Links for Keyword: Chemical Senses (Smell & Taste)

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 439

Humans stink, and it’s wonderful. A few whiffs of a pillow in the morning can revive memories of a lover. The sweaty stench of a gym puts us in the mood to exercise. Odors define us, yet the scientific zeitgeist is that we don’t communicate through pheromones—scents that influence behavior. A new study challenges that thinking, finding that scent can change whether we think someone is masculine or feminine. Humans carry more secretion and sweat glands in their skin than any other primate. Yet 70% of people lack a vomeronasal organ, a crescent-shaped bundle of neurons at the base of each nostril that allows a variety of species—from reptiles to nonprimate mammals—to pick up on pheromones. (If you’ve ever seen your cat huff something, he’s using this organ.) Still, scientists have continued to hunt for examples of pheromones that humans might sense. Two strong candidates are androstadienone (andro) and estratetraenol (estra). Men secrete andro in their sweat and semen, while estra is primarily found in female urine. Researchers have found hints that both trigger arousal—by improving moods and switching on the brain’s “urge” center, the hypothalamus—in the opposite sex. Yet to be true pheromones, these chemicals must shape how people view different genders. That’s exactly what they do, researchers from the Chinese Academy of Sciences in Beijing report online today in Current Biology. The team split men and women into groups of 24 and then had them watch virtual simulations of a human figure walking (see video). The head, pelvis, and major joints in each figure were replaced with moving dots. Subjects in prior studies had ranked the videos as being feminine or masculine. For instance, watch the figure on the far left, which was gauged as having a quintessential female strut. Notice a distinctive swagger in the “hip” dots and how they contrast with the flat gait of the “male” prototype all the way to the right. © 2014 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 8: Hormones and Sex
Link ID: 19565 - Posted: 05.03.2014

|By Daisy Yuhas Strange as it may sound, some scientists suspect that the humble armpit could be sending all kinds of signals from casual flirtation to sounding the alarm. That’s because the body’s secretions, some stinky and others below the threshold your nose can detect, may be rife with chemical messages called pheromones. Yet despite half a century of research into these subtle cues, we have yet to find direct evidence of their existence in humans. Humans and other animals have an olfactory system designed to detect and discriminate between thousands of chemical compounds. For more than 50 years, scientists have been aware of the fact that certain insects and animals can release chemical compounds—often as oils or sweat—and that other creatures can detect and respond to these compounds, which allows for a form of silent, purely chemical communication. Although the exact definition has been debated and redefined several times, pheromones are generally recognized as single or small sets of compounds that transmit signals between organisms of the same species. They are typically just one part of the larger potpourri of odorants emitted from an insect or animal, and some pheromones do not have a discernable scent. Since pheromones were first defined in 1959, scientists have found many examples of pheromonal communication. The most striking of these signals elicits an immediate behavioral response. For example, the female silk moth releases a trail of the molecule bombykol, which unerringly draws males from the moment they encounter it. Slower-acting pheromones can affect the recipient’s reproductive physiology, as when the alpha-farnesene molecule in male mouse urine accelerates puberty in young female mice. © 2014 Scientific American

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 8: Hormones and Sex
Link ID: 19500 - Posted: 04.17.2014

Dr Nicola Davis The electronic nose in an instrument that attempts to mimic the human olfactory system. Humans and animals don't identify specific chemicals within odours; what they do is to recognise a smell based on a response pattern. You, as a human, will smell a strawberry and say "that's a strawberry". If you gave this to a traditional analytical piece of equipment, it might tell you what the 60-odd chemicals in the odour were - but that wouldn't tell you that it was a strawberry. How does it work? A traditional electronic nose has an array of chemical sensors, designed either to detect gases or vapours. These sensors are not tuned to a single chemical, but detect families of chemicals - [for example] alcohols. Each one of these sensors is different, so when they are presented to a complex odour formed of many chemicals, each sensor responds differently to that odour. This creates a pattern of sensor responses, which the machine can be taught [to recognise]. Can't we just use dogs? A dog is very, very sensitive. Special research teams work on training dogs to detect cancers as you would do explosives. What you we are trying to do with the electronic nose is create an artificial means of replicating what the dog does. Such machines have the advantage that they don't get tired, will work all day and you only need to feed them electricity. © 2014 Guardian News and Media Limited

