Links for Keyword: Intelligence

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 266

Fears over surveillance seem to figure large in the bird world, too. Ravens hide their food more quickly if they think they are being watched, even when no other bird is in sight. It’s the strongest evidence yet that ravens have a “theory of mind” – that they can attribute mental states such as knowledge to others. Many studies have shown that certain primates and birds behave differently in the presence of peers who might want to steal their food. While some researchers think this shows a theory of mind, others say they might just be reacting to visual cues, rather than having a mental representation of what others can see and know. Through the peephole Thomas Bugnyar and colleagues at the University of Vienna, Austria, devised an experiment to rule out the possibility that birds are responding to another’s cues. The setup involved two rooms separated by a wooden wall, with windows and peepholes that could be covered. First, a raven was given food with another raven in the next room, with the window open or covered, to see how quickly it caches its prize. With the window open, the birds hid their food more quickly and avoided going back to conceal it further. Then individual ravens were then trained to use the peephole to see where humans were putting food in the other room. The idea here was to allow the bird to realise it could be seen through the peephole. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21854 - Posted: 02.03.2016

By Christof Koch While “size does not matter” is a universally preached dictum among the politically correct, everyday experience tells us that this can't be the whole story—under many conditions, it clearly does. Consider the size of Woody Allen's second favorite organ, the brain. Adjectives such as “highbrow” and “lowbrow” have their origin in the belief, much expounded by 19th-century phrenologists, of a close correspondence between a high forehead—that is, a big brain—and intelligence. Is this true? Does a bigger brain make you necessarily smarter or wiser? And is there any simple connection between the size of a nervous system, however measured, and the mental powers of the owner of this nervous system? While the answer to the former question is a conditional “yes, somewhat,” the lack of any accepted answer to the second one reveals our ignorance of how intelligent behavior comes about. The human brain continues to grow until it reaches its peak size in the third to fourth decade of life. An MRI study of 46 adults of mainly European descent found that the average male had a brain volume of 1,274 cubic centimeters (cm3) and that the average female brain measured 1,131 cm3. Given that a quart of milk equals 946 cm3, you could pour a bit more than that into a skull without any of it spilling out. Of course, there is considerable variability in brain volume, ranging from 1,053 to 1,499 cm3 in men and between 975 and 1,398 cm3 in women. As the density of brain matter is just a little bit above that of water plus some salts, the average male brain weighs about 1,325 grams, close to the proverbial three pounds often cited in U.S. texts. © 2016 Scientific American

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior
Link ID: 21768 - Posted: 01.09.2016

By R. Douglas Fields We all heard the warning as kids: “That TV will rot your brain!” You may even find yourself repeating the threat when you see young eyes glued to the tube instead of exploring the real world. The parental scolding dates back to the black-and-white days of I Love Lucy, and today concern is growing amid a flood of video streaming on portable devices. But are young minds really being harmed? With brain imaging, the effects of regular TV viewing on a child's neural circuits are plain to see. Studies suggest watching television for prolonged periods changes the anatomical structure of a child's brain and lowers verbal abilities. Behaviorally, even more detrimental effects may exist: although a cause-and-effect relation is hard to prove, higher rates of antisocial behavior, obesity and mental health problems correlate with hours in front of the set. Now a new study hits the pause button on this line of thinking. The researchers conclude that the entire body of research up to now has overlooked an important confounding variable, heredity, that could call into question the conventional wisdom that TV is bad for the brain. Further study will be needed to evaluate this claim, but the combined evidence suggests we need a more nuanced attitude toward our viewing habits. To understand the argument against television, we should rewind to 2013, when a team ofresearchers at Tohoku University in Japan, led by neuroscientist Hikaru Takeuchi, first published findings from a study in which the brains of 290 children between the ages of five and 18 were imaged. The kids' TV viewing habits, ranging from zero to four hours each day, were also taken into account. © 2016 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 1: An Introduction to Brain and Behavior
Link ID: 21743 - Posted: 01.02.2016

