Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.

Links 61 - 80 of 20915

Erin Wayman Priya Rajasethupathy’s research has been called groundbreaking, compelling and beautifully executed. It’s also memorable. Rajasethupathy, a neuroscientist at Stanford University, investigates how the brain remembers. Her work probes the molecular machinery that governs memories. Her most startling — and controversial — finding: Enduring memories may leave lasting marks on DNA. Being a scientist wasn’t her first career choice. Although Rajasethupathy inherited a love of computation from her computer scientist dad, she enrolled in Cornell University as a pre-med student. After graduating in three years, she took a year off to volunteer in India, helping people with mental illness. During that year she also did neuroscience research at the National Centre for Biological Sciences in Bangalore. While there, she began to wonder whether microRNAs, tiny molecules that put protein production on pause, could play a role in regulating memory. She pursued that question as an M.D. and Ph.D. student at Columbia University (while intending, at least initially, to become a physician). She found some answers in the California sea slug (Aplysia californica). In 2009, she and colleagues discovered a microRNA in the slug’s nerve cells that helps orchestrate the formation of memories that linger for at least 24 hours. © Society for Science & the Public 2000 - 2015.

Keyword: Learning & Memory
Link ID: 21434 - Posted: 09.23.2015

Rachel Ehrenberg If not for a broken piece of lab equipment and a college crush, Steve Ramirez might never have gone into neuroscience. As an undergraduate at Boston University his interests were all over the place: He was taking a humanities course and classes in philosophy and biochemistry while working several hours a week in a biology lab. When the lab’s centrifuge, a device that spins liquids, broke, Ramirez had to use one in another lab. “I was trying to make small talk with this girl who was using the centrifuge, ‘What’s your major?’ kind of thing,” Ramirez recalls. Hearing of his myriad interests, the student suggested that Ramirez talk with neuroscientist Paul Lipton. That led to a conversation with Howard Eichenbaum, a leading memory researcher. Eichenbaum told him that everything Ramirez was interested in was about the brain. “Everything from the pyramids to putting a man on the moon, it’s all the product of the human brain, which is kind of crazy when you think about it,” Ramirez says. Studying “the most interdisciplinary organ in existence,” as Ramirez calls it, was a natural fit. While working in Eichenbaum’s lab, Ramirez got turned on to how the brain forms memories. Those explorations led to a Ph.D. program at MIT in the lab of Nobel laureate Susumu Tonegawa, where Ramirez focused on the individual brain cells that hold specific memories. © Society for Science & the Public 2000 - 2015.

Keyword: Emotions; Learning & Memory
Link ID: 21433 - Posted: 09.23.2015

By Virginia Morell Standing 2 meters tall and weighing as much as 1000 kilograms, European bison (Bison bonasus) are impressive animals. These cousins of the American bison—nearly driven to extinction in the last century—are being reintroduced in small herds across Europe, leading some farmers and forest managers to worry that the large herbivores will destroy their habitat. To better understand how the bison decide when and where to move, scientists studied a herd of 43 individuals in the Reserve Biologique des Monts-d’Azur in the Alpes-Maritimes region of France. They recorded the animals’ movements for 4 hours daily, identifying leaders, what type of action led others to follow, and where the herd moved. The herd wasn’t guided by a single leader, the scientists report in the November issue of Animal Behaviour. Instead, any individual regardless of sex or age could prompt the group to move, although most decisions were made by adult females—as is the case with most ungulates. A bison shows that it plans to change its location by taking at least 20 steps without stopping or lowering its head to graze. A potential leader was most likely to be followed if it walked in the direction that most of the others were facing—suggesting that bison vote with their feet. The researchers suspect that most leaders are adult females because they require higher quality food when lactating or pregnant. Wildlife managers can use this research to reduce human-bison conflicts, the scientists say. They need only identify a herd’s leaders, fit them with GPS collars, and install a virtual fence of alarms and electrical shocks. It should then be possible to control the leaders’ movements—and, thus, those of the entire herd.

Keyword: Sexual Behavior
Link ID: 21432 - Posted: 09.23.2015

David Cyranoski A dispute has broken out at two of China’s most prestigious universities over a potentially groundbreaking discovery: the identification of a protein that may allow organisms to sense magnetic fields. On 14 September, Zhang Sheng-jia, a neuroscientist at Tsinghua University in Beijing, and his colleagues published a paper1 in Science Bulletin claiming to use magnetic fields to remotely control neurons and muscle cells in worms, by employing a particular magnetism-sensing protein. But Xie Can, a biophysicist at neighbouring Peking University, says that Zhang’s publication draws on a discovery made in his laboratory, currently under review for publication, and violates a collaboration agreement the two had reached. Administrators at Tsinghua and Peking universities, siding with Xie, have jointly requested that the journal retract Zhang’s paper, and Tsinghua has launched an investigation into Zhang’s actions. The dispute revolves around an answer to the mystery of how organisms as diverse as worms, butterflies, sea turtles and wolves are capable of sensing Earth’s magnetic field to help them navigate. Researchers have postulated that structures in biological cells must be responsible, and dubbed these structures magnetoreceptors. But they have never been found. In research starting in 2009, Xie says that he used a painstaking whole-genome screen to identify a protein containing iron and sulfur that seems, according to his experiments, to have the properties of a magnetoreceptor. He called it MagR, to note its purported properties, and has since been examining its function and structure to determine how it senses magnetic fields. © 2015 Nature Publishing Group,

