Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 22956

By Emily Langer Jaak Panksepp, a neuroscientist who helped reveal the emotional lives of animals by tickling rats and listening to their ultrasonic laughter in experiments that upended his field and opened new possibilities for the treatment of depression and other forms of mental illness, died April 18 at his home in Bowling Green, Ohio. He was 73. The cause was cancer, said his wife, Anesa Miller. For much of his career, Dr. Panksepp was brushed aside by colleagues who accepted the prevailing notion that emotions were uniquely human experiences. Dr. Panksepp — along with many pet owners — suspected otherwise, and he sought to prove his intuition through the rigors of science. “People don’t have a monopoly on emotion,” he once said. “Rather, despair, joy and love are ancient, elemental responses that have helped all sorts of creatures survive and thrive in the natural world.” He was long associated with Bowling Green State University where, in the late 1990s, he conducted the experiments with lab rats that would vault him to national renown. He recalled walking into the laboratory one day and remarking to an assistant, “Let’s go tickle some rats.” He credited a graduate student with repurposing a bat detector — a tool capable of recording high-pitched sounds — as the instrument they would use to listen into the rats’ laughterlike chirps. “Lo and behold,” he told the Toledo Blade in 1998, “it sounded like a playground!” © 1996-2017 The Washington Post

Keyword: Emotions
Link ID: 23521 - Posted: 04.22.2017

By BENEDICT CAREY Well-timed pulses from electrodes implanted in the brain can enhance memory in some people, scientists reported on Thursday, in the most rigorous demonstration to date of how a pacemaker-like approach might help reduce symptoms of dementia, head injuries and other conditions. The report is the result of decades of work decoding brain signals, helped along in recent years by large Department of Defense grants intended to develop novel treatments for people with traumatic brain injuries, a signature wound of the Iraq and Afghanistan wars. The research, led by a team at the University of Pennsylvania, is published in the journal Current Biology. Previous attempts to stimulate human memory with implanted electrodes had produced mixed results: Some experiments seemed to sharpen memory, but others muddled it. The new paper resolves this confusion by demonstrating that the timing of the stimulation is crucial. Zapping memory areas when they are functioning poorly improves the brain’s encoding of new information. But doing so when those areas are operating well — as they do for stretches of the day in most everyone, including those with deficits — impairs the process. “We all have good days and bad days, times when we’re foggy, or when we’re sharp,” said Michael Kahana, who with Youssef Ezzyat led the research team. “We found that jostling the system when it’s in a low-functioning state can jump it to a high-functioning one.” Researchers cautioned that implantation is a delicate procedure and that the reported improvements may not apply broadly. The study was of epilepsy patients; scientists still have much work to do to determine whether this approach has the same potential in people with other conditions, and if so how best to apply it. But in establishing the importance of timing, the field seems to have turned a corner, experts said. © 2017 The New York Times Company

Keyword: Learning & Memory; Epilepsy
Link ID: 23520 - Posted: 04.21.2017

Hannah Devlin Science correspondent They feel no pain, don’t get cancer and look like baggy-skinned sausages with teeth: the naked mole rat is already famously weird. Now scientists have discovered what could be the subterranean rodents’ strangest trait yet: they can survive without oxygen by switching to a metabolic strategy normally used by plants. By switching from a glucose-based metabolic system, which depends on oxygen, to one that uses fructose instead, mole rats can cope with nearly twenty minutes in air with 0% oxygen. Under the same conditions, a human would die within minutes. “The naked mole rat has simply rearranged some basic building-blocks of metabolism to make it super-tolerant to low oxygen conditions,” said Thomas Park, professor of biological sciences at the University of Illinois at Chicago, who made the discovery after studying the species for 18 years. The apparently unique metabolic strategy probably evolved along with the mole rats’ niche life-style, he said. The animals live in stuffy, hyper-crowded burrows, with chambers in which a hundred-odd colony mates sleep together in a heap of hairless bodies. Scientists were aware that oxygen supplies in the mole rats’ tunnels drop to levels that would be unsurvivable for other land mammals, but until now had not tested the limits of their ability to cope with oxygen deprivation, or how this works biologically. In the latest study, published in the journal Science, the team found that mole rats showed no ill effects after five hours breathing air with 5% oxygen – slightly lower that oxygen levels at the summit of Everest. Laboratory mice, by contrast, died within ten minutes. © 2017 Guardian News and Media Limited

