepherd was trained to lie down when he could smell thyroid cancer in a sample and turn away if the urine was clean.

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 20668 - Posted: 03.09.2015

Tristram Wyatt This Valentine’s Day, like every year, there was a rash of stories in the news about sexy smells and pheromones. You could be forgiven for thinking that human ‘sex pheromones’, in particular the ‘male molecule’ androstadienone, were well established: countless ‘human pheromones’ websites sell it and there are tens of apparently scientific studies on androstadienone published in science journals. These studies are cited hundreds of times and have ended up being treated as fact in books on sexual medicine and even commentary on legislation. The birth place of the pheromone myth was a 1991 conference in Paris sponsored by a US corporation, EROX, which had an interest in patenting androstadienone and another molecule - estratetraenol, from women - as ‘human pheromones’. Unwittingly, leading mammalian olfaction scientists lent the conference credibility. Slotted into the programme and conference proceedings was the short ‘study-zero’ paper on the ‘Effect of putative pheromones on the electrical activity of the human vomeronasal organ and olfactory epithelium’. To my surprise, the authors gave no details at all of how these molecules had been extracted, identified, and tested in bioassays - all routinely required steps in the exhaustive process before any molecule can be shown to be a species-wide chemical signal, a pheromone. Instead there was just a footnote: ‘These putative pheromones were supplied by EROX Corporation’. The missing, essential details were never published. (The claim by EROX-sponsored scientists that adult humans have a functioning vomeronasal organ, against all the evidence, is a story for another day). © 2015 Guardian News and Media Limited

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 8: Hormones and Sex
Link ID: 20646 - Posted: 03.04.2015

by Catherine de Lange You won't believe you do it, but you do. After shaking hands with someone, you'll lift your hands to your face and take a deep sniff. This newly discovered behaviour – revealed by covert filming – suggests that much like other mammals, humans use bodily smells to convey information. We know that women's tears transmit chemosensory signals - their scent lowers testosterone levels and dampens arousal in men - and that human sweat can transmit fear. But unlike other mammals, humans don't tend to go around sniffing each other. Wondering how these kinds of signals might be exchanged, Noam Sobel and his colleagues at the Weizmann Institute of Science in Rehovot, Israel turned to one of the most common ways in which people touch each other - shaking hands. "We started looking at people and noticed that afterwards, the hand somehow inadvertently reached the face," says Sobel. To find out if people really were smelling their hands, as opposed to scratching their nose, for example, his team surreptitiously filmed 153 volunteers. Some were wired up to a variety of physiological instruments so that airflow to the nose could be measured without them realising this was the intention. The volunteers were filmed as they greeted a member of the team, either with or without a handshake. The researchers recorded how often the volunteers lifted their hands close to their nose, and how long they kept them there, the minute before and after the greeting. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 20645 - Posted: 03.04.2015

// by Jennifer Viegas It’s long been suspected that males of many species, including humans, can sniff out whether a female is pregnant, and now new research suggests that some — if not all — female primates release a natural “pregnancy perfume” that males can probably detect. What’s more, such scents appear to broadcast whether the mom-to-be is carrying a boy or a girl. The study, published in the journal Biology Letters, focused on lemurs as a model for primates. It presents the first direct evidence in any animal species that a pregnant mother’s scent differs depending on the sex of her baby. The scent signatures “may help guide social interactions, potentially promoting mother–infant recognition, reducing intragroup conflict” or sort out paternity, wrote authors Jeremy Crawford and Christine Drea. The latter presents a loaded scenario, as it could be that males can sense — even before the birth — whether they fathered the baby. The researchers additionally suspect that odors advertising fetal sex may help dads and moms prepare for what’s to come. Crawford, from the University of California, Berkeley, and Drea, from Duke University, used cotton swabs to collect scent secretions from the genital regions of 12 female ringtailed lemurs at the Duke Lemur Center in Durham, N.C., before and during pregnancy. The scientists next used chemical analysis to identify the hundreds of ingredients that make up each female’s scent change during pregnancy. A surprising finding from this is that expectant lemur moms give off simpler scents that contain fewer odor compounds compared with their pre-pregnancy bouquet. The change is more pronounced when the moms are carrying boys, Drea said. © 2015 Discovery Communications, LLC.

