Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 21596

By PAM BELLUCK Alzheimer’s disease can seem frightening, mysterious and daunting. There are still a lot of unknowns about the disease, which afflicts more than five million Americans. Here are answers to some common questions: Sometimes I forget what day it is or where I put my glasses. Is this normal aging, or am I developing Alzheimer’s? Just because you forgot an item on your grocery list doesn’t mean you are developing dementia. Most people have occasional memory lapses, which increase with age. The memory problems that characterize warning signs of Alzheimer’s are usually more frequent, and they begin to interfere with safe or competent daily functioning: forgetting to turn off the stove, leaving home without being properly dressed or forgetting important appointments. Beyond that, the disease usually involves a decline in other cognitive abilities: planning a schedule, following multistep directions, carrying out familiar logistical tasks like balancing a checkbook or cooking a meal. It can also involve mood changes, agitation, social withdrawal and feelings of confusion, and can even affect or slow a person’s gait. How is Alzheimer’s diagnosed? Diagnosing Alzheimer’s usually involves a series of assessments, including memory and cognitive tests. Clinicians will also do a thorough medical work-up to determine whether the thinking and memory problems can be explained by other diagnoses, such as another type of dementia, a physical illness or side effects from a medication. Brain scans and spinal taps may also be conducted to check for corroborating evidence like the accumulation of amyloid, the hallmark protein of Alzheimer’s, in the brain or spinal fluid. The cause is unknown for most cases. Fewer than 5 percent of cases are linked to specific, rare gene mutations. Those are usually early-onset cases that develop in middle age. © 2016 The New York Times Company

Keyword: Alzheimers
Link ID: 22159 - Posted: 04.30.2016

By Adam Bear It happens hundreds of times a day: We press snooze on the alarm clock, we pick a shirt out of the closet, we reach for a beer in the fridge. In each case, we conceive of ourselves as free agents, consciously guiding our bodies in purposeful ways. But what does science have to say about the true source of this experience? In a classic paper published almost 20 years ago, the psychologists Dan Wegner and Thalia Wheatley made a revolutionary proposal: The experience of intentionally willing an action, they suggested, is often nothing more than a post hoc causal inference that our thoughts caused some behavior. The feeling itself, however, plays no causal role in producing that behavior. This could sometimes lead us to think we made a choice when we actually didn’t or think we made a different choice than we actually did. But there’s a mystery here. Suppose, as Wegner and Wheatley propose, that we observe ourselves (unconsciously) perform some action, like picking out a box of cereal in the grocery store, and then only afterwards come to infer that we did this intentionally. If this is the true sequence of events, how could we be deceived into believing that we had intentionally made our choice before the consequences of this action were observed? This explanation for how we think of our agency would seem to require supernatural backwards causation, with our experience of conscious will being both a product and an apparent cause of behavior. In a study just published in Psychological Science, Paul Bloom and I explore a radical—but non-magical—solution to this puzzle. © 2016 Scientific America

Keyword: Consciousness
Link ID: 22158 - Posted: 04.30.2016

Ian Sample Science editor Scientists have created an “atlas of the brain” that reveals how the meanings of words are arranged across different regions of the organ. Like a colourful quilt laid over the cortex, the atlas displays in rainbow hues how individual words and the concepts they convey can be grouped together in clumps of white matter. “Our goal was to build a giant atlas that shows how one specific aspect of language is represented in the brain, in this case semantics, or the meanings of words,” said Jack Gallant, a neuroscientist at the University of California, Berkeley. No single brain region holds one word or concept. A single brain spot is associated with a number of related words. And each single word lights up many different brain spots. Together they make up networks that represent the meanings of each word we use: life and love; death and taxes; clouds, Florida and bra. All light up their own networks. Described as a “tour de force” by one researcher who was not involved in the study, the atlas demonstrates how modern imaging can transform our knowledge of how the brain performs some of its most important tasks. With further advances, the technology could have a profound impact on medicine and other fields. “It is possible that this approach could be used to decode information about what words a person is hearing, reading, or possibly even thinking,” said Alexander Huth, the first author on the study. One potential use would be a language decoder that could allow people silenced by motor neurone disease or locked-in syndrome to speak through a computer. © 2016 Guardian News and Media Limited