Tim Radford British scientists believe they have made a huge step forward in the understanding of the mechanisms of human intelligence. That genetic inheritance must play some part has never been disputed. Despite occasional claims later dismissed, no-one has yet produced a single gene that controls intelligence. But Michael Johnson of Imperial College London, a consultant neurologist and colleagues report in Nature Neuroscience that they may have discovered a very different answer: two networks of genes, perhaps controlled by some master regulatory system, lie behind the human gift for lateral thinking, mental arithmetic, pub quizzes, strategic planning, cryptic crosswords and the ability to laugh at limericks. As usual, such research raises potentially politically-loaded questions about the nature of intelligence. “Intelligence is a composite measure of different cognitive abilities and how they are distributed in a population. It doesn’t measure any one thing. But it is measurable,” Dr Johnson said. About 40% of the variation in intelligence is explained by inheritance. The other factors are not yet certain. But the scientists raise the distant possibility that armed with the new information they may be able to devise ways to modify human intelligence. “The idea of ultimately using drugs to affect cognitive performance is not in any way new. We all drink coffee to improve our cognitive performance,” Dr Johnson said. “It’s about understanding the pathways that are related to cognitive ability both in health and disease, especially disease so one day we could help people with learning disabilities fulfill their potential. That is very important.” © 2015 Guardian News and Media Limited

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior; Chapter 13: Memory, Learning, and Development
Link ID: 21718 - Posted: 12.22.2015

Parrots can dance and talk, and now apparently they can use and share grinding tools. They were filmed using pebbles for grinding, thought to be a uniquely human activity – one that allowed our civilisations to extract more nutrition from cereal-based foods. Megan Lambert from the University of York, UK, and her colleagues were studying greater vasa parrots (Coracopsis vasa) in an aviary when they noticed some of the birds scraping shells in their enclosure with pebbles and date pips. “We were surprised,” says Lambert. “Using tools [to grind] seashells is something never seen before in animals.” Afterwards, the birds would lick the powder from the tool. Some of the parrots even passed tools to each other, which is rarely seen in animals. This behaviour was exclusively male to female. Lambert and her team, who watched the parrots for six months, noticed that the shell-scraping was more frequent before their breeding season. Since seashells contain calcium, which is critical for females before egg-laying, they suspect that the parrots could be manufacturing their own calcium supplements, as the mineral is probably better absorbed in powder form. Greater vasa parrots are native to Madagascar and have breeding and social systems unique among parrots. For example, two or more males have an exclusive sexual relationship with two or more females, and they are unusually tolerant of their group members. The reproductive ritual of sharing tools and grinding could be yet another one of their quirks. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior
Link ID: 21707 - Posted: 12.16.2015

By Nicholas Bakalar Watching television may be bad for your brain, a new study suggests. Researchers followed 3,274 people whose average age was 25 at the start of the study for 25 years, using questionnaires every five years to collect data on their physical activity and TV watching habits. At year 25, they administered three tests that measured various aspects of mental acuity. The highest level of TV watching — more than three hours a day most days — was associated with poor performance on all three tests. Compared with those who watched TV the least, those who watched the most had between one-and-a-half and two times the odds of poor performance on the tests, even after adjusting for age, sex, race, educational level, body mass index, smoking, alcohol use, hypertension and diabetes. Those with the lowest levels of physical activity and the highest levels of TV watching were the most likely to have poor test results. The authors acknowledge that their findings, published in JAMA Psychiatry, depend on self-reports, and that they had no baseline tests of cognitive function for comparison. “We can’t separate out what is going on with the TV watching,” said the lead author, Dr. Kristine Yaffe, a professor of psychiatry and neurology at the University of California, San Francisco. “Is it just the inactivity, or is there something about watching TV that’s the opposite of cognitive stimulation?” © 2015 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 1: An Introduction to Brain and Behavior
Link ID: 21675 - Posted: 12.05.2015

