Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 22383

By Jessica Boddy Memory researchers have shone light into a cognitive limbo. A new memory—the name of someone you've just met, for example—is held for seconds in so-called working memory, as your brain's neurons continue to fire. If the person is important to you, the name will over a few days enter your long-term memory, preserved by permanently altered neural connections. But where does it go during the in-between hours, when it has left your standard working memory and is not yet embedded in long-term memory? In Science, a research team shows that memories can be resurrected from this limbo. Their observations point to a new form of working memory, which they dub prioritized long-term memory, that exists without elevated neural activity. Consistent with other recent work, the study suggests that information can somehow be held among the synapses that connect neurons, even after conventional working memory has faded. "This is a really fundamental find—it's like the dark matter of memory," says Geoffrey Woodman, a cognitive neuroscientist at Vanderbilt University in Nashville who was not involved with the work. "It's hard to really see it or measure it in any clear way, but it has to be out there. Otherwise, things would fly apart." Cognitive neuroscientist Nathan Rose and colleagues at the University of Wisconsin (UW) in Madison initially had subjects watch a series of slides showing faces, words, or dots moving in one direction. They tracked the resulting neural activity using functional magnetic resonance imaging (fMRI) and, with the help of a machine learning algorithm, showed they could classify the brain activity associated with each item. Then the subjects viewed the items in combination—a word and face, for example—but were cued to focus on just one item. At first, the brain signatures of both items showed up, as measured in this round with electroencephalography (EEG). But neural activity for the uncued item quickly dropped to baseline, as if it had been forgotten, whereas the EEG signature of the cued item remained, a sign that it was still in working memory. Yet subjects could still quickly recall the uncued item when prompted to remember it a few seconds later. © 2016 American Association for the Advancement of Science.

Keyword: Learning & Memory
Link ID: 22947 - Posted: 12.03.2016

Rosie Mestel The 2016 US election was a powerful reminder that beliefs tend to come in packages: socialized medicine is bad, gun ownership is a fundamental right, and climate change is a myth — or the other way around. Stances that may seem unrelated can cluster because they have become powerful symbols of membership of a group, says Dan Kahan, who teaches law and psychology at Yale Law School in New Haven, Connecticut. And the need to keep believing can further distort people’s perceptions and their evaluation of evidence. Here, Kahan tells Nature about the real-world consequences of group affinity and cognitive bias, and about research that may point to remedies. This interview has been edited for length and clarity. One measure is how individualistic or communitarian people are, and how egalitarian or hierarchical. Hierarchical and individualistic people tend to have confidence in markets and industry: those represent human ingenuity and power. People who are egalitarian and communitarian are suspicious of markets and industry. They see them as responsible for social disparity. It’s natural to see things you consider honourable as good for society, and things that are base, as bad. Such associations will motivate people’s assessment of evidence. Can you give an example? In a study, we showed people data from gun-control experiments and varied the results1. People who were high in numeracy always saw when a study supported their view. If it didn’t support their view, they didn’t notice — or argued their way out of it. © 2016 Macmillan Publishers Limited

Keyword: Attention; Emotions
Link ID: 22946 - Posted: 12.03.2016

Maanvi Singh "I lost more than 80 percent of my university friends," recalls Jagannath Lamichhane. After silently struggling with depression for two decades, Lamichhane published an essay in Nepal Times about his mental illness. "I could have hid my problem — like millions of people around the world," he says, but "if we hide our mental health, it may remain a problem forever." Many of his friends and family didn't agree with that logic. In Nepal — as in most parts of the world — there's quite a lot of stigma around mental illness. That was eight years ago. Now 35-year-old Lamichhane is a mental health advocate, working to challenge the stigma around depression. "People believe that depression is the result of personal weaknesses and the result of bad karma in a past life," he says. Even worse, they don't believe they can be helped, he says — so they don't seek treatment. The problem isn't unique to Lamichhane's community. An estimated 350 million people are affected by depression, and the vast majority of them don't get treatment for their condition either due to stigma or a lack of knowledge, according to a study of more than 50,000 people in 21 countries. The study was led by Graham Thornicroft, a professor of psychiatry at King's College London. He and his team of researchers from King's College London, Harvard Medical School and the World Health Organization found that in the poorest countries, one in 27 people with depression received minimally adequate care for their condition. Even in the richest countries, only one in five people with depression sought care. The data was published Thursday in The British Journal of Psychiatry. © 2016 npr