Keyword: Language; Brain imaging
Link ID: 22157 - Posted: 04.28.2016

Nicola Davis People with a larger circle of friends are better able to tolerate pain, according to research into the pain thresholds and social networks of volunteers. The link is thought to be down a system in the brain that involves endorphins: potent pain-killing chemicals produced by the body that also trigger a sense of wellbeing. “At an equivalent dose, endorphins have been shown to be stronger than morphine,” said Katerina Johnson, a doctoral student at the University of Oxford, who co-authored the research. Writing in the journal Scientific Reports, Johnson and Robin Dunbar, professor of evolutionary psychology at the University of Oxford, sought to probe the theory that the brain’s endorphin system might have evolved to not only handle our response to physical discomfort, but influence our experience of pleasure from social interactions too. “Social behaviour and being attached to other individuals is really important for our survival - whether that is staying close to our parents, or our offspring or cooperating with others to find food or to help defend ourselves,” said Johnson. To test the link, the authors examined both the social networks and pain thresholds of 101 adults aged between 18 and 34. Each participant was asked to complete a questionnaire, designed to quiz them on friends they contacted once a week and those they got in touch with once a month. The personality of each participant was probed, looking at traits such as “agreeableness”; they were also asked to rate their fitness and stress levels. © 2016 Guardian News and Media Limited

Keyword: Pain & Touch
Link ID: 22156 - Posted: 04.28.2016

Jon Hamilton People who sustain a concussion or a more severe traumatic brain injury are likely to have sleep problems that continue for at least a year and a half. A study of 31 patients with this sort of brain injury found that 18 months afterward, they were still getting, on average, an hour more sleep each night than similar healthy people were getting. And despite the extra sleep, 67 percent showed signs of excessive daytime sleepiness. Only 19 percent of healthy people had that problem. Surprisingly, most of these concussed patients had no idea that their sleep patterns had changed. "If you ask them, they say they are fine," says Dr. Lukas Imbach, the study's first author and a senior physician at the University Hospital Zurich in Zurich. When Imbach confronts patients with their test results, "they are surprised," he says. The results, published Thursday in the online edition of the journal Neurology, suggest there could be a quiet epidemic of sleep disorders among people with traumatic brain injuries. The injuries are diagnosed in more than 2 million people a year in the United States. Common causes include falls, motor vehicle incidents and assaults. Previous studies have found that about half of all people who sustain sudden trauma to the brain experience sleep problems. But it has been unclear how long those problems persist. "Nobody actually had looked into that in detail," Imbach says. A sleep disorder detected 18 months after an injury will linger for at least two years, and probably much longer, the researchers say. © 2016 npr

Keyword: Brain Injury/Concussion; Sleep
Link ID: 22155 - Posted: 04.28.2016

People who've recovered from depression stave off relapses with mindfulness therapy as well as with antidepressants, a new review finds. Mindfulness-based cognitive therapy (MBCT) is an eight-week group program that helps people become better observers of their own thoughts and emotions and to learn to distance themselves before ruminations spiral downwards. An international team of psychiatry researchers combined data from nine randomized trials of 1,258 patients total with recurrent depression to compare the mindfulness therapy to placebo, treatment as usual and other active treatments including antidepressants. People suffering from depression who received the mindfulness therapy were 31 per cent less likely to suffer a relapse during the next 60 weeks compared with those who did not receive it, Willem Kuyken of the University of Oxford, in England and his co-authors reported in a meta-analysis review in Wednesday's issue of the journal JAMA Psychiatry. "If you compare MBCT against antidepressant medication it basically holds its own, which means it provides protection on par with what people would get from continuing to take to take medications for one, two or three years after they've recovered from depression," said co-author Dr. Zindel Segal, a professor of psychology at the University of Toronto Scarborough. No one reported side-effects associated with participating in the therapy. ©2016 CBC/Radio-Canada.