by Sarah Zielinski Call someone a “bird brain” and they are sure to be offended. After all, it’s just another way of calling someone “stupid.” But it’s probably time to retire the insult because scientists are finding more and more evidence that birds can be pretty smart. Consider these five species: We may call pigeons “flying rats” for their penchant for hanging out in cities and grabbing an easy meal. (Long before there was “pizza rat,” you know there had to be “pizza pigeons” flying around New York City.) But there may be more going on in their brains than just where to find a quick bite. Richard Levenson of the University of California, Davis Medical Center and colleagues trained pigeons to recognize images of human breast cancers. In tests, the birds proved capable of sorting images of benign and malignant tumors. In fact, they were just as good as humans, the researchers report November 18 in PLOS ONE. In keeping with the pigeons’ reputation, though, food was the reward for their performance. No one would suspect the planet’s second-best toolmakers would be small black birds flying through mountain forests on an island chain east of Australia. But New Caledonian crows have proven themselves not only keen toolmakers but also pretty good problem-solvers, passing some tests that even dogs (and pigeons) fail. For example, when scientists present an animal with a bit of meat on a long string dangling down, many animals don’t ever figure out how to get the meat. Pull it up with one yank, and the meat is still out of reach. Some animals will figure out how to get it through trial and error, but a wild New Caledonian crow solved the problem — pull, step on string, pull some more — on its first try. © Society for Science & the Public 2000 - 2015

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior
Link ID: 21655 - Posted: 11.24.2015

Carl Zimmer In recent years, a peculiar sort of public performance has taken place periodically on the sidewalks of Seattle. It begins with a woman named Kaeli N. Swift sprinkling peanuts and cheese puffs on the ground. Crows swoop in to feed on the snacks. While Ms. Swift observes the birds from a distance, notebook in hand, another person walks up to the birds, wearing a latex mask and a sign that reads “UW CROW STUDY.” In the accomplice’s hands is a taxidermied crow, presented like a tray of hors d’oeuvres. This performance is not surreal street theater, but an experiment designed to explore a deep biological question: What do crows understand about death? Ms. Swift has been running this experiment as part of her doctoral research at the University of Washington, under the guidance of John M. Marzluff, a biologist. Dr. Marzluff and other experts on crow behavior have long been intrigued by the way the birds seem to congregate noisily around dead comrades. Dr. Marzluff has witnessed these gatherings many times himself, and has heard similar stories from other people. “Whenever I give a talk about crows, there’s always someone who says, ‘Well, what about this?’ ” he said. Dr. Marzluff and Ms. Swift decided to bring some scientific rigor to these stories. They wanted to determine whether a dead crow really does trigger a distinctive response from living crows and, if so, what the purpose of the large, noisy gatherings might be. To run the experiment, Ms. Swift began by delivering food to a particular spot each day, so that the crows learned to congregate there to eat. Then one of her volunteers would approach the feast with a dead crow, and Ms. Swift observed how the birds reacted. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior
Link ID: 21473 - Posted: 10.03.2015

By Michael Balter Are some animals smarter than others? It’s hard to say, because you can’t sit a chimpanzee or a mouse down at a table for an IQ test. But a new study, in which scientists tested wild robins on a variety of skills, concludes that they do differ in the kind of “general intelligence” that IQ tests are supposed to measure. General intelligence is usually defined as the ability to do well on multiple cognitive tasks, from math skills to problem solving. For years, researchers have questioned whether measurable differences exist in humans and nonhumans alike. In humans, factors like education and socioeconomic status can affect performance. When it comes to animals, the problem is compounded for two main reasons: First, it is very difficult to design and administer tests that pick up on overall smarts instead of specific skills, such as the keen memories of food-hoarding birds or the fine motor skills of chimpanzees that make tools for finding insects in trees. Second, differences in animal test scores can depend on how motivated they are to perform. Because most experiments award would-be test-takers with food, an empty (or a full) stomach might be all it takes to skew the results. Thus, even studies that suggest variations in intelligence among mice, birds, and apes all carry the caveat that alternative explanations could be at play. To get around some of these limitations, a team led by Rachael Shaw, an animal behavior researcher at Victoria University of Wellington, turned to a population of New Zealand North Island robins for a new round of experiments. The robins live at the Zealandia wildlife sanctuary, a 225-hectare nature paradise in Wellington where more than 700 of the birds live wild and protected from predators in the middle of the city. © 2015 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21424 - Posted: 09.20.2015