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 19441 - Posted: 04.03.2014

Dragonflies are full of surprises. They have six legs, but most can’t walk. Their giant, 30,000-lens eyes can detect ultraviolet light. And though they lack the brain architecture normally required for a sense of smell, a new study finds that dragonflies may use odors to hunt prey. Smelling, as we humans understand it, requires certain hardware. Our noses are packed with olfactory receptors, each of which is tuned to a precise scent molecule. (Indeed, a recent study suggests we can detect a trillion smells.) When one wafts into our nostrils, these receptors send nerve signals to sensory way stations called glomeruli, which pass them along to the brain for interpretation—“Oh, a rose!” Glomeruli are shared by most terrestrial mammals and insects, and until now, scientists believed they represented the only possible route to a sense of smell. Because dragonflies and their close cousins, damselflies, don’t possess glomeruli or any higher order smell centers in their brains, most scientists believed these insects were unable to smell anything at all. Invertebrate biologist Manuela Rebora at the University of Perugia in Italy was not one of them. When her team took a closer look at dragonfly and damselfly antennae with an electron microscope, they spotted tiny bulbs in pits that resembled olfactory sensilla. Like the insect equivalent of a nose, these sensilla house olfactory neurons. When Rebora’s team exposed the suspected sensilla to scents, they emitted nerve pulses, supporting the idea that damselflies and dragonflies perceive odors. © 2014 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 19406 - Posted: 03.25.2014

Jessica Morrison The human nose has roughly 400 types of scent receptors that can detect at least 1 trillion different odours. The human nose can distinguish at least 1 trillion different odours, a resolution orders of magnitude beyond the previous estimate of just 10,000 scents, researchers report today in Science1. Scientists who study smell have suspected a higher number for some time, but few studies have attempted to explore the limits of the human nose’s sensory capacity. “It has just been sitting there for somebody to do,” says study co-author Andreas Keller, an olfactory researcher at the Rockefeller University in New York. To investigate the limits of humans' sense of smell, Keller and his colleagues prepared scent mixtures with 10, 20 or 30 components selected from a collection of 128 odorous molecules. Then they asked 26 study participants to identify the mixture that smelled differently in a sample set where two of three scents were the same. When the two scents contained components that overlapped by more than about 51%, most participants struggled to discriminate between them. The authors then calculated the number of possible mixtures that overlap by less than 51% to arrive at their estimate of how many smells a human nose can detect: at least 1 trillion. Donald Wilson, an olfactory researcher at the New York University School of Medicine, says the findings are “thrilling.” He hopes that the new estimate will help researchers begin to unravel an enduring mystery: how the nose and brain work together to process smells. © 2014 Nature Publishing Group,

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 19394 - Posted: 03.21.2014

Brian Owens The distinctive aroma of goats does more than just make barnyards extra fragrant. Male goats can use their heady scent to make female goats ovulate simply by being near them. Researchers had ascribed this 'male effect' to chemicals known as primer pheromones — a chemical signal that can cause long-lasting physiological responses in the recipient. Examples of primer pheromones are rare in mammals; the male effect in goats and sheep, and a similar effect in mice and rats, where the presence of males can speed up puberty in females, are the only known cases. But exactly what substances are at work and how has remained a mystery. Now, reproductive biologist Yukari Takeuchi from the University of Tokyo and her colleagues have identified a single molecule, known as 4-ethyloctanal, in the cocktail of male goat pheromones that activates the neural pathway that regulates reproduction in females1. ”It has long been thought that pheromones have pivotal roles in reproductive success in mammals, but the mechanisms are scarcely known,” says Takeuchi. The researchers found that male goat pheromones are generally synthesized in the animal's head skin, so they designed a hat containing a material that captured their odorous molecules and placed them on the goats for a week to collect the scent. Analysis of the gases collected identified a range of compounds, many of which were unknown and were not present in castrated males. When exposed to a cocktail of 18 of these chemicals, the brains of female goats showed a sudden increase in the activity of the gonadotropin-releasing hormone (GnRH) pulse generator — the neural regulator of reproduction. © 2014 Nature Publishing Group,