Keyword: Depression; Stress
Link ID: 22154 - Posted: 04.28.2016

By SABRINA TAVERNISE Taking a stance sharply at odds with most American public health officials, a major British medical organization urged smokers to switch to electronic cigarettes, saying they are the best hope in generations for people addicted to tobacco cigarettes to quit. The recommendation, laid out in a report published Thursday by the Royal College of Physicians, summarizes the growing body of science on e-cigarettes and finds that their benefits far outweigh the potential harms. It concludes resoundingly that, at least so far, the devices are helping people more than harming them, and that the worries about them — including that using them will lead young people to eventually start smoking traditional cigarettes — have not come to pass. “This is the first genuinely new way of helping people stop smoking that has come along in decades,” said John Britton, director of the U.K. Center for Tobacco and Alcohol Studies at the University of Nottingham, who led the committee that produced the report. E-cigarettes, he said, “have the potential to help half or more of all smokers get off cigarettes. That’s a huge health benefit, bigger than just about any medical intervention.” That conclusion is likely to be controversial in the United States, where arguments about e-cigarettes have jolted the traditionally low-key public health community. E-cigarettes deliver nicotine without the harmful tar and chemicals that cause cancer. Some public health experts see e-cigarettes as the first real chance in years for 40 million addicted Americans to quit. But others, including the federal Centers for Disease Control and Prevention, have focused on the potential dangers of e-cigarettes, for example that they could extend smoking habits, that they could be a gateway to traditional cigarettes for children, or that their vapor could to turn out to have long-term health effects. © 2016 The New York Times Company

Keyword: Drug Abuse
Link ID: 22153 - Posted: 04.28.2016

Nicola Davis Benedict Cumberbatch’s deep and booming voice might have made him a hit among women, but a low pitch is more likely to have evolved to intimidate other men, new research suggests. When both heterosexual men and women were played recordings of male voices, the deeper tones were hailed by men as sounding more dominant. While the deeper voices were judged to be more attractive by female listeners, the effect was weaker, the researchers report. “If you look at what men’s traits look like they are designed for, they look much better designed for intimidating other males than for attracting females,” said David Puts of Pennsylvania State University, who led the study. Published in Proceedings of the Royal Society B: Biological Sciences, the three-part study by an international team of scientists explored the links between voice pitch and mating systems, attractiveness and, for males only, perceived dominance. A formula for the perfect voice? Read more In the first leg of the research, the scientists turned their attention to primates encompassing Old and New World monkeys, as well as humans and other apes, to explore differences in “fundamental frequency” between males and females of each species - the aspect of the voice that is perceived as pitch. After selecting 1721 recordings, they found large differences were more common in polygynous species - where males mate with more than one female - than monogamous ones. That, they say, could be because in polygynous species, competition between males is greater - hence a male with a lower-pitched voice deemed to be intimidating could have the edge in securing a mate. Intriguingly, the researchers found that among the apes humans showed the greatest difference in pitch between the sexes, suggesting our ancestors were not searching for “the one” but were polygynous - a situation Puts still believes to be the case. © 2016 Guardian News and Media Limited

Keyword: Sexual Behavior; Evolution
Link ID: 22152 - Posted: 04.27.2016

by Bethany Brookshire Interviewing for a new job is filled with uncertainty, and that uncertainty fuels stress. There’s the uncertainty associated with preparing for the interview — what questions will they ask me? What should I put in my portfolio? And then there’s the ambiguity when you’re left to stew. Did I get the job? Or did someone else? Scientists have recently shown that these two types of uncertainty — the kind we can prepare for, and the kind we’re just stuck with — are not created equal. The uncertainty we can’t do anything about is more stressful than the one we can. The results help show exactly what in our lives freaks us out — and why. But the findings also show a positive side to the stress we feel when not knowing what’s ahead — the closer our stress levels reflect the real ambiguity in the world, the better we perform in it. “There is a bias in the public perception” against stress, says Claus Lamm, a cognitive neuroscientist at the University of Vienna in Austria. But stress “prepares us to deal with environmental challenges,” he notes, preparing us to fight or flee, and it keeps us paying attention to our surroundings. For decades, scientists have been trying to figure out just what makes us stressed and why. It turns out that unpredictability is a great stressor. Studies in the 1960s and 1970s showed that rats and humans who can’t predict a negative effect (such as a small shock) end up more frazzled than those who can predict when a zap is coming. In a 2006 study, people zapped with unpredictable electric shocks to the hand rated the pain as more unpleasant than when they knew what to expect. © Society for Science & the Public 2000 - 2016.