Keyword: Depression
Link ID: 22945 - Posted: 12.03.2016

By Alison Howell What could once only be imagined in science fiction is now increasingly coming to fruition: Drones can be flown by human brains' thoughts. Pharmaceuticals can help soldiers forget traumatic experiences or produce feelings of trust to encourage confession in interrogation. DARPA-funded research is working on everything from implanting brain chips to "neural dust" in an effort to alleviate the effects of traumatic experience in war. Invisible microwave beams produced by military contractors and tested on U.S. prisoners can produce the sensation of burning at a distance. What all these techniques and technologies have in common is that they're recent neuroscientific breakthroughs propelled by military research within a broader context of rapid neuroscientific development, driven by massive government-funded projects in both America and the European Union. Even while much about the brain remains mysterious, this research has contributed to the rapid and startling development of neuroscientific technology. And while we might marvel at these developments, it is also undeniably true that this state of affairs raises significant ethical questions. What is the proper role – if any – of neuroscience in national defense or war efforts? My research addresses these questions in the broader context of looking at how international relations, and specifically warfare, are shaped by scientific and medical expertise and technology. 2016 © U.S. News & World Report L.P.

Keyword: Attention; Sleep
Link ID: 22944 - Posted: 12.03.2016

.By JOANNA KLEIN A honey bee gathering pollen on a white flower. Dagmar Sporck/EyeEm, via Getty Images Set your meetings, phone calls and emails aside, at least for the next several minutes. That’s because today you’re a bee. It's time to leave your hive, or your underground burrow, and forage for pollen. Pollen is the stuff that flowers use to reproduce. But it’s also essential grub for you, other bees in your hive and your larvae. Once you’ve gathered pollen to take home, you or another bee will mix it with water and flower nectar that other bees have gathered and stored in the hive. But how do you decide which flowers to approach? What draws you in? In a review published last week in the journal Functional Ecology, researchers asked: What is a flower like from a bee’s perspective, and what does the pollinator experience as it gathers pollen? And that's why we're talking to you in the second person: to help you understand how bees like you, while hunting for pollen, use all of your senses — taste, touch, smell and more — to decide what to pick up and bring home. Maybe you're ready to go find some pollen. But do you even know where to look? © 2016 The New York Times Company

Keyword: Vision; Hearing
Link ID: 22943 - Posted: 12.03.2016

Barbara J. King Birdsong is music to human ears. It has inspired famous composers. For the rest of us, it may uplift the spirit and improve attention or simply be a source of delight, fun and learning. But have you ever wondered what birds themselves hear when they sing? After all, we know that other animals' perceptions don't always match ours. Anyone who lives with a dog has probably experienced their incredible acute hearing and smell. Psychologists Robert J. Dooling and Nora H. Prior think they've found an answer to that question — for, at least, some birds. In an article published online last month in the journal Animal Behaviour, they conclude that "there is an acoustic richness in bird vocalizations that is available to birds but likely out of reach for human listeners." Dooling and Prior explain that most scientific investigations of birdsong focus on things like pitch, tempo, complexity, structural organization and the presence of stereotypy. They instead focused on what's called temporal fine structure and its perception by zebra finches. Temporal fine structure, they write, "is generally defined as rapid variations in amplitude within the more slowly varying envelope of sound." Struggling to fully grasp that definition, I contacted Robert Dooling by email. In his response, he suggested that I think of temporal fine structure as "roughly the difference between voices when they are the same pitch and loudness." Temporal fine structure is akin, then, to timbre, sometimes defined as "tone color" or, in Dooling's words, the feature that's "left between two complex sounds when the pitch and level are equalized." © 2016 npr

Keyword: Sexual Behavior; Hearing
Link ID: 22942 - Posted: 12.03.2016

By Torah Kachur, A dog's nose is an incredible scent detector. This ability has been used to train bomb-sniffing dogs, narcotics and contraband sniffers as well as tracking hounds. But even the best electronic scent-detection devices — which use the dog's nose as their gold standard — have never been able to quite live up to their canine competition. But new research — which took a plastic dog nose and strapped it to a bomb sniffing device — might change that. The shape and function of a dog's nose is being used to improve electronic scent detectors. (Flickr / montillon.a) Dogs have almost 300 million smell receptors in their noses, compared to the meagre six million us humans have: their sense of smell is more than 40 times better than ours. But those smell receptors are just part of the puzzle. Matthew Staymates, lead author on a new paper published Thursday, figured that the canine sniffing skill also has something to do with the anatomy of a dog's nose. A former roommate of his had done his PhD in dog nose anatomy and actually had a computer model of a dog's nose and entire head. So Staymates used a 3D printer, printed out a dog's nose, and attached it to an electronic detector. "Sure enough, a week or two later, I had a fully functioning, anatomically correct dog's nose that sniffs like a real dog." From that, he worked with something called a schlieren imager to watch air go in and out of a nose when the dog is snuffling around the ground. ©2016 CBC/Radio-Canada.