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 8: Hormones and Sex
Link ID: 19308 - Posted: 03.01.2014

By DEBORAH BLUM Toxicologists have long considered ethylene glycol, the active ingredient in many antifreeze and engine coolant formulas, to be a seductive and uniquely dangerous poison. For one thing, it’s sweet. “We actually had a mechanic who developed a taste for it,” recalled Dr. Marsha Ford, director of the Carolinas Poison Center in Charlotte, N.C. “He’d pour himself a little and sip it. And he kept doing that until he got sick.” And that’s the other danger: Ethylene glycol is a slow-acting poison. Even following a high dose, symptoms can take up to 48 hours to appear. The country’s poison control centers record more than 5,000 ethylene glycol ingestions annually; some 2,000 cases require medical treatment. Most are accidental, but ethylene glycol also figures in hundreds of suicide attempts every year — not to mention the occasional murder. Recently an Ohio woman was convicted of killing her fiancé by spiking raspberry iced tea with antifreeze. The situation for animals has been even more dangerous than for despised spouses. According to the Humane Society of the United States, as many as 90,000 pets and wild animals are poisoned annually by drinking spilled or carelessly stored products containing ethylene glycol. Now the manufacturers of those products have determined to do something about all the carnage. They are making antifreeze taste awful — so very bitter that it will be nigh impossible to drink by accident. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 19280 - Posted: 02.22.2014

By DOUGLAS QUENQUA The smell of a person’s earwax depends partly on his ethnic origin, a new study reports, suggesting that the substance could be an overlooked source of personal information. The earwax of Caucasian men contains more volatile organic compounds than that of East Asian men, researchers at the Monell Chemical Senses Center in Philadelphia found. Twelve such compounds are common to both groups, they said, but 11 of those are more plentiful in Caucasians. Monell researchers have previously found that underarm odor contains clues to a person’s age, health and sex. They suspected that earwax might contain similar markers, since a 2006 study found that a gene related to underarm odor, which also varies by ethnicity, helps determine a person’s type of earwax. (East Asians are more likely to have dry earwax, for example.) "We’re at the beginning of exploring a new and interesting biofluid secretion that has not been looked at in this manner before," said George Preti, an organic chemist at Monell and the senior author of the new study, which was published in The Journal of Chromatography B. Because of the fatty nature of earwax, or cerumen, Dr. Preti says it is a probable repository for odorants produced by diseases and the environment, and hence a potentially valuable diagnostic tool. A 2013 study showed that a whale’s earwax contains evidence of the animal’s exposure to pollutants and stress hormones, and earwax odor in humans is a known indicator of branched-chain ketoaciduria, also known as maple syrup urine disease. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 19258 - Posted: 02.18.2014

By SINDYA N. BHANOO Mosquito sperm have a sense of smell, researchers are reporting, in a finding that could suggest ways to help control the spread of disease-carrying insects. The sperm carries a set of chemical sensors identical to the olfactory receptors on the mosquitoes’ antennas, according to a study in Proceedings of the National Academy of Sciences. Mosquitoes mate just once in their lifetime, and the female stores the male’s sperm in an organ called a spermatheca. Before the eggs mature, the female seeks out blood using the receptors on her antennas. Soon after, chemical signals cause the sperm tails to beat rapidly and start the fertilization process. “The sperm may need a chemical signal to become ready for fertilization,” said Jason Pitts, a researcher at Vanderbilt University and an author of the study, which was supported by the Gates Foundation as part of its efforts to improve global health. Another author, Laurence Zwiebel, also a Vanderbilt researcher, called the dual use of the olfactory receptors a clear and clever example of convergent evolution: The mosquitoes, he said, “found something that works and use it in multiple ways.” The scientists think olfactory receptors may exist on the sperm of many other insects, and they are developing chemical compounds that can be applied to breeding grounds to block the receptors. “You can effectively confuse the sperm or make them inactive,” Dr. Zwiebel said. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 8: Hormones and Sex
Link ID: 19241 - Posted: 02.12.2014