Keyword: Stress
Link ID: 22151 - Posted: 04.27.2016

By ERICA GOODE PORTLAND, Ore. — The 911 caller had reported a man with a samurai sword, lunging at people on the waterfront. It was evening, and when the police arrived, they saw the man pacing the beach and called to him. He responded by throwing a rock at the embankment where they stood. They shouted to him from a sheriff’s boat; he threw another rock. They told him to drop the sword; he said he would kill them. He started to leave the beach, and after warning him, they shot him in the leg with a beanbag gun. He turned back, still carrying the four-foot blade. In another city — or in Portland itself not that long ago — the next step would almost certainly have been a direct confrontation and, had the man not put down the weapon, the use of lethal force. But the Portland Police Bureau, prodded in part by the 2012 findings of a Justice Department investigation, has spent years putting in place an intensive training program and protocols for how officers deal with people with mental illness. At a time when police behavior is under intense scrutiny — a series of fatal shootings by police officers have focused national attention on issues of race and mental illness — Portland’s approach has served as a model for other law enforcement agencies around the country. And on that Sunday last summer, the police here chose a different course. At 2:30 a.m., after spending hours trying to engage the man, the officers decided to “disengage,” and they withdrew, leaving the man on the beach. A search at daylight found no signs of him. People with mental illnesses are overrepresented among civilians involved in police shootings: Twenty-five percent or more of people fatally shot by the police have had a mental disorder, according to various analyses. © 2016 The New York Times Company

Keyword: Schizophrenia
Link ID: 22150 - Posted: 04.27.2016

By Bret Stetka The multibillion-dollar supplement industry spews many dubious claims, but a new study suggests that some nutritional supplements, including omega-3 fatty acids and vitamin D, may boost the effectiveness of antidepressants. If so, the supplements might help relieve symptoms for the millions of people who don’t immediately respond to these drugs. The meta-analysis—published Tuesday in the American Journal of Psychiatry—reviewed the results of 40 clinical trials that evaluated the effects of taking nutritional supplements in conjunction with several major classes of antidepressants, including selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs) and tricyclic antidepressants. It revealed that four supplements in particular upped the potency of the medications, compared with a placebo. The researchers, based at Harvard University and the University of Melbourne, found the strongest evidence for an omega-3 fish oil called eicosapentaenoic acid, or EPA. In general, people with depression who took an antidepressant drug and an omega-3 sourced from fish oil experienced a significant reduction in their symptoms as assessed by a the Hamilton Depression Rating Scale, a common measure used by most of the studies in the review. The same was true, although to a lesser extent, for S-adenosylmethionine, methylfolate (a form of the B vitamin folic acid) and Vitamin D. A few isolated studies found some benefit from augmenting treatment with creatine, while adding zinc, vitamin C, the amino acid tryptophan and folic acid produced mixed results. The authors deemed all of these supplements relatively safe. © 2016 Scientific American,