By Steve Mirsky It's nice to know that the great man we celebrate in this special issue had a warm sense of humor. For example, in 1943 Albert Einstein received a letter from a junior high school student who mentioned that her math class was challenging. He wrote back, “Do not worry about your difficulties in mathematics; I can assure you that mine are still greater.” Today we know that his sentiment could also have been directed at crows, which are better at math than those members of various congressional committees that deal with science who refuse to acknowledge that global temperatures keep getting higher. Studies show that crows can easily discriminate between a group of, say, three objects and another containing nine. They have more trouble telling apart groups that are almost the same size, but unlike the aforementioned committee members, at least they're trying. A study in the Proceedings of the National Academy of Sciences USA finds that the brain of a crow has nerve cells that specialize in determining numbers—a method quite similar to what goes on in our primate brain. Human and crow brains are substantially different in size and organization, but convergent evolution seems to have decided that this kind of neuron-controlled numeracy is a good system. (Crows are probably unaware of evolution, which is excusable. Some members of various congressional committees that deal with science pad their reactionary résumés by not accepting evolution, which is astonishing.) © 2015 Scientific American

Related chapters from BP7e: Chapter 18: Attention and Higher Cognition; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 21390 - Posted: 09.09.2015

Alison Abbott The octopus genome offers clues to how cephalopods evolved intelligence to rival the craftiest vertebrates. With its eight prehensile arms lined with suckers, camera-like eyes, elaborate repertoire of camouflage tricks and spooky intelligence, the octopus is like no other creature on Earth. Added to those distinctions is an unusually large genome, described in Nature1 on 12 August, that helps to explain how a mere mollusc evolved into an otherworldly being. “It’s the first sequenced genome from something like an alien,” jokes neurobiologist Clifton Ragsdale of the University of Chicago in Illinois, who co-led the genetic analysis of the California two-spot octopus (Octopus bimaculoides). The work was carried out by researchers from the University of Chicago, the University of California, Berkeley, the University of Heidelberg in Germany and the Okinawa Institute of Science and Technology in Japan. The scientists also investigated gene expression in twelve different types of octopus tissue. “It’s important for us to know the genome, because it gives us insights into how the sophisticated cognitive skills of octopuses evolved,” says neurobiologist Benny Hochner at the Hebrew University of Jerusalem in Israel, who has studied octopus neurophysiology for 20 years. Researchers want to understand how the cephalopods, a class of free-floating molluscs, produced a creature that is clever enough to navigate highly complex mazes and open jars filled with tasty crabs. © 2015 Nature Publishing Group

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21295 - Posted: 08.13.2015

Alexandra Sims Intelligent people are not only smarter than the average person - it seems they could also live longer as well. A study by the London School of Economics found that smarter siblings are more likely to outlive their less clever brothers and sisters, with genetics accounting for 95 per cent of the connection between intelligence and life span. The scientists examined the differences in longevity between identical twins, who share all of their genes and non-identical twins, who on average share half of their genes. Writing in the International Journal of Epidemiology, scientists noted the difference in intellect between the twins and the age at which they died. Focusing on three different twin studies from Sweden, Denmark and the United States the researchers examined sets of twins for whom both intelligence and age of death had been recorded in pairs where at least one of the twins had died. In both types of twins it was found that the smarter of the two lived longer, but this effect was far more prominent in non-identical twins. Rosalind Arden, a research associate at the LSE, told The Times that "the association between top jobs and longer lifespans is more a result of genes than having a big desk.” She added though that the research does not mean parents can "deduce your child’s likely lifespan from how he or she does in their exams this summer”.