by Bob Holmes Midnight fridge raids are part and parcel of a late-night marijuana smoking session. A study in mice has provided the most complete explanation yet for why a spliff triggers intense hunger pangs. The findings, which elucidate the role of smell, also suggest that we might eventually be able to treat common disorders such as obesity and loss of appetite with a simple nasal spray. We know that the active ingredient in cannabis, THC, binds to cannabinoid receptors in the brain called CB1s. This binding inhibits chemical signals that tell us not to eat, and so make us feel hungry. But this isn't the end of the story. Since smell plays such a central role in making us feel hungry, it must be part of the explanation - but no one knew exactly how it fit. To find out, Giovanni Marsicano of the French research agency INSERM in Bordeaux and his colleagues genetically modified mice to make it possible to turn on and off the CB1 receptor in particular nerve cells within the smell, or olfactory, system. The key proved to be a group of nerve cells that carry signals from the cerebral cortex down to the olfactory bulb, the primary smell centre of the brain. When the team switched off CB1 on these cells, they found that hungry mice no longer ate more than their well-fed counterparts. Conversely, activating CB1 in the same cells by injecting THC caused hungry mice to eat even more. THC-treated mice also responded to less-concentrated food smells than untreated mice, a sign that the chemical had enhanced their sense of smell. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 19230 - Posted: 02.10.2014

Ask a group of people to describe the color of a sheet of paper, a cloud, or a glass of milk, and chances are they’ll all say “white.” But ask the same group to describe the smell of cinnamon, and you’ll likely get a potpourri of answers, ranging from “spicy” to “smoky” to “sweet,” and sometimes all three. When it comes to naming smells, humans struggle to find concise, universal terms. Indeed, scientists have long thought the ability was out of our reach. But a new study indicates that the inhabitants of a remote peninsula in Southeast Asia can depict smells as easily as the rest of us pick colors. The study concerns the Jahai, nomadic hunter-gatherers who live in the mountain rainforests along the border between Malaysia and Thailand. Smell is very important to this society. Odors are often evoked in illness, or medicine, for example, and it is one of the few cultures to have words devoted exclusively to smells. “For example, the term pʔus (pronounced ‘pa-oos’) describes the smell of old huts, day-old food, and cabbage,” says Asifa Majid, a psychologist at the Centre for Language Studies at Radboud University Nijmegen in the Netherlands. This suggests, she says, that the Jahai can isolate basic smell properties, much like we can isolate the color white from milk. To find out if the Jahai are better at naming smells than the rest of us, Majid and colleagues asked native Jahai speakers and native English speakers to describe 12 different odors: cinnamon, turpentine, lemon, smoke, chocolate, rose, paint thinner, banana, pineapple, gasoline, soap, and onion. The Jahai easily and consistently named the odors, whereas English speakers struggled, the team reports in the February issue of Cognition. © 2014 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 19129 - Posted: 01.14.2014