Keyword: Depression
Link ID: 22149 - Posted: 04.27.2016

By Nicholas Bakalar Treating pregnant women for depression may benefit not just themselves but their babies as well. A study, in the May issue of Obstetrics & Gynecology, included 7,267 pregnant women, of whom 831 had symptoms of depression. After controlling for maternal age, race, income, body mass index and other health and behavioral characteristics, the researchers found that depressive symptoms were associated with a 27 percent increased relative risk of preterm birth (less than 37 weeks of gestation), an 82 percent increased risk of very preterm birth (less than 32 weeks of gestation), and a 28 percent increased risk of having a baby small for gestational age. They also found that among those who were treated with antidepressants for depression — about a fifth of those with the diagnosis — there was no association with increased risk for any of these problems. But they acknowledge that this group was quite small, which limits the power to draw conclusions. Still, the lead author, Dr. Kartik K. Venkatesh, a clinical fellow in obstetrics and gynecology at Harvard, said that it was important to screen mothers for depression, not only for their health but for that of their babies. “By screening early in pregnancy, you could identify those at higher risk and counsel them about the importance of treatment,” he said. “Treating these women for depression may have real benefits.” © 2016 The New York Times Company

Keyword: Depression; Development of the Brain
Link ID: 22148 - Posted: 04.27.2016

Anna Nowogrodzki Prions, the misfolded proteins that are known for causing degenerative illnesses in animals and humans, may have been spotted for the first time in plants. Researchers led by Susan Lindquist, a biologist at the Whitehead Institute for Biomedical Research in Cambridge, Massachusetts, report that they have found a section of protein in thale cress (Arabidopsis) that behaves like a prion when it is inserted into yeast. In plants, the protein is called Luminidependens (LD), and it is normally involved in responding to daylight and controlling flowering time. When a part of the LD gene is inserted into yeast, it produces a protein that does not fold up normally, and which spreads this misfolded state to proteins around it in a domino effect that causes aggregates or clumps. Later generations of yeast cells inherit the effect: their versions of the protein also misfold. This does not mean that plants definitely have prion-like proteins, adds Lindquist — but she thinks that it is likely. “I’d be surprised if they weren’t there,” she says. To prove it, researchers would need to grind up a plant and see whether they could find a protein such as LD in several different folded states, as well as show that any potential prion caused a misfolding cascade when added to a test-tube of protein. Lindquist adds that because she's not a plant scientist — her focus is on using yeast to investigate prions — she hasn't tried these experiments. The study is reported on 25 April in the Proceedings of the National Academy of Sciences1. © 2016 Nature Publishing Group

Keyword: Prions; Learning & Memory
Link ID: 22147 - Posted: 04.26.2016

By Jordana Cepelewicz Everyone is familiar with the complaints of a hungry stomach. For years, scientists attributed the gnawing increase in appetite before a meal to ghrelin, a hormone which is secreted in the gut and circulates in the blood, playing a role in food intake and storage. Researchers have found that levels of ghrelin, dubbed the “hunger hormone,” peak before meals and recede after eating. Given its association with appetite, ghrelin is a tempting drug target for potential obesity treatments—but findings thus far have not lived up to expectations. Experiments that knock out the genes coding for ghrelin and its single receptor, GHSR (growth hormone secretagogue receptor), have been inconclusive: Remove the hormone or receptor, and rodents used in the experiments do not necessarily lose their drive to eat. Now a team of researchers at the French Institute of Health and Medical Research (INSERM) in Paris believe that scientists have had it wrong all along. In a study published this week in Science Signaling, they report that ghrelin does not enhance appetite in rats but rather increases weight gain and fat buildup. Unlike in earlier work, in the new study the researchers used a novel genetic method that kept the ghrelin receptor functional but modified it to have greater signaling in response to ghrelin—in other words, the receptor would enhance the hormone’s effects. The team then performed a series of experiments, first in isolated cells and then in rats. As expected, exposing ghrelin to modified receptors prompted a more potent response compared with the unaltered GHSR. © 2016 Scientific American