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 8: Hormones and Sex
Link ID: 20618 - Posted: 02.26.2015

Maanvi Singh Your tongue doubtless knows the difference between a high-fat food and the low-fat alternative. Full-fat ice cream and cream cheese feel silkier and more sumptuous. Burgers made with fatty meat are typically juicer than burgers made with lean meat. OK, so, we've long known fat gives food a desirable texture. But some scientists are now making the case that we should also think of fat as the sixth primary taste, along with sweet, salt, sour, bitter and umami. Early in February, researchers from Deakin University in Australia published a paper in the journal Flavour arguing that "the next 5 to 10 years should reveal, conclusively, whether fat can be classified as the sixth taste." So what would it take for fat to become an official taste? "Strictly speaking, taste is a chemical function," Russell Keast, a sensory scientist at Deakin and lead author of the paper, tells The Salt. He says that when a chemical substance – a salt or sugar crystal, for example — comes into contact with sensory cells in our mouths, it triggers a series of reactions. The cells in our mouths tell other nerve cells that they're perceiving something sweet or salty and those nerve cells eventually pass this information on to the brain. According to the paper, there are five criteria that need to be met to call something a primary taste. It starts with a chemical stimuli (like sugar or salt), which then trigger specific receptors on our taste buds. Then, there has to be a viable a pathway between these receptors and our brains, and we've got to be able to perceive and process the taste in the brain. And finally, this whole process has to trigger downstream effects in the body. © 2015 NPR

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 20596 - Posted: 02.21.2015

By Tina Hesman Saey Gustometer guhs-TOH-meh-ter n. A device used to squirt measured amounts of liquids into the mouth of a person in a taste study. Researchers often pair the instrument with brain scanning technology. Recently, a study of wine tasting pitted 10 of the top sommeliers from France and Switzerland against 10 novices. Researchers led by Lionel Pazart of Besançon University Hospital in France custom-built a gustometer to conduct the blind taste test. The scientists compared how brain activity changed when people tasted chardonnay, pinot noir or water. When sipping wine, the experts had greater activity in several parts of their brains, including regions involved in memory, than novices did, the researchers report in October in Frontiers in Behavioral Neuroscience. Sommeliers’ expertise may allow them to process sensory input about a wine — its taste and bouquet — while simultaneously recalling other information, such as the reputation of the winery that produced the beverage. Citations L. Pazart et al. An fMRI study on the influence of sommeliers’ expertise on the integration of flavor. Frontiers in Behavioral Neuroscience Vol. 8, October 16, 2014. doi: 10.3389/fnbeh.2014.00358. © Society for Science & the Public 2000 - 2015.

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 20516 - Posted: 01.26.2015

|By Gareth Cook What is flavor? Beginning with this simple question, the Pulitzer prize-winning journalist John McQuaid weaves a fascinating story with a beginning some half a billion years ago. In his new book, Tasty, McQuaid argues that the sense of taste has played a central role in the evolution of humans. McQuaid’s tale is about science, but also about culture, history and, one senses, our future. What made you decide to write a book about taste? I have two kids, a boy and a girl born two years apart – now teens – and a few years ago, I became fascinated with how their tastes and preferences in food differed. My son liked extremes, especially super-hot chili peppers and whole lemons and limes. My daughter hated that stuff. She preferred bland comfort foods such as mashed potatoes, pasta, cheese and rice. White foods. Both kids were also picky eaters. They liked what they liked, and it didn’t overlap (except for pizza). Speaking as a parent, this was maddening. So I wondered where these differences came from. Were they genetic? The kids had mostly the same genes. Environment? They lived in the same place. And yet clearly both genes and environment were in play somehow. So I began to look into the question, and a whole world opened up. And the basic answer to my original question is: kids are, biologically speaking, weird creatures. Pickiness seems to be programmed by evolution: it would have protected small children from eating strange, possibly poisonous items. Certain preferences, meanwhile, can develop arbitrarily and become very strong, then suddenly fade – every kid goes through phases as the brain matures and the neural networks that shape perception and behavior grow. Each person’s sense of flavor is like a snowflake or a fingerprint, in this way, shaped by partly by genes, but largely by experience. And always changing as more meals are eaten. © 2015 Scientific American