Brian Owens Fruitflies know exactly how much alcohol will be good for their young. Larvae living on a food source with the right concentration of ethanol will grow into heavy, healthy adults and will be protected against parasites — which explains why the insects are attracted to rotting fruit or the crate of empty beer bottles in your kitchen but not to the vodka or gin. Now researchers have uncovered the neural mechanism that allows the fruitfly Drosophila melanogaster to choose the best place to lay its eggs. The work is published today in Proceedings of the National Academy of Sciences1. A team led by Ulrike Heberlein, a molecular biologist at the Howard Hughes Medical Institute’s Janelia Farm Research Campus in Ashburn, Virginia, found that clusters of neurons, working in opposition to each other, help the flies to choose the place with the most beneficial concentration of ethanol in which to lay their eggs. The neurons all release the neurotransmitter dopamine, a key player in the brain's reward circuitry. Neurons of the PAM and PPM3 clusters encourage the flies to seek out ethanol, whereas PPL1 neurons apply the brakes, preventing the flies from laying their eggs on food containing high levels of ethanol that could harm the larvae. “They can discriminate among ethanol concentrations that are very similar — 3% versus 5% — so the system evolved to have great sensitivity,” says Heberlein. Their favourite booze strength is 5%, similar to that of a typical beer. Heberlein's team also traced the neurons involved in ethanol preference to specific brain regions. Both the pro-ethanol PAM and anti-ethanol PPL1 neurons were active in the mushroom body, whereas the pro-ethanol PPM3 ones were active in the ellipsoid body. Both of these brain structures are involved in decision-making and memory, and mushroom body neurons also play a part in ethanol-reward memory. © 2013 Nature Publishing Group,

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 19013 - Posted: 12.10.2013

By Julia Calderone As we sat in my car outside a silent movie theater in Los Angeles, my friend anxiously opened a plastic bag containing a white T-shirt she’d slept in for the past three nights. “Does it smell like me?” she asked nervously, gesturing the open end toward my face. I stuck my nose into the bag and inhaled. We were about to attend a pheromone-based speed dating party with the following rules: 1. Find a clean white T-shirt. 2. Sleep in only that shirt for three consecutive nights. 3. Bring the shirt to the party sealed in a bag. As we walked into the theater, coordinators assigned each of our bags a unique color-coded sticker (pink for female, blue for male), and tossed them into a pile. A pack of hipsters nursing PBRs sat in the wooden theater seats, slightly amused by the bizarre 70s Egyptian-themed silent porn projected onto the screen. In the courtyard, 20-somethings mingled by the outdoor bar. Did they think alcohol would make us okay with sniffing strangers’ dirty laundry? Mounds of bags sat on two long tables – beckoning our nostrils. We were instructed to sniff as many T-shirts of the sex we were attracted to, and select shirts that innately smelled the sexiest. I came across bag number 166, which shockingly smelled exactly like my grandmother’s house – a delightful mix of Christmas and chicken parmesan. The point was to trust our instincts, right? I went with it. © 2013 Scientific American

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 8: Hormones and Sex
Link ID: 19005 - Posted: 12.06.2013

by Erika Engelhaupt When I was in graduate school, I once gassed out my lab with the smell of death. I was studying the products of plant decomposition, and I had placed copious quantities of duckweed into large tubs and let the mix decompose for a few weeks. Duckweed is a small floating aquatic plant; it looks harmless enough. But when I dragged my tubs into the lab and set up a pump and filtration system, all hell broke loose. The filter clogged, the back pressure threw the hose off the pump, and a spray of decomposed mess flew all over a poor professor who had come in to help. For the rest of the day, he smelled like a pile of dead raccoons. That day, I learned about cadaverine and putrescine. These two molecules are produced during the decomposition of proteins, when the amino acids lysine and ornithine break down, and they are largely responsible for the smell of rotting flesh. My mistake in the lab was to think that rotting plants are more innocuous than rotting animals. Duckweed, it turns out, has such high protein levels that it’s used as animal feed, and those proteins, like any proteins, can create a deathly stench. The smells of cadaverine and putrescine tend to provoke a strong reaction (as I learned once the duckweed stench subsided and my labmates were able to return to the lab). But not every animal finds the odors disgusting. Carrion flies, rats and other animals that eat or lay eggs in dead things are attracted to the molecules. So researchers have started to look for exactly how animals tune in to these smells. Pinning down animals' odor detectors gives researchers a way to study aversion or attraction to certain objects. And understanding how these behavioral responses work will, I believe, help researchers clarify why humans feel the distinct emotion known as disgust. © Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 18939 - Posted: 11.16.2013