Keyword: Chemical Senses (Smell & Taste); Robotics
Link ID: 22941 - Posted: 12.03.2016

Sarah Boseley Health editor A single dose of psilocybin, the active ingredient of magic mushrooms, can lift the anxiety and depression experienced by people with advanced cancer for six months or even longer, two new studies show. Researchers involved in the two trials in the United States say the results are remarkable. The volunteers had “profoundly meaningful and spiritual experiences” which made most of them rethink life and death, ended their despair and brought about lasting improvement in the quality of their lives. The results of the research are published in the Journal of Psychopharmacology together with no less than ten commentaries from leading scientists in the fields of psychiatry and palliative care, who all back further research. While the effects of magic mushrooms have been of interest to psychiatry since the 1950s, the classification of all psychedelics in the US as schedule 1 drugs in the 1970s, in the wake of the Vietnam war and the rise of recreational drug use in the hippy counter-culture, has erected daunting legal and financial obstacles to running trials. “I think it is a big deal both in terms of the findings and in terms of the history and what it represents. It was part of psychiatry and vanished and now it’s been brought back,” said Dr Stephen Ross, director of addiction psychiatry at NYU Langone Medical Center and lead investigator of the study that was based there. © 2016 Guardian News and Media Limited

Keyword: Depression; Drug Abuse
Link ID: 22940 - Posted: 12.01.2016

By BENEDICT CAREY The same digital screens that have helped nurture a generation of insomniacs can also help restore regular sleep, researchers reported on Wednesday. In a new study, more than half of chronic insomniacs who used an automated online therapy program reported improvement within weeks and were sleeping normally a year later. The new report, published in the journal JAMA Psychiatry, is the most comprehensive to date suggesting that many garden-variety insomniacs could benefit from the gold standard treatment — cognitive behavior therapy — without ever having to talk to a therapist. At least one in 10 adults has diagnosable insomnia, which is defined as broken, irregular, inadequate slumber at least three nights a week for three months running or longer. “I’ve been an insomniac all my life, I’ve tried about everything,” said Dale Love-Callon, 70, a math tutor living in Rancho Palos Verdes, Calif., who recently used the software. “I don’t have it 100 percent conquered, but I’m sleeping much better now.” Previous studies have found that online sleep therapy can be effective, but most have been smaller, or focused on a particular sleep-related problem, like depression. The new trial tested the digital therapy in a broad, diverse group of longtime insomniacs whose main complaint was lack of sleep. Most had used medication or supplements over the years, and some still did. “These results suggest that there are a group of patients who can benefit without the need of a high-intensity intervention,” like face-to-face therapy, said Jack Edinger, a professor in the department of medicine at National Jewish Health in Denver, who was not a part of the study. “We don’t know yet exactly who they are — the people who volunteer for a study like this in first place are self-motivated — but they’re out there.” © 2016 The New York Times Company

Keyword: Sleep
Link ID: 22939 - Posted: 12.01.2016

By Clare Wilson WE HAVE been thinking about Parkinson’s disease all wrong. The condition may arise from damage to the gut, not the brain. If the idea is correct, it opens the door to new ways of treating the disease before symptoms occur. “That would be game-changing,” says David Burn at Newcastle University, UK. “There are lots of different mechanisms that could potentially stop the spread.” Parkinson’s disease involves the death of neurons deep within the brain, causing tremors, stiffness and difficulty moving. While there are drugs that ease these symptoms, they become less effective as the disease progresses. One of the hallmarks of the condition is deposits of insoluble fibres of a substance called synuclein. Normally found as small soluble molecules in healthy nerve cells, in people with Parkinson’s, something causes the synuclein molecules to warp into a different shape, making them clump together as fibres. The first clue that this transition may start outside the brain came about a decade ago, when pathologists reported seeing the distinctive synuclein fibres in nerves of the gut during autopsies – both in people with Parkinson’s and in those without symptoms but who had the fibres in their brain. They suggested the trigger was some unknown microbe or toxin. © Copyright Reed Business Information Ltd.