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior; Chapter 13: Memory, Learning, and Development
Link ID: 21222 - Posted: 07.27.2015

By Kiona Smith-Strickland Are crows the smartest animals of all? Many scientists think that corvids — the family of birds that includes crows, ravens, rooks and jays — may be among the most intelligent animals on Earth, based on their ability to solve problems, make tools and apparently consider both possible future events and other individuals’ states of mind. “There’s a lot of research that has been done with both ravens and crows because they are such intelligent species,” said Margaret Innes, an assistant curator at the Maryland Zoo in Baltimore. Even in humans, defining and measuring intelligence is difficult, and it’s more complicated in other species, which have very different body shapes and have evolved for their niche in the environment. However, scientists who study cognition have defined a few measures of intelligence: recognizing oneself in a mirror, solving complex problems, making tools, using analogies and symbols, and reasoning about what others are thinking. For a long time, biologists expected most of these mental feats to be unique to primates. The great apes — chimpanzees, orangutans and gorillas — succeed at nearly all of these tasks, from making and using tools to learning large vocabularies of symbols, as well as recognizing themselves in mirrors. A select few other mammals also meet most of the accepted criteria for intelligence. Dogs and dolphins, for instance, are very good at tasks involving social intelligence, such as communication, conflict resolution and reasoning about what others are thinking. Dolphins are also capable of basic tool use — for instance, carrying sea sponges in their mouths to shield their noses from scrapes and bumps as they forage on the ocean floor.

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior
Link ID: 21086 - Posted: 06.23.2015

Alison Abbott Redouan Bshary well remembers the moment he realized that fish were smarter than they are given credit for. It was 1998, and Bshary was a young behavioural ecologist with a dream project: snorkelling in Egypt's Red Sea to observe the behaviour of coral-reef fish. That day, he was watching a grumpy-looking grouper fish as it approached a giant moray eel. As two of the region's top predators, groupers and morays might be expected to compete for their food and even avoid each other — but Bshary saw them team up to hunt. First, the grouper signalled to the eel with its head, and then the two swam side by side, with the eel dipping into crevices, flushing out fish beyond the grouper's reach and getting a chance to feed alongside. Bshary was astonished by the unexpected cooperation; if he hadn't had a snorkel in his mouth, he would have gasped. This underwater observation was the first in a series of surprising discoveries that Bshary has gone on to make about the social behaviour of fish. Not only can they signal to each other and cooperate across species, but they can also cheat, deceive, console or punish one another — even show concern about their personal reputations. “I have always had a lot of respect for fish,” says Bshary. “But one after the other, these behaviours took me by surprise.” His investigations have led him to take a crash course in scuba diving, go beach camping in Egypt and build fake coral reefs in Australia. The work has also destroyed the stereotypical idea that fish are dumb creatures, capable of only the simplest behaviours — and it has presented a challenge to behavioural ecologists in a different field. Scientists who study primates have claimed that human-like behaviours such as cooperation are the sole privilege of animals such as monkeys and apes, and that they helped to drive the evolution of primates' large brains. Bshary — quiet, but afraid of neither adventure nor of contesting others' ideas — has given those scientists reason to think again. © 2015 Nature Publishing Grou