Keyword: Obesity; Hormones & Behavior
Link ID: 22146 - Posted: 04.26.2016

By Clare Wilson One day, you might be seeing in blue for 24 hours before you have an operation ­– to prevent organ damage. A study in mice suggests that exposure to blue light reduces a form of organ damage that is common during surgery. Reperfusion injury can happen when blood vessels are temporarily tied off during surgery, or when blocked arteries are surgically widened after a heart attack or stroke. Some damage is caused by a lack of oxygen, and further harm results when oxygen levels rebound, causing cells to become overactive, and triggering an attack by the immune system. But blue light seems to reduce this, in mice at least. Matthew Rosengart of the University of Pittsburgh, Pennsylvania, and his team have found that when mice are exposed to blue light for 24 hours before the blood supply to their liver or kidney is temporarily tied off, there is less reperfusion injury than if the mice are exposed to other types of light. “That’s pretty remarkable,” says Jack Pickard, a reperfusion researcher at University College London. Further tests showed that blue light seems to dampen down the sympathetic nervous system, which is involved in mammal stress responses. In turn, this reduced the activity of immune cells called neutrophils, which are involved in inflicting the damage of a reperfusion injury. © Copyright Reed Business Information Ltd.

Keyword: Biological Rhythms
Link ID: 22145 - Posted: 04.26.2016

Yuki Noguchi Hey! Wake up! Need another cup of coffee? Join the club. Apparently about a third of Americans are sleep-deprived. And their employers are probably paying for it, too, in the form of mistakes, productivity loss, accidents and increased health insurance costs. A recent Robert Wood Johnson Foundation report found a third of Americans get less sleep than the recommended seven hours. Another survey by Accountemps, an accounting services firm, put that number at nearly 75 percent in March. Bill Driscoll, Accountemps' regional president in the greater Boston area, says some sleepy accountants even admitted it caused them to make costly mistakes. "One person deleted a project that took 1,000 hours to put together," Driscoll says. "Another person missed a decimal point on an estimated payment and the client overpaid by $1 million. Oops. William David Brown, a sleep psychologist at the University of Texas Southwestern Medical School and author of Sleeping Your Way To The Top, says Americans are sacrificing more and more sleep every year. Fatigue is cumulative, he says, and missing the equivalent of one night's sleep is like having a blood alcohol concentration of about .1 — above the legal limit to drive. "About a third of your employees in any big company are coming to work with an equivalent impairment level of being intoxicated," Brown says. © 2016 npr

Keyword: Sleep; Attention
Link ID: 22144 - Posted: 04.26.2016

By Matthew A. Scult My heart pounds as I sprint to the finish line. Thousands of spectators cheer as a sense of elation washes over me. I savor the feeling. But then, the image slowly fades away and my true surroundings come into focus. I am lying in a dark room with my head held firmly in place, inside an MRI scanner. While this might typically be unpleasant, I am a willing research study participant and am eagerly anticipating what comes next. I hold my breath as I stare at the bar on the computer screen representing my brain activity. Then the bar jumps. My fantasy of winning a race had caused the “motivation center” of my brain to surge with activity. I am participating in a study about neurofeedback, a diverse and fascinating area of research that combines neuroscience and technology to monitor and modulate brain activity in real time. My colleagues, Katie Dickerson and Jeff MacInnes, in the Adcock Lab at Duke University, are studying whether people can train themselves to increase brain activity in a tiny region of the brain called the VTA. Notably, the VTA is thought to be involved in motivation—the desire to get something that you want. For example, if I told you that by buying a lottery ticket you would be guaranteed to win $1,000,000, you would probably be very motivated to buy the ticket and would have a spike in brain activity in this region of your brain. But while studies have shown that motivation for external rewards (like money) activate the VTA, until now, we didn’t know whether people could internally generate a motivational state that would activate this brain region. To see if people can self-activate the VTA, my colleagues are using neurofeedback, which falls under the broader umbrella of biofeedback. © 2016 Scientific American