Keyword: Parkinsons
Link ID: 22938 - Posted: 12.01.2016

Amanda Gefter As we go about our daily lives, we tend to assume that our perceptions—sights, sounds, textures, tastes—are an accurate portrayal of the real world. Sure, when we stop and think about it—or when we find ourselves fooled by a perceptual illusion—we realize with a jolt that what we perceive is never the world directly, but rather our brain’s best guess at what that world is like, a kind of internal simulation of an external reality. Still, we bank on the fact that our simulation is a reasonably decent one. If it wasn’t, wouldn’t evolution have weeded us out by now? The true reality might be forever beyond our reach, but surely our senses give us at least an inkling of what it’s really like. Not so, says Donald D. Hoffman, a professor of cognitive science at the University of California, Irvine. Hoffman has spent the past three decades studying perception, artificial intelligence, evolutionary game theory and the brain, and his conclusion is a dramatic one: The world presented to us by our perceptions is nothing like reality. What’s more, he says, we have evolution itself to thank for this magnificent illusion, as it maximizes evolutionary fitness by driving truth to extinction. Getting at questions about the nature of reality, and disentangling the observer from the observed, is an endeavor that straddles the boundaries of neuroscience and fundamental physics. On one side you’ll find researchers scratching their chins raw trying to understand how a three-pound lump of gray matter obeying nothing more than the ordinary laws of physics can give rise to first-person conscious experience. This is the aptly named “hard problem.”

Keyword: Consciousness
Link ID: 22937 - Posted: 12.01.2016

By Clare Wilson Could a brain stimulation device change our sex drive? The first study of this approach suggests that people’s libido can be turned up or down, depending on the device’s setting. The study didn’t measure how much sex people had in real life, instead it measured participant’s sexual responsiveness. Unusually, this was done by fixing customised vibrators to people’s genitals and gauging how their brainwaves changed when they expected a stimulating buzz. “You want to see if they want what you’re offering,” says Nicole Prause at the University of California, Los Angeles. “This is a good model for sexual desire.” The technique involves transcranial magnetic stimulation (TMS), where a paddle held above the head uses a strong magnetic field to alter brain activity. It can be used to treat depression and migraines, and is being investigated for other uses, including preventing bed-wetting, and helping those with dyslexia. The part of the head targeted in this study – called the left dorsolateral prefrontal cortex, roughly above the left temple – is involved in the brain’s reward circuitry. © Copyright Reed Business Information Ltd.

Keyword: Sexual Behavior
Link ID: 22936 - Posted: 12.01.2016

Erika Check Hayden Physicians may soon have a lot more help in treating newborns. Neuroscientists and physicians have embarked on what they hope will be a revolution in treatments to prevent brain damage in newborn babies. As many as 800,000 babies die each year when blood and oxygen stop flowing to the brain around the time of birth. And thousands develop brain damage that causes long-lasting mental or physical disabilities, such as cerebral palsy. Physicians have few tools to prevent this, but they are optimistic that clinical trials now under way will change things. The trials were sparked by neuroscientists’ realization in the 1990s that some brain injuries can be repaired. That discovery spurred a flurry of basic research that is just now coming to fruition in the clinic. In January, a US study will start to test whether the hormone erythropoietin, or EPO, can prevent brain damage hours after birth when combined with hypothermia, in which babies are cooled to 33.5 °C. A trial in Australia is already testing this treatment. Physicians in countries including the United States, China and Switzerland are testing EPO in premature babies, as well as other treatments, such as melatonin, xenon, argon, magnesium, allopurinol and cord blood in full-term babies. “The world has really changed for us,” says neurologist Janet Soul at Boston Children’s Hospital in Massachusetts. Therapeutic hypothermia was the first success: clinical trials over the past decade have shown that it decreases the risk of death and of major brain-development disorders by as much as 60%. It is now standard treatment for babies in developed countries whose brains are deprived of blood and oxygen during birth. © 2016 Macmillan Publishers Limited,