Brian Owens The hordes of microbes that inhabit every nook and cranny of every animal are not just passive hitchhikers: they actively shape their hosts’ well-being and even behaviour. Now, researchers have found evidence that bacteria living in the scent glands of hyenas help to produce the smells that the animals use to identify group members and tell when females are ready to mate. Kevin Theis, a microbial ecologist at Michigan State University in East Lansing, had been studying hyena scent communication for several years when, after he gave a talk on the subject, someone asked him what part the bacteria might play. “I just said, ‘I don’t know’,” he says. He started investigating. He found that for 40 years, scientists had wondered whether smelly bacteria were involved in animals' chemical communication. But experiments to determine which bacteria were present had been inconclusive, because the microbes had to be grown in culture, which is not possible with all bacteria. However, next-generation genetic sequencing would enable Theis to identify the microbes in a sample without having to grow them in a dish. Using this technique, Theis and his colleagues last year published a study1 that identified more types of bacterium living in the hyenas’ scent glands than the 15 previous studies of mammal scent glands combined. In both spotted hyenas (Crocuta crocuta) and striped hyenas (Hyaena hyaena), most of the bacteria were of a kind that ferments nutrients exuded by the skin and produces odours. “The diversity of the bacteria is enough to potentially explain the origin of these signals,” says Theis. Now, they have found that the structure of the bacterial communities varied depending on the scent profiles of the sour, musky-smelling 'pastes' that the animals left on grass stalks to communicate with members of their clan. In addition, in the spotted hyenas, both the bacterial and scent profiles varied between males and females, and with the reproductive state of females — all attributes that hyenas are known to be able to infer from scent pastes. The work is published this week in Proceedings of the National Academy of Sciences. © 2013 Nature Publishing Group

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 8: Hormones and Sex
Link ID: 18915 - Posted: 11.12.2013

By Cheryl G. Murphy Is it possible that our vision can affect our taste perception? Let’s review some examples of studies that claim to have demonstrated that sometimes what we see can override what we think we taste. From wine to cheese to soft drinks and more it seems that by playing with the color palette of food one can trick our palates into thinking we taste things that aren’t necessarily there. © 2013 Scientific American

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 7: Vision: From Eye to Brain
Link ID: 18854 - Posted: 10.30.2013

by Laura Sanders When I started to get out and about with Baby V, I occasionally experienced a strange phenomenon. Women would approach and coo some pleasant little noises. After an appropriate amount of time had passed, these strangers would lean in close and ask to smell my baby. I’m the first to admit that this sounds creepy. Truth be told, it is a little creepy. But now I completely get it. The joy from a single whiff of newborn far outweighs any trifling social conventions about personal space and body odors. So when women approach looking for a little hit of eau de bebe, I get sharey. By all means, ladies, lean in and smell away. Tiny babies smell very, very good. So good that I’m getting a little high from just thinking about how good babies smell. So good that people attempt to bottle and sell this scent (like this baby-head-scented spray— pleasant, but pales in comparison). So good that scientists really want to know why some women find this smell irresistible. Scientists recently studied the brains of women as they sniffed new baby scent. Two-day-old babies delivered the good stuff by wearing the same pajamas for two nights. Women then sniffed the odor extracted from the outfit while brain scans assessed neural activity. Overall, the 30 women in the study (who weren’t told what they were sniffing, by the way) rated the scent as mildly pleasant. As the intoxicating scent of newborn wafted into their brains, neural activity increased in areas of the brain linked to good feelings, called neostriate areas. In the brains of the 15 women who also happened to be mothers, the brain activity seemed stronger. (No word yet on what new baby smell does to dads’ brains.) © Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 8: Hormones and Sex
Link ID: 18746 - Posted: 10.05.2013