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 20983 - Posted: 05.26.2015

by Karl Gruber "As clever as a guppy" is not a huge compliment. But intelligence does matter to these tropical fish: big-brained guppies are more likely to outwit predators and live longer than their dim-witted peers. Alexander Kotrschal at Stockholm University, Sweden, and his colleagues bred guppies (Poecilia reticulata) to have brains that were bigger or smaller than average. His team previously showed that bigger brains meant smarter fish. When put in an experimental stream with predators, big-brained females were eaten about 13 per cent less often than small-brained ones. There was no such link in males, and the researchers suspect that their bright colours may counter any benefits of higher intelligence. They did find, Kotrschal says , that large-brained males were faster swimmers and better at learning and remembering the location of a female. "This is exciting because it confirms a critical mechanism for brain size evolution," says Kotrschal. It shows, he adds, that interactions between predator and prey can affect brain size. It might seem obvious that bigger brains would help survival. Yet previous research simply found a correlation between the two, leaving the possibility open that some third factor may have been driving the effect. Now, direct brain size manipulation allowed Kotrschal's team to pin it down as a cause of better survival. "This is the first time anyone has tested whether a larger brain confers a survival benefit," says Kotrschal. "The fact that large-brained females survived better in a naturalistic setting is the first experimental proof that a larger brain is beneficial for the fitness of its bearer. This is like watching evolution happen and shows how brain size evolves." © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 20962 - Posted: 05.21.2015

by Ashley Yeager New Caledonian crows are protective of their tools. The birds safeguard the sticks they use to find food and become even more careful with the tools as the cost of losing them goes up. Researchers videotaped captive and wild Corvus moneduloides crows and tracked what the birds did with their sticks. In between eating, the birds tucked the tools under their toes or left them in the holes they were probing. When higher up in the trees, the birds dropped the tools less often and were more likely to leave them in the holes they were probing than when they were on the ground. The finding, published May 20 in the Proceedings of the Royal Society B, shows how tool-protection tactics can prevent costly losses that could keep the crows from chowing down. © Society for Science & the Public 2000 - 2015

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior
Link ID: 20953 - Posted: 05.20.2015

By BENEDICT CAREY Behind all those canned compliments for older adults — spry! wily! wise! — is an appreciation for something that scientists have had a hard time characterizing: mental faculties that improve with age. Knowledge is a large part of the equation, of course. People who are middle-aged and older tend to know more than young adults, by virtue of having been around longer, and score higher on vocabulary tests, crossword puzzles and other measures of so-called crystallized intelligence. Still, young adults who consult their elders (mostly when desperate) don’t do so just to gather facts, solve crosswords or borrow a credit card. Nor, generally, are they looking for help with short-term memory or puzzle solving. Those abilities, called fluid intelligence, peak in the 20s. No, the older brain offers something more, according to a new paper in the journal Psychological Science. Elements of social judgment and short-term memory, important pieces of the cognitive puzzle, may peak later in life than previously thought. The postdoctoral fellows Joshua Hartshorne of M.I.T. and Laura Germine of Harvard and Massachusetts General Hospital analyzed a huge trove of scores on cognitive tests taken by people of all ages. The researchers found that the broad split in age-related cognition — fluid in the young, crystallized in the old — masked several important nuances. “This dichotomy between early peaks and later peaks is way too coarse,” Dr. Hartshorne said. “There are a lot more patterns going on, and we need to take those into account to fully understand the effects of age on cognition.” The new paper is hardly the first challenge to the scientific literature on age-related decline, and it won’t be the last. A year ago, German scientists argued that cognitive “deficits” in aging were caused largely by the accumulation of knowledge — that is, the brain slows down because it has to search a larger mental library of facts. That idea has stirred some debate among scientists. Experts said the new analysis raised a different question: Are there distinct, independent elements of memory and cognition that peak at varying times of life? © 2015 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 20693 - Posted: 03.17.2015