Keyword: Development of the Brain
Link ID: 22935 - Posted: 11.30.2016

Anya Kamenetz Brains, brains, brains. One thing we've learned at NPR Ed is that people are fascinated by brain research. And yet it can be hard to point to places where our education system is really making use of the latest neuroscience findings. But there is one happy nexus where research is meeting practice: bilingual education. "In the last 20 years or so, there's been a virtual explosion of research on bilingualism," says Judith Kroll, a professor at the University of California, Riverside. Again and again, researchers have found, "bilingualism is an experience that shapes our brain for a lifetime," in the words of Gigi Luk, an associate professor at Harvard's Graduate School of Education. At the same time, one of the hottest trends in public schooling is what's often called dual-language or two-way immersion programs. Traditional programs for English-language learners, or ELLs, focus on assimilating students into English as quickly as possible. Dual-language classrooms, by contrast, provide instruction across subjects to both English natives and English learners, in both English and in a target language. The goal is functional bilingualism and biliteracy for all students by middle school. New York City, North Carolina, Delaware, Utah, Oregon and Washington state are among the places expanding dual-language classrooms. © 2016 npr

Keyword: Language; Learning & Memory
Link ID: 22934 - Posted: 11.30.2016

By Andy Coghlan Don’t go to bed angry. Now there’s evidence for this proverb: it’s harder to suppress bad memories if you sleep on them. The discovery could reveal new ways to treat people who suffer from conditions like post-traumatic stress disorder, and reinforces an earlier idea that it is possible to suppress bad memories through sleep deprivation. “The results are of major interest for treating the frequent clinical problem of unwanted memories, memories of traumatic events being the most prominent example,” says Christoph Nissen at the University of Freiburg Medical Center in Germany, who was not involved in the work. In the study, 73 male students memorised 26 mugshots, each paired with a disturbing image, such as a mutilated body, corpse or crying child. The next day they were asked to recall the images associated with half the mugshots and actively try to exclude memories of the rest of the associated images. The group were then directed to memorise another 26 pairs of mugshots and nasty images. Half an hour later they again thought about half the associated images and actively suppressed memories of the rest. Finally, they were asked to describe the image associated with each of the 52 mugshots. The idea was to see if trying to suppress a bad memory works better before or after sleep. © Copyright Reed Business Information Ltd.

Keyword: Sleep; Learning & Memory
Link ID: 22933 - Posted: 11.30.2016

By DAVE PHILIPPS CHARLESTON, S.C. — After three tours in Iraq and Afghanistan, C. J. Hardin wound up hiding from the world in a backwoods cabin in North Carolina. Divorced, alcoholic and at times suicidal, he had tried almost all the accepted treatments for post-traumatic stress disorder: psychotherapy, group therapy and nearly a dozen different medications. “Nothing worked for me, so I put aside the idea that I could get better,” said Mr. Hardin, 37. “I just pretty much became a hermit in my cabin and never went out.” Then, in 2013, he joined a small drug trial testing whether PTSD could be treated with MDMA, the illegal party drug better known as Ecstasy. “It changed my life,” he said in a recent interview in the bright, airy living room of the suburban ranch house here, where he now lives while going to college and working as an airplane mechanic. “It allowed me to see my trauma without fear or hesitation and finally process things and move forward.” Based on promising results like Mr. Hardin’s, the Food and Drug Administration gave permission Tuesday for large-scale, Phase 3 clinical trials of the drug — a final step before the possible approval of Ecstasy as a prescription drug. If successful, the trials could turn an illicit street substance into a potent treatment for PTSD. Through a spokeswoman, the F.D.A. declined to comment, citing regulations that prohibit disclosing information about drugs that are being developed. © 2016 The New York Times Company

Keyword: Stress; Drug Abuse
Link ID: 22932 - Posted: 11.30.2016

By Melissa Dahl Considering its origin story, it’s not so surprising that hypnosis and serious medical science have often seemed at odds. The man typically credited with creating hypnosis, albeit in a rather primitive form, is Franz Mesmer, a doctor in 18th-century Vienna. (Mesmer, mesmerize. Get it?) Mesmer developed a general theory of disease he called “animal magnetism,” which held that every living thing carries within it an internal magnetic force, in liquid form. Illness arises when this fluid becomes blocked, and can be cured if it can be coaxed to flow again, or so Mesmer’s thinking went. To get that fluid flowing, as science journalist Jo Marchant describes in her recent book, Cure, Mesmer “simply waved his hands to direct it through his patients’ bodies” — the origin of those melodramatic hand motions that stage hypnotists use today.” After developing a substantial following — “mesmerism” became “the height of fashion” in late 1780s Paris, writes Marchant — Mesmer became the subject of what was essentially the world’s first clinical trial. King Louis XVI pulled together a team of the world’s top scientists, including Benjamin Franklin, who tested mesmerism and found its capacity to “cure” was, essentially, a placebo effect. “Not a shred of evidence exists for any fluid,” Franklin wrote. “The practice … is the art of increasing the imagination by degrees.” Maybe so. But that doesn’t mean it doesn’t work. © 2016, New York Media LLC.