Keyword: Obesity
Link ID: 23519 - Posted: 04.21.2017

By TANYA FRANK It begins in the laundry room in the early hours of the morning. I find him alone, tracing the wires of the telephone circuit board. “This is how they are monitoring us,” my son whispers. “We have to cut some stuff out, change the receiver, I can do it.” “Who?” I ask. “Who is monitoring us? And why?” He puts a finger to his lips to quiet me, and begins rifling through the tool kit. He doesn’t seem quite sure what he is looking for. He has never rerouted wires in his life, and besides, it is 2009 and we have suspended our landline. These wires that my 19-year-old is obsessing over are part of a defunct apparatus from a bygone age. I shiver in this damp afterthought of a room, but not from the concrete floor under my bare feet. I’m a Londoner with a tolerance for winter. It’s nerves that have me shaking. I am scared of my own child. My partner is in San Francisco, and we are in Los Angeles. There is no national health system here. We are unmoored, just my boy and me above a twinkling metropolis of strangers. “We can’t trust anybody,” he writes. “Our computers and phones are bugged. Listen, hear that?” I shake my head, unable to detect anything. “It’s a helicopter spying on us.” When it sinks in that this is not a delirium that can be eased with Advil and a good night’s sleep, and when I stop denying that my son is armed, I take him to the closest psychiatric hospital, where he is involuntarily held for 72 hours, considered a danger to himself or others. His symptomology is examined and classified as if he is some rare and delicate butterfly, and he emerges with a label: schizoaffective disorder. It is a complex condition with traits of both schizophrenia (a thought disorder) and bipolar (a mood disorder). Basically, my son had a psychotic break. That’s what they call it when someone disintegrates from his psyche. © 2017 The New York Times Company

Keyword: Schizophrenia
Link ID: 23518 - Posted: 04.21.2017

Laura Sanders Plasma taken from human umbilical cords can rejuvenate old mice’s brains and improve their memories, a new study suggests. The results, published online April 19 in Nature, may ultimately help scientists develop ways to stave off aging. Earlier studies have turned up youthful effects of young mice’s blood on old mice (SN: 12/27/14, p. 21). Human plasma, the new results suggest, confers similar benefits, says study coauthor Joseph Castellano, a neuroscientist at Stanford University. The study also identifies a protein that’s particularly important for the youthful effects, a detail that “adds a nice piece to the puzzle,” Castellano says. Identifying the exact components responsible for rejuvenating effects is important, says geroscientist Matt Kaeberlein of the University of Washington in Seattle. That knowledge will bring scientists closer to understanding how old tissues can be rejuvenated. And having the precise compounds in hand means that scientists might have an easier time translating therapies to people. Kaeberlein cautions that the benefits were in mice, not people. Still, he says, “there is good reason to be optimistic that some of these approaches will have similar effects on health span in people.” Like people, as mice age, brain performance begins to slip. Compared with younger generations, elderly mice perform worse on some tests of learning and memory, taking longer to remember the location of an escape route out of a maze, for instance. Researchers suspect that these deficits come from age-related trouble in the hippocampus, a brain structure important for learning and memory. |© Society for Science & the Public 2000 - 2017

Keyword: Development of the Brain
Link ID: 23517 - Posted: 04.20.2017

Carl Zimmer The oldfield mouse doesn’t seem extraordinary. With soulful black eyes and tiny teacup ears, the rodent lives a humdrum life scurrying about meadows and beaches in the Southeast. But field biologists have long known that when it comes to sex and family life, this mouse is remarkable: Peromyscus polionotus is monogamous — an exception among mammals — and a solicitous parent. Fathers and mothers will dig burrows together and build elaborate nests when pups are on the way; after they’re born, the father will help tend to the pups, retrieving them when they fall out of the nest, licking them, and huddling to keep them warm. In a pioneering study published on Wednesday in the journal Nature, researchers at Harvard University identified a genetic basis for this distinctive behavior. It is the first time that scientists have linked DNA to variations in parenting habits among mammals. Dieter Lukas, an evolutionary biologist at the University of Cambridge who was not involved in the research, hailed the study as a sophisticated tour de force, saying that uncovering these links “is like designing a tool to follow individual threads through a large colorful tapestry.” The findings may one day help scientists make sense of how human couples bond and care for their children. Mammals share many of the genes governing the production of hormones and neurotransmitters in the brain. Variations in how they function may explain why most species are promiscuous, why a few are monogamous — and why some, like humans, are somewhere in between. “We can go from the bottom up and build our knowledge base, and then ask questions about human biology,” said Gene E. Robinson, a biologist at the University of Illinois who was not involved in the new work. © 2017 The New York Times Company