Keyword: Drug Abuse; Attention
Link ID: 22143 - Posted: 04.26.2016

By ANDREW POLLACK In a confrontation between the hopes of desperate patients and clinical trial data, advisers to the Food and Drug Administration voted on Monday not to recommend approval of what would become the first drug for Duchenne muscular dystrophy. The negative votes came despite impassioned pleas from patients, parents and doctors who insisted that the drug, called eteplirsen, was prolonging the ability of boys with the disease to walk well beyond when they would normally be in wheelchairs. The problem was that the drug’s manufacturer, Sarepta Therapeutics, was trying to win approval based on a study involving only 12 patients without an adequate placebo control. The advisory panel voted 7 to 3, with three abstentions, that the clinical data did not meet the F.D.A. requirements for well controlled studies necessary for approval. However, some of the panel members had trouble reconciling the often compelling patient testimony with the F.D.A. legal requirements. “I was just basically torn between my mind and my heart,” said Richard P. Hoffmann, a pharmacist who was the consumer representative on the committee and who abstained. Dr. Bruce I. Ovbiagele, chairman of neurology at the Medical University of South Carolina, voted against approval but said, “Based on all I heard, the drug definitely works, but the question was framed differently.” On another question of whether the drug could qualify for so-called accelerated approval, a lower hurdle, the panel voted 7 to 6 against the drug. The F.D.A., which does not have to follow the advice of its advisory panels, is scheduled to decide whether to approve eteplirsen by May 26. © 2016 The New York Times Company

Keyword: Muscles; Movement Disorders
Link ID: 22142 - Posted: 04.26.2016

by Laura Sanders Some researchers believe that when memories are called to mind, they enter a fragile, wobbly state during which they are vulnerable to being weakened or changed. One way to erode old memories is to learn something new just after recalling the older memory, scientists reported in 2003 (SN: 10/11/2003, p. 228). But that result itself is wobbly, scientists report April 25 in the Proceedings of the National Academy of Sciences. In an attempt to replicate the original finding, experimental psychologist Tom Hardwicke of University College London and colleagues didn’t see any memory alterations in people who learned a new sequence of finger taps shortly after recalling an old sequence. Nor did the researchers turn up signs of this memory interference in other tests. The new study focused specifically on new learning, but the findings cast suspicion on the legitimacy of other ways to interfere with people’s memories, Hardwicke says. Approaches such as brain stimulation or drugs might also be flawed, the researchers argue. © Society for Science & the Public 2000 - 2016

Keyword: Learning & Memory
Link ID: 22141 - Posted: 04.26.2016

Richard A. Friedman DRUG companies are eager to tell you about their newest medicines. Turn on your TV or go online and there’s a new drug — with a hefty price tag — for whatever ails you, from antidepressants to painkillers to remedies for erectile dysfunction. The pharmaceutical industry spends lavishly to get your attention: In 2014, drug makers poured $4.5 billion into so-called direct-to-consumer advertising, a 30 percent increase over two years. Drug makers claim they are educating the public with their ads, providing information that will help you make better choices about your medical care. So in the spirit of education, let’s consider a recent online ad for Latuda, a new antipsychotic medication. A young woman rides a bike off into the sun as we are told that Latuda has been shown to be effective for many people with bipolar depression, followed by that staccato recitation of potential side effects that most viewers tune out. Here’s what a helpful prescription drug label could look like, with facts that are now out of reach. These are question marks because, although many clinical trial results are published, they are difficult to find and compare. Rules should mandate that all studies are accessible. Note the same high cost for a four-fold range of Latuda doses. Often the lowest dose is just as effective; some low-dose consumers realize they can save money by ordering the higher-dose units and splitting them into pieces. The ideal label would have statistics on how many people have serious side effects. Data are not included for these drugs because they may take years to emerge, if ever. Other drugs have well-known side effects. Fair enough. But the ad omits something that most consumers would like to know: There are many older and cheaper treatments that are just as effective. In fact, Latuda is one of 10 “second generation” antipsychotic medications, many available in generic forms, that essentially work the same way. Of course, the goal of drug companies is not to educate, but to sell products. We could ban the ads, as almost every other country does, and which I’d strongly support. But such a campaign in the United States would face fierce legislative and legal challenges. Instead, let’s help the drug companies make their ads truly educational. © 2016 The New York Times Company

Keyword: Schizophrenia; Depression
Link ID: 22140 - Posted: 04.25.2016