By Gail Sullivan Chemicals found in food and common household products have been linked to lower IQ in kids exposed to high levels during pregnancy. Previous research linked higher exposure to chemicals called "phthalates" to poor mental and motor development in preschoolers. This study was said to be the first to report a link between prenatal exposure to the chemicals and childhood development. Researchers from Columbia University’s Mailman School of Public Health studied exposure to five types of phthalates, which are sometimes referred to as “hormone disruptors” or “endocrine disruptors.” Among these, di-n-butyl phthalate (DnBP) is used in shower curtains, raincoats, hairspray, food wraps, vinyl and pill coating, among other things — but according to the EPA, the largest source of exposure may be seafood. Di-isobutyl phthalate (DiBP) and Butylbenzyl phthalate (BBzP) are added to plastics to make them flexible. These chemicals may also used in makeup, nail polish, lacquer and explosives. The researchers linked prenatal exposure to phthalates to a more than six-point drop in IQ score compared with kids with less exposure. The study, “Persistent Associations between Maternal Prenatal Exposure to Phthalates on Child IQ at Age 7 Years," was published Wednesday in the journal PLOS One. "The magnitude of these IQ differences is troubling," one of the study’s authors, Robin Whyatt, said in a press release. "A six- or seven-point decline in IQ may have substantial consequences for academic achievement and occupational potential."

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 1: An Introduction to Brain and Behavior
Link ID: 20413 - Posted: 12.13.2014

James Gorman Evidence has been mounting for a while that birds and other animals can count, particularly when the things being counted are items of food. But most of the research is done under controlled conditions. In a recent experiment with New Zealand robins, Alexis Garland and Jason Low at Victoria University of Wellington tested the birds in a natural setting, giving them no training and no rewards, and showed that they knew perfectly well when a scientist had showed them two mealworms in a box, but then delivered only one. The researchers reported the work this fall in the journal Behavioural Processes. The experiment is intriguing to watch, partly because it looks like a child’s magic trick. The apparatus used is a wooden box that has a sliding drawer. After clearly showing a robin that she was dropping two mealworms in a circular well in the box, Dr. Garland would slide in the drawer. It covered the two worms with an identical-looking circular well containing only one worm. When the researcher moved away and the robin flew down and lifted off a cover, it would find only one worm. The robins pecked intensely at the box, behavior they didn’t show if they found the two worms they were expecting. Earlier experiments had also shown the birds to be good at counting, and Dr. Garland said that one reason might be that they are inveterate thieves. Mates, in particular, steal from one another’s food caches, where they hide perishable prey like worms or insects. “If you’ve got a mate that steals 50 or more percent of your food,” she said, you’d better learn how to keep track of how many mealworms you’ve got. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 20324 - Posted: 11.18.2014

By Sarah Zielinski The marshmallow test is pretty simple: Give a child a treat, such as a marshmallow, and promise that if he doesn’t eat it right away, he’ll soon be rewarded with a second one. The experiment was devised by Stanford psychologist Walter Mischel in the late 1960s as a measure of self-control. When he later checked back in with kids he had tested as preschoolers, those who had been able to wait for the second treat appeared to be doing better in life. They tended to have fewer behavioral or drug-abuse problems, for example, than those who had given in to temptation. Most attempts to perform this experiment on animals haven’t worked out so well. Many animals haven’t been willing to wait at all. Dogs, primates, and some birds have done a bit better, managing to wait at least a couple of minutes before eating the first treat. The best any animal has managed has been 10 minutes—a record set earlier this year by a couple of crows. The African grey parrot is a species known for its intelligence. Animal psychologist Irene Pepperberg, now at Harvard, spent 30 years studying one of these parrots, Alex, and showed that the bird had an extraordinary vocabulary and capacity for learning. Alex even learned to add numerals before his death in 2007. Could an African grey pass the marshmallow test? Adrienne E. Koepke of Hunter College and Suzanne L. Gray of Harvard University tried the experiment on Pepperberg’s current star African grey, a 19-year-old named Griffin. In their test, a researcher took two treats, one of which Griffin liked slightly better, and put them into cups. Then she placed the cup with the less preferred food in front of Griffin and told him, “wait.” She took the other cup and either stood a few feet away or left the room. After a random amount of time, from 10 seconds to 15 minutes, she would return. If the food was still in the cup, Griffin got the nut he was waiting for. Koepke and colleagues presented their findings last month at the Animal Behavior Society meeting at Princeton. © 2014 The Slate Group LLC.

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior
Link ID: 20061 - Posted: 09.11.2014