Keyword: Sexual Behavior; Genes & Behavior
Link ID: 23516 - Posted: 04.20.2017

Amber Dance Biologist Leo Smith held an unusual job while an undergraduate student in San Diego. Twice a year, he tagged along on a chartered boat with elderly passengers. The group needed him to identify two particular species of rockfish, the chilipepper rockfish and the California shortspine thornyhead. Once he’d found the red-orange creatures, the passengers would stab themselves in the arms with the fishes’ spines. Doing so, the seniors believed, would relieve their aching arthritic joints. Smith, now at the University of Kansas in Lawrence, didn’t think much of the practice at the time, but now he wonders if those passengers were on to something. Though there’s no evidence that anything in rockfish venom can alleviate pain — most fish stings are, in fact, quite painful themselves — some scientists suspect fish venom is worth a look. Studying the way venom molecules from diverse fishes inflict pain might help researchers understand how nerve cells sense pain and lead to novel ways to dull the sensation. Smith is one of a handful of scientists who are studying fish venoms, and there’s plenty to investigate. An estimated 7 to 9 percent of fishes, close to 3,000 species, are venomous, Smith’s work suggests. Venomous fishes are found in freshwater and saltwater, including some stingrays, catfishes and stonefishes. Some, such as certain fang blennies, are favorites in home aquariums. Yet stinging fishes haven’t gotten the same attention from scientists as snakes and other venomous creatures. |© Society for Science & the Public 2000 - 2017

Keyword: Pain & Touch; Neurotoxins
Link ID: 23515 - Posted: 04.20.2017

Tara García Mathewson You saw the pictures in science class—a profile view of the human brain, sectioned by function. The piece at the very front, right behind where a forehead would be if the brain were actually in someone’s head, is the pre-frontal cortex. It handles problem-solving, goal-setting, and task execution. And it works with the limbic system, which is connected and sits closer to the center of the brain. The limbic system processes emotions and triggers emotional responses, in part because of its storage of long-term memory. When a person lives in poverty, a growing body of research suggests the limbic system is constantly sending fear and stress messages to the prefrontal cortex, which overloads its ability to solve problems, set goals, and complete tasks in the most efficient ways. This happens to everyone at some point, regardless of social class. The overload can be prompted by any number of things, including an overly stressful day at work or a family emergency. People in poverty, however, have the added burden of ever-present stress. They are constantly struggling to make ends meet and often bracing themselves against class bias that adds extra strain or even trauma to their daily lives. And the science is clear—when brain capacity is used up on these worries and fears, there simply isn’t as much bandwidth for other things. Economic Mobility Pathways, or EMPath, has built its whole service-delivery model around this science, which it described in its 2014 report, “Using Brain Science to Design New Pathways Out of Poverty.” The Boston nonprofit started out as Crittenton Women’s Union, a merger of two of the city’s oldest women-serving organizations, both of which focused on improving the economic self-sufficiency of families. It continues that work with a new name and a burgeoning focus on intergenerational mobility. © 2017 by The Atlantic Monthly Group.