By Michelle Roberts Health editor, BBC News online The thousands of aromas humans can smell can be sorted into 10 basic categories, US scientists say. Prof Jason Castro, of Bates College, and Prof Chakra Chennubhotla, of the University of Pittsburgh, used a computerised technique to whittle down smells to their most basic essence. They told the PLoS One journal they had then tested 144 of these and found they could be grouped into 10 categories. The findings are contentious - some say there are thousands of permutations. Prof Castro said: "You have these 10 basic categories because they reflect important attributes about the world - danger, food and so on. "If you know these basic categories, then you can start to think about building smells. "We have not solved the problem of predicting a smell based on its chemical structure, but that's something we hope to do." He said it would be important to start testing the theory on more complex aromas, such as perfumes and everyday smells. In reality, any natural scent was likely to be a complex mix - a blend of the 10 different categories, he said. Prof Tim Jacob, a UK expert in smell science at Cardiff University, said: "In the 1950s a scientist called John Amoore proposed a theory which involved seven smell categories based upon molecular shape and size. BBC © 2013

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 18671 - Posted: 09.19.2013

By Caitlin Kirkwood Do NOT EAT the chemicals. It is the #1 laboratory safety rule young scientists learn to never break and for good reason; it keeps lab citizens alive and unscathed. However, if it hadn’t been for the careless, rule-breaking habits of a few rowdy scientists ingesting their experiments, many artificial sweeteners may never have been discovered. Perhaps the strangest anecdote for artificial sweetener discovery, among tales of inadvertent finger-licking and smoking, is that of graduate student Shashikant Phadnis who misheard instructions from his advisor to ‘test’ a compound and instead tasted it. Rather than keeling over, he identified the sweet taste of sucralose, the artificial sweetener commonly known today as Splenda. Artificial sweeteners like Splenda, Sweet’N Low, and Equal provide a sweet taste without the calories. Around World War II, in response to a sugar shortage and evolving cultural views of beauty, the target consumer group for noncaloric sweetener manufacturers shifted from primarily diabetics to anyone in the general public wishing to reduce sugar intake and lose weight. Foods containing artificial sweeteners changed their labels. Instead of cautioning ‘only for consumption by those who must restrict sugar intake’, they read for those who ‘desire to restrict’ sugar. Today, the country is in the middle of a massive debate about the health implications of artificial sweeteners and whether they could be linked to obesity, cancer, and Alzheimer disease. It’s a good conversation to have because noncaloric sweeteners are consumed regularly in chewing gums, frozen dinners, yogurts, vitamins, baby food, and particularly in diet sodas. © 2013 Scientific American

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 18614 - Posted: 09.07.2013

Josh Howgego When it comes to our sense of smell, we are all experiencing the world in very different ways. Scientists already know that humans' sensitivity to smelly molecules varies considerably from person to person (see: 'Soapy taste of coriander linked to genetic variants'). But evidence that genetic variations — as opposed to habit, culture or other factors — underlie these differences has been hard to come by. Geneticist Richard Newcomb of the New Zealand institute for Plant and Food Research in Auckland and his colleagues searched for olfactory genes by testing 187 people’s sensitivity to ten chemicals found in everyday food, including the molecules that give distinctive smells to blue cheese, apples and violets. They found that, as expected, the smelling abilities of their subjects varied. The team then sequenced the subjects’ genomes and looked for differences that could predict people’s ability to detect each chemical through smell. For four of the ten chemicals, the researchers identified clusters of genes that convincingly predicted smelling ability, as they report today in Current Biology1. The study could not conclude whether similar genetic associations exist for the other six compounds, or whether factors other than genes play a role in those cases. Previously, only five regions of the genome had been shown to affect olfactory ability when they undergo mutations, so Newcomb’s study has nearly doubled the number of genetic associations known to influence smell. And because there is nothing special about the chemicals they studied, Newcomb says that it is logical to think the findings would extend to lots of scents, meaning that people experience the plethora of chemicals surrounding them in endlessly different ways. © 2013 Nature Publishing Group

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 18454 - Posted: 08.03.2013