Keyword: Attention; Pain & Touch
Link ID: 22931 - Posted: 11.30.2016

By David Grimm Animal research has a publication problem. About half of all animal experiments in academic labs, including those testing for cancer and heart drugs, are never published in scientific journals, and those that are have been notoriously hard to replicate. That’s part of the reason that most drugs that work in animals don’t work in people—only 11% of oncology compounds that show promise in mice are ever approved for humans—despite billions of dollars spent by pharmaceutical and biotech companies. Meanwhile, academic labs waste money, mice, and other resources on experiments that, unbeknownst to them, have already been done but were never reported. In response to similar concerns about human studies, the U.S Food and Drug Administration (FDA) in 2007 mandated that researchers conducting human clinical trials preregister the details in an online database like ClinicalTrials.gov. Now, some scientists are wondering whether a similar approach makes sense for animal experiments. In a study published this month in PLOS Biology, Daniel Strech, a bioethicist at Hannover Medical School in Germany, and colleagues investigated the idea of so-called animal study registries. They scoured the literature and interviewed nearly two dozen scientists to determine the pros and cons of such registries—and whether they would actually make a difference. Strech chatted with Science to discuss the group’s findings. This interview has been edited for clarity and length. Q: What would these registries look like? © 2016 American Association for the Advancement of Science

Keyword: Animal Rights
Link ID: 22930 - Posted: 11.30.2016

By NICHOLAS BAKALAR Stroke rates have been declining in older people over the past 20 years — but have sharply increased in those under 55. Researchers at Rutgers University used data from the New Jersey Department of Health on more than 227,000 hospitalizations for stroke from 1995 through 2014, calculating incidence by age over five-year periods. The findings appeared in the Journal of the American Heart Association. Compared with the 1995-99 period, the rate of stroke in 2010-14 increased by 147 percent in people 35 to 39, by 101 percent in people 40 to 44, by 68 percent in those 45 to 49, and by 23 percent in the 50 to 54 group. Stroke is still far more common in older people. But the rate decreased by 11 percent in those 55 to 59, by 22 percent in the 60 to 64 group, and by 18 percent in people 65 to 69. The reasons are unclear, but the lead author, Joel N. Swerdel, now an epidemiologist with Janssen Pharmaceuticals, said that increasing obesity and diabetes in younger people are probably involved. “For a person 30 to 50, the good news is you ain’t dead yet,” he said. “With behavioral changes, changing diet, increasing exercise, there’s still hope for you. Behavioral change is hard, but this study is an early warning sign.” © 2016 The New York Times Company

Keyword: Stroke
Link ID: 22929 - Posted: 11.30.2016

By Virginia Morell If you’ve ever watched ants, you’ve probably noticed their tendency to “kiss,” quickly pressing their mouths together in face-to-face encounters. That’s how they feed each other and their larvae. Now, scientists report that the insects are sharing much more than food. They are also communicating—talking via chemical cocktails designed to shape each other and the colonies they live in. The finding suggests that saliva exchange could play yet-undiscovered roles in many other animals, from birds to humans, says Adria LeBoeuf, an evolutionary biologist at the University of Lausanne in Switzerland, and the study’s lead author. “We’ve paid little attention to what besides direct nutrition is being transmitted” in ants or other species, adds Diana Wheeler, an evolutionary biologist at the University of Arizona in Tucson, who was not involved with the work. Social insects—like ants, bees, and wasps—have long been known to pass food to one another through mouth-to-mouth exchange, a behavior known as trophallaxis. They store liquid food in “social stomachs,” or crops, from which they can regurgitate it later. It’s how nutrients are passed from foraging ants to nurse ants, and from nurses to the larvae in a colony. Other research has suggested that ants also use trophallaxis to spread the colony’s odor, helping them identify their own nest mates. © 2016 American Association for the Advancement of Science

Keyword: Chemical Senses (Smell & Taste)
Link ID: 22928 - Posted: 11.29.2016