Keyword: Development of the Brain; Learning & Memory
Link ID: 23514 - Posted: 04.20.2017

By Dina Fine Maron A bizarre medical mystery can be added to the list of growing concerns about opioid use in the U.S. Since 2012 more than a dozen illicit drug users have shown up in hospitals across eastern Massachusetts with inexplicable amnesia. In some cases the patients’ memory difficulties had persisted for more than a year. Yet this bewildering condition does not appear to be the result of a simple case of tainted goods: The drug users do not appear to have used the same batch of drugs—or even the same type of substance. To get some answers, the state’s public health officials are rolling out a new requirement that clinicians who come across any patients (not just opioid users) with these types of memory deficits—along with damage to the hippocampus—must report the cases to the state. On April 3 state public health officials received the legal green light from the Massachusetts public health commissioner to make this a required, reportable condition. This technical change, which will last for one year, authorizes public health workers to collect this information and reassures clinicians that they can—and must—share case reports. In the next couple of days workers will notify emergency room personnel as well as addiction counselors and neurology specialists about the new designation via e-mail. The new reporting requirement, state officials hope, will help epidemiologists learn how widespread the issue of potential opioid-linked amnesia may be and whether patients have specific factors in common. The change was first reported by BuzzFeed News. © 2017 Scientific American,

Keyword: Learning & Memory; Drug Abuse
Link ID: 23513 - Posted: 04.20.2017

By James Gallagher Health and science reporter, Scientists hope they have found a drug to stop all neurodegenerative brain diseases, including dementia. In 2013, a UK Medical Research Council team stopped brain cells dying in an animal for the first time, creating headline news around the world. But the compound used was unsuitable for people, as it caused organ damage. Now two drugs have been found that should have the same protective effect on the brain and are already safely used in people. "It's really exciting," said Prof Giovanna Mallucci, from the MRC Toxicology Unit in Leicester. She wants to start human clinical trials on dementia patients soon and expects to know whether the drugs work within two to three years. Why might they work? The novel approach is focused on the natural defence mechanisms built into brain cells. When a virus hijacks a brain cell it leads to a build-up of viral proteins. Cells respond by shutting down nearly all protein production in order to halt the virus's spread. Many neurodegenerative diseases involve the production of faulty proteins that activate the same defences, but with more severe consequences. The brain cells shut down production for so long that they eventually starve themselves to death. This process, repeated in neurons throughout the brain, can destroy movement, memory or even kill, depending on the disease. It is thought to take place in many forms of neurodegeneration, so safely disrupting it could treat a wide range of diseases. In the initial study, the researchers used a compound that prevented the defence mechanism kicking in. © 2017 BBC.

Keyword: Alzheimers
Link ID: 23512 - Posted: 04.20.2017

Ian Sample Science editor Brain scans have revealed the first evidence for what appears to be a heightened state of consciousness in people who took psychedelic drugs in the name of science. Healthy volunteers who received LSD, ketamine or psilocybin, a compound found in magic mushrooms, were found to have more random brain activity than normal while under the influence, according to a study into the effects of the drugs. The shift in brain activity accompanied a host of peculiar sensations that the participants said ranged from floating and finding inner peace, to distortions in time and a conviction that the self was disintegrating. Researchers at the University of Sussex and Imperial College, London, measured the activity of neurons in people’s brains as the drugs took hold. Similar measurements have shown that when people are asleep or under anaesthetic, their neurons tend to fire in a more predictable way than when they are awake. “What we find is that under each of these psychedelic compounds, this specific measure of global conscious level goes up, so it moves in the other direction. The neural activity becomes more unpredictable,” said Anil Seth, a professor of neuroscience at the University of Sussex. “Until now, we’ve only ever seen decreases compared to the baseline of the normal waking state.”

Keyword: Drug Abuse; Brain imaging
Link ID: 23511 - Posted: 04.19.2017

Aimee Cunningham Taking antidepressants during pregnancy does not increase the risk of autism or attention-deficit/hyperactivity disorder, two new large studies suggest. Genetic or environmental influences, rather than prenatal exposure to the drugs, may have a greater influence on whether a child will develop these disorders. The studies are published online April 18 in JAMA. Clinically, the message is “quite reassuring for practitioners and for mothers needing to make a decision about antidepressant use during pregnancy,” says psychiatrist Simone Vigod, a coauthor of one of the studies. Past research has questioned the safety of expectant moms taking antidepressants (SN: 6/5/10, p. 22). “A mother’s mood disturbances during pregnancy are a big public health issue — they impact the health of mothers and their children,” says Tim Oberlander, a developmental pediatrician at the University of British Columbia in Vancouver. About one in 10 women develop a major depressive episode during pregnancy. “All treatment options should be explored. Nontreatment is never an option,” says Oberlander, who coauthored a commentary, also published in JAMA. Untreated depression during pregnancy creates risks for the child, including poor fetal growth, preterm birth and developmental problems. Some women may benefit from psychotherapy alone. A more serious illness may require antidepressants. “Many of us have started to look at longer term child outcomes related to antidepressant exposure because mothers want to know about that in the decision-making process,” says Vigod, of Women’s College Hospital in Toronto. |© Society for Science & the Public 2000 - 2017.