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 13: Memory, Learning, and Development
Link ID: 20481 - Posted: 01.14.2015

by Bethany Brookshire Rats stink. First there’s the poop smell and the urine. And then there’s just that smell of rat — a kind of dusty, hairy little smell. But it turns out that rats don’t smell quite the same all the time. When they are stressed, they produce a different odor, one that makes other rats anxious. Now, Hideaki Inagaki and colleagues at the University of Tokyo in Japan have isolated the particular stress-related odor and identified the two specific chemicals behind it. The results reveal the first evidence of an isolated anxiety pheromone in rats, and give reason for scientists to look at — or maybe sniff — their behavioral experiments cautiously. And the findings could also offer glimmerings of a new flavor of rat-be-gone. Pheromones are chemicals that give off distinct odors that allow an animal to communicate within its own ranks. In rats, as in many other animals, many pheromones activate the vomeronasal organ, a small patch of cells at the base of the nasal cavity. Other researchers have found evidence of pheromones in maternal behavior and in the response of rat pups to their mothers. In the new study, the pheromones in question are about alarm and anxiety. Study coauthor Yasushi Kiyokawa of The University of Tokyo says he first came across the alarm odor when he was a graduate student. “I noticed the rats released a specific odor when I handled them for the first time, as they were stressed by the novel handling procedure,” he recalls. He went sniffing to find the source. “I found that the intensity of the odor was strongest around the anal region,” he says. Many mammals have glands around the anus that produce oils and odors. Since that first whiff of a clue, Kiyokawa and colleagues at the University of Tokyo have been working with what they called the “alarm pheromone.” While rats may be smelly to some, Kiyokawa says this particular smell isn’t unpleasant. “Like a hay or dried grass,” he says. “At least for me.” © Society for Science & the Public 2000 - 2014

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20443 - Posted: 12.27.2014

By Sandhya Sekar A well-fed female mantis is irresistible to a male. She’s chock-full of eggs and draws him in by producing high levels of pheromones. Now, a new study reveals that starving females can deceive males by enticing them to their doom. Researchers have found that female false garden mantises (Pseudomantis albofimbriata, pictured) that were fed just a quarter of what others got actually produced more pheromones than well-fed females—and attracted almost twice the number of males. This is despite the fact that the number of eggs in the starved females was less than 10, compared with more than 60 eggs in well-fed females. The finding, reported online today in the Proceedings of the Royal Society B, is the first experimental demonstration of sexual deception using false chemical signals in any animal. The starving females seem to be treating the males as easy prey to gain nutritional benefits and potentially produce more eggs. © 2014 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 20425 - Posted: 12.18.2014

By Bruce Bower In the movie Roxanne, Steve Martin plays a lovesick guy who mocks his own huge schnoz by declaring: “It’s not the size of a nose that’s important. It’s what’s in it that matters.” Scientists demonstrated the surprising truth behind that joke this year: People can whiff an average of more than 1 trillion different odors, regardless of nose size (SN: 4/19/14, p. 6). No one had systematically probed how many scents people can actually tell apart. So a team led by Leslie Vosshall of Rockefeller University in New York City asked 26 men and women to discriminate between pairs of scents created from mixes of 128 odor molecules. Volunteers easily discriminated between smells that shared as much as 51 percent of their odor molecules. Errors gradually rose as pairs of scents became chemically more alike. Vosshall’s group calculated that an average participant could tell apart a minimum of more than 1 trillion smells made up of different combinations of 30 odor molecules. Really good smellers could have detected way more than 1 trillion odor mixtures, the scientists said. Smell lags behind sight and hearing as a sense that people need to find food, avoid dangers and otherwise succeed at surviving. Still, detecting the faint odor of spoiled food and other olfactory feats must have contributed to the success of Homo sapiens over the last 200,000 years. Perhaps many animals can whiff the difference between a trillion or more smells. For now, odor-detection studies modeled on Vosshall’s approach have been conducted only with humans. © Society for Science & the Public 2000 - 2014.