Keyword: Depression; Autism
Link ID: 23510 - Posted: 04.19.2017

By LISA SANDERS, M.D. “I feel very pain,” the 62-year-old mumbled incoherently as he sat in a wheelchair. He had said almost nothing since arriving at the office of Dr. Joel Geerling, a neurologist at Beth Israel Deaconess Medical Center in Boston. A year ago, he was fine, explained the patient’s sister. He was married, working as an auto mechanic, happy, normal. Then, six or seven months ago, he became forgetful. Little things at first — he couldn’t think of the right word, remember people’s names. But then big things — like forgetting who he was talking to on the phone or how to drive to places he had known for decades. That was fall 2014. By that Christmas, walking became difficult. He fell frequently. He had trouble feeding himself. He slept most of the day and night. Over the course of this illness, he lost almost everything. He was fired from his job; his wife left him. He didn’t even have his car anymore: His daughter took the keys after an accident. He had always been friendly and talkative, but now he was withdrawn and nearly wordless. In a few months, the man went from being completely independent to requiring round-the-clock care. This daughter tried to take care of him, but recently she had to hire someone; she couldn’t miss any more college classes. The patient first saw his regular doctor, but she couldn’t figure out what was wrong and sent him to a neurologist. When the specialist was stumped, she sent the patient to Geerling, a neurologist who focused on dementia and other cognitive diseases. In the exam room, the patient slumped in the wheelchair and held his head tipped back so that he was looking straight at the doctor above him, giving him a childlike appearance. When Geerling examined him, he found out why. The patient could not make his eyes move up. When he tried to walk, his feet remained on the ground — as if there were a magnet holding them down — giving him an odd, shuffling, gliding gait. He was unable to count down from 10 and didn’t know where he lived. © 2017 The New York Times Company

Keyword: Learning & Memory
Link ID: 23509 - Posted: 04.19.2017

By Grace Rubenstein, North Dakota’s sparse geography has long made it a natural frontier: Pioneers here pushed the boundaries of westward expansion, then agriculture, and recently domestic oil drilling. Now the state finds itself on the leading edge of a new boom that it never would have chosen: Alzheimer’s disease. Cases are rocketing up across the United States, and especially in North Dakota, which has the country’s second highest death rate from the disease. While Alzheimer’s is the sixth leading cause of death nationally, it already ranks third here. “Everybody knows somebody” affected by the disease, said Kendra Binger, a program manager with the Alzheimer’s Association of Minnesota and North Dakota. As public awareness rises along with the numbers of cases, “it’s hard to ignore anymore.” This makes the state an ideal laboratory to glimpse at the future of Alzheimer’s in America, and to identify strategies that could help the rest of the country cope. The devastating disease has strained families and the state budget. So North Dakota — a place that prides itself on personal independence and financial parsimony — has found new ways to support its residents and a new consensus to spend money on prevention. The state’s primary strategy is to assist family caregivers — the estimated 30,000 North Dakota spouses, siblings, sons, and daughters looking after loved ones with dementia. A half-dozen consultants roam the state to evaluate families’ needs, train caregivers, connect them to services, and offer advice. Studies show the program has helped families keep their loved ones out of nursing homes and save the state money. © 2017 Scientific American,

Keyword: Alzheimers
Link ID: 23508 - Posted: 04.19.2017

by Claire Lehmann and Debra W Soh “Neurosexism,” “populist science,” “neurotrash,” the problem with using terms like these to describe scientific investigations of sex differences is that their use may be interpreted as hostile. “Not fair!” claim the espousers of these terms, who argue that they only ever use such terms for pseudoscience and media distortions, not robust and replicable studies. In a recent op-ed for The Guardian, Cordelia Fine—the author who coined the term “neurosexism”—together with Rebecca Jordan-Young, argue that they have never been prima facie opposed to sex differences research. Their only concern is that of scientific rigour. In 2005, the British philosopher Nicholas Shackel proposed the term “Motte and Bailey Doctrine” for this type of argumentative style. Taking the name of the castle fortification, the “motte” is strong and is built high on an elevated patch of land and is easy to defend. By contrast, the “bailey” is built on lower, more exposed ground, and is much more difficult to defend from attacks. Shackel used this metaphor to describe a common rhetorical trap used by postmodern academics, where a controversial proposition is put forward (a “bailey”) but is then switched for an uncontroversial one (a “motte”) when faced with criticism. In this case, the controversial position that has been proposed by authors such as Fine and Jordan-Young is that the scientific investigation of sex differences reinforce and legitimize harmful and sexist stereotypes about women. The uncontroversial proposition is that their concern is simply one of “[ensuring] the [maximum possible contribution] of neuroimaging research.” © 2017 Quillette

Keyword: Sexual Behavior
Link ID: 23507 - Posted: 04.19.2017

Lauren Frayer Gandelina Damião, 78, is permanently hunched, carrying her sorrow. She lost three children to heroin in the 1990s. A quarter century ago, her cobblestone lane, up a grassy hill from Lisbon's Tagus River, was littered with syringes. She recalls having to search for her teenagers in graffitied stone buildings nearby, where they would shoot up. "It was a huge blow," Damião says, pointing to framed photos on her wall of Paulo, Miguel and Liliana. "I was a good mother. I never gave them money for drugs. But I couldn't save them." For much of the 20th century, Portugal was a closed, Catholic society, with a military dictator and no drug education. In the early 1970s, young Portuguese men were drafted to fight wars in the country's African colonies, where many were exposed to drugs for the first time. Some came home addicted. In 1974, there was a revolution — and an explosion of freedom. "It was a little bit like the Americans in Vietnam. Whiskey was cheaper than water, and cannabis was easy to access. So people came home from war with some [drug] habits," says João Goulão, Portugal's drug czar. "Suddenly everything was different [after the revolution]. Freedom! And drugs were something that came with that freedom. But we were completely naive." By the 1990s, 1 percent of Portugal's population was hooked on heroin. It was one of the worst drug epidemics in the world, and it prompted Portugal's government to take a novel approach: It decriminalized all drugs. Starting in 2001, possession or use of any drug — even heroin — has been treated as a health issue, not a crime. © 2017 npr

Keyword: Drug Abuse
Link ID: 23506 - Posted: 04.19.2017

By CLYDE HABERMAN In America’s most storied political family, Rosemary Kennedy was the first in her generation to die of natural causes. Before then, a brother had been killed in war, a sister in a plane crash and two other brothers in assassinations. Not much of Ms. Kennedy’s life qualified as natural, though. Intellectually challenged from birth, she became increasingly erratic after entering womanhood. Her tempestuous mood swings troubled the family patriarch so much that he approved controversial surgery, which he was led to believe would calm her. In 1941, at age 23, Ms. Kennedy underwent a prefrontal lobotomy. It went badly. For her remaining 63 years, she led an institutionalized existence, out of public view, unable to speak clearly or walk without a limp. Retro Report, a series of video documentaries exploring major news stories of the past, harks back to that botched lobotomy and the neurologist who effectively sealed the young woman’s fate, Dr. Walter J. Freeman. The purpose is to show how the past informs the present. Psychosurgery endures, as with a procedure called a cingulotomy, which is used to treat depression and obsessive-compulsive disorder and involves severing fibers deep in the frontal lobe. But attention these days is keenly focused on stimulating discrete areas of the brain with electrical charges in the hope of easing torments like Parkinson’s disease, O.C.D. and depression. “What Walter Freeman was doing was crude and barbaric and harmful in many cases,” said Jack El-Hai, who wrote a 2005 biography of him, “The Lobotomist: A Maverick Medical Genius and His Tragic Quest to Rid the World of Mental Illness.” Referring to cingulotomies, Mr. El-Hai told Retro Report, “But what does remain is the idea that the brain can be physically manipulated, surgically manipulated, to help treat psychiatric illnesses.” The New York Times Company