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 20417 - Posted: 12.16.2014

By James Gallagher Health editor, BBC News website The brain has specialist neurons for each of the five taste categories - salty, bitter, sour, sweet and umami - US scientists have discovered. The study, published in the journal Nature, should settle years of debate on how the brain perceives taste. The Columbia University team showed the separate taste sensors on the tongue had a matching partner in the brain. The scientists hope the findings could be used to help reverse the loss of taste sensation in the elderly. It is a myth that you taste sweet only on the tip of the tongue. Each of the roughly 8,000 taste buds scattered over the tongue is capable of sensing the full suite of tastes. But specialised cells within the taste bud are tuned to either salty, bitter, sour, sweet or umami tastes. When they detect the signal, a message is sent to the brain. Although how the brain deals with the information has been up for discussion. A team at Columbia University engineered mice so that their taste neurons would fluoresce when they were activated. They then trained their endoscopes on the neurons deep at their base of the brain. The animals were fed chemicals to trigger either a salty, bitter, sour, sweet or umami response on the tongue and the researchers monitored the change in the brain. They found a "hard wired" connection between tongue and brain. Prof Charles Zuker told the BBC News website: "The cells were beautifully tuned to discrete individual taste qualities, so you have a very nice match between the nature of the cells in your tongue and the quality they represent [in the brain]." It scotches the alternative idea that brain cells respond to multiple tastes. BBC © 2014

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 20295 - Posted: 11.10.2014

by Aviva Rutkin IF DINNER is missing some zing, a spoon studded with electrodes could help. It creates tastes on your tongue with a pulse of electricity. The utensil may add some extra flavour for people who shouldn't eat certain foods. Different frequencies and magnitudes of current through the electrodes can create the impression of saltiness, sourness or bitterness. The spoon was developed by Nimesha Ranasinghe at the New York University Abu Dhabi in the United Arab Emirates and his team, who have also developed a water bottle with similar hardware on the mouthpiece. Both devices use various coloured lights, like blue for salty, in an attempt to augment the perceived intensity of the flavour. "Taste is not only taste. It's a multisensory sensation, so we need smell, colour, previous experiences, texture," says Ranasinghe. "I am trying to integrate different aspects of these sensations." By boosting the flavour of plain foods, he says a tool like this could be useful for people with diabetes or heart issues who have been ordered to cut down on salt and sugar. To see how well the electric utensils could fool diners, 30 people tried them out in a taste test with plain water and porridge. The spoon and bottle were judged 40 to 83 per cent successful at recreating the tastes, depending on which one they were aiming for. Bitter was the hardest sensation to get right. Some testers also said they were distracted by the metallic taste of the electrodes – a pitfall the researchers will work on next. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 20268 - Posted: 11.03.2014

|By Steve Mirsky People have been leaving messages on bathroom walls for thousands of years. Just google “ancient Roman bathroom graffiti.” But we’re not the only ones to use latrines for information exchange—as two German researchers have confirmed after hundreds of hours watching lemurs pee and poop. For science. Primatologists Iris Dröscher and Peter Kappeler concentrated on seven sets of pair-bonded members of a species called white-footed sportive lemurs, at a nature reserve in southern Madagascar. Their report is in the journal Behavioral Ecology and Sociobiology. [Iris Dröscher & Peter M. Kappeler Maintenance of familiarity and social bonding via communal latrine use in a solitary primate (Lepilemur leucopus)] Many animals use the same spots repeatedly to do their business, primates in particular. For these lemurs, a specific tree becomes the urine and feces focal point. And because chemical compounds in their waste transmit information, the so-called latrine tree becomes like a bulletin board to post messages for the rest of the community. Based on their 1,097 hours of observations, the researchers conclude that urine and glandular secretions left on the tree trunk are the primary message vehicles. Feces mostly just collects on the ground. Some urine telegrams are probably signals from a particular lemur to the neighbors that he or she is around. But male lemurs upped their latrine visits when potential competitors for females came into their home area. So the frequent chemical messages left on the tree probably say in that case, “Buzz off, buddy, she’s with me.” In lemur. © 2014 Scientific American,

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 15: Language and Our Divided Brain
Link ID: 20211 - Posted: 10.18.2014