Keyword: Schizophrenia
Link ID: 23505 - Posted: 04.18.2017

By Elizabeth Pennisi By standing on the shoulders of giants, humans have built the sophisticated high-tech world we live in today. Tapping into the knowledge of previous generations—and those around us—was long thought to be a “humans-only” trait. But homing pigeons can also build collective knowledge banks, behavioral biologists have discovered, at least when it comes to finding their way back to the roost. Like humans, the birds work together and pass on information that lets them get better and better at solving problems. “It is a really exciting development in this field,” says Christine Caldwell, a psychologist at the University of Stirling in the United Kingdom who was not involved with the work. Researchers have admired pigeon intelligence for decades. Previous work has shown the birds are capable of everything from symbolic communication to rudimentary math. They also use a wide range of cues to find their way home, including smell, sight, sound, and magnetism. On its own, a pigeon released multiple times from the same place will even modify its navigation over time for a more optimal route home. The birds also learn specific routes from one another. Because flocks of pigeons tend to take more direct flights home than individuals, scientists have long thought some sort of “collective intelligence” is at work. © 2017 American Association for the Advancement of Science

Keyword: Animal Migration; Evolution
Link ID: 23504 - Posted: 04.18.2017

Angelo Young Billionaire magnate Elon Musk is trying to fill the world with electric cars and solar panels while at the same time aiming to deploy reusable rockets to eventually colonize Mars. As if that weren’t enough for his plate, Musk recently announced the launch of Neuralink, a neuroscience startup seeking to create a way to interface human brains with computers. According to him, this would be part of guarding humanity against what Musk considers a threat from the rise of artificial intelligence. He envisions a lattice of electrodes implanted into the human skull that could allow people to download and upload thoughts as well as treat brain conditions such as epilepsy or bipolar disorders. Musk’s proposition seems as outlandish and unlikely as his vision for the Hyperloop rapid transport system, but like his other big ideas, there’s real science behind it. Figuring out what’s really involved in efforts to sync brains with computers was part of what inspired Adam Piore to write “The Body Builders: Inside the Science of the Engineered Human,” which was released last month by HarperCollins. Written in plain language that gives nonscientists a way to separate the science from the sensational, “The Body Builders” is a fascinating dive into what’s happening right now in bioengineering research — from brain-computer interfaces to bionic limbs — that will redefine human-machine interactions in the years to come. Piore, an award-winning journalist who has written extensively about scientific advances, spoke to Salon recently about just how close we are to being able to read one another’s thoughts through electrodes and the processing power of modern computers. © 2017 Salon Media Group, Inc.

Keyword: Brain imaging; Consciousness
Link ID: 23503 - Posted: 04.18.2017

By TIM REQUARTH SAN FRANCISCO — On a cloudy afternoon in the Bayview district, Shaquille, 21, was riding in his sister’s 1991 Acura when another car ran a stop sign, narrowly missing them. Both cars screeched to a halt, and Shaquille and the other driver got out. “I just wanted to talk,” he recalls. But the talk became an argument, and the argument ended when Shaquille sent the other driver to the pavement with a left hook. Later that day, he was arrested and charged with felony assault. He already had a misdemeanor assault conviction — for a fight in a laundromat when he was 19. This time he might land in prison. Instead, Shaquille — who spoke on condition that his full name not be used, lest his record jeopardize his chances of finding a job — wound up in San Francisco’s Young Adult Court, which offered him an alternative. For about a year, he would go to the court weekly to check in with Judge Bruce E. Chan. Court administrators would coordinate employment, housing and education support for him. He would attend weekly therapy sessions and life-skills classes. In return, he would avoid trial and, on successful completion of the program, the felony charge would be reduced to a misdemeanor. This was important, because a felony record would make it nearly impossible for him to get a job. “These are transitional-age youth,” said Carole McKindley-Alvarez, who oversees case management for the court. “They’re supposed to make some kind of screwed-up choices. We all did. That’s how you learn.” © 2017 The New York Times Company

Keyword: Development of the Brain
Link ID: 23502 - Posted: 04.18.2017