Keyword: Animal Migration
Link ID: 21431 - Posted: 09.22.2015

Claudia Dreifus Cornelia Bargmann, a neurobiologist at Rockefeller University in New York, studies how genes interact with neurons to create behavior. Two years ago, President Obama named Dr. Bargmann, who is known as Cori, a co-chairwoman of the advisory commission for the Brain Initiative, which he has described as “giving scientists the tools they need to get a dynamic picture of the brain in action.” I spoke with Dr. Bargmann, 53, for two hours at the Manhattan apartment she shares with her husband, Dr. Richard Axel, a neuroscientist at Columbia University. Our interview has been edited and condensed. Q. As an M.I.T. graduate student, you made a discovery that ultimately led to the breast cancer drug Herceptin. How did it happen? A. What I did was discover a mutated gene that triggered an obscure cancer in rats. Afterwards, it was discovered — by others — that this same gene is also altered in human breast cancers. Since our work in the rat cancer showed that the immune system could attack the product of this gene, Genentech developed a way to deploy the immune system. That’s Herceptin. It is an antibody against the gene that sits on the surface of a cancer cell. It can attack the cancer cell growing because of that gene. Currently, you spend your time trying to understand the nervous system of a tiny worm, C. elegans. Why do you study this worm? Well, the reason is this: Understanding the human brain is a great and complex problem. To solve the brain’s mysteries, you often have to break a problem down to a simpler form. Your brain has 86 billion nerve cells, and in any mental process, millions of them are engaged. Information is sweeping across these millions of neurons. With present technology, it’s impossible to study that process at the level of detail and speed you would want. © 2015 The New York Times Company

Keyword: Brain imaging; Development of the Brain
Link ID: 21430 - Posted: 09.22.2015

by Laura Sanders Like every other person who carries around a smartphone, I take a lot of pictures, mostly of my kids. I thought I was bad with a few thousand snaps filling my phone’s memory. But then I talked to MIT researcher Deb Roy. For three years, Roy and a small group of researchers recorded every waking moment of Roy’s son’s life at home, amassing over 200,000 hours of video and audio recordings. Roy’s intention wasn’t to prove he was the proudest parent of all time. Instead, he wanted to study how babies learn to say words. As a communication and machine learning expert, Roy and his wife Rupal Patel, also a speech researcher, recognized that having a child would be a golden research opportunity. The idea to amass this gigantic dataset “was kicking around and something we thought about for years,” Roy says. So after a pregnancy announcement and lots of talking and planning and “fascinating conversations” with the university administration in charge of approving human experiments, the researchers decided to go for it. To the delight of his parents, a baby boy arrived in 2005. When Roy and Patel brought their newborn home, the happy family was greeted by 11 cameras and 14 microphones, tucked up into the ceiling. From that point on, cameras rolled whenever the baby was awake. © Society for Science & the Public 2000 - 2015

Keyword: Language; Development of the Brain
Link ID: 21429 - Posted: 09.22.2015

Steve Connor A painkiller widely used to treat rheumatoid arthritis has been shown to reverse the symptoms of dementia in the brains of laboratory mice, raising hope that there may soon be an effective treatment for Alzheimer’s disease, scientists have said. The drug, salsalate, is a licensed pain killer but in mice with a form of dementia similar to Alzheimer’s it reversed the changes to a key protein in the brain that builds up in patients with the debilitating neurological disease, they found. The researchers said it is the first time any drug has been shown to have an effect on the “tau” protein that accumulates in the brain of people with Alzheimer’s and a range of similar dementias known as “tauopathies”. It could lead to an effective therapy even for patients in the later stages of disease, the researchers said. “We identified for the first time a pharmacological approach that reverses all aspects of tau toxicity," said Li Gan, PhD of the Gladstone Institutes, a non-profit research organisation affiliated with the University of California, San Francisco. “Remarkably, the profound protective effects of salsalate were achieved even though it was administered after disease onset, indicating that it may be an effective treatment option,” said Dr Gan a senior co-author of the study published in the journal Nature Medicine. As many as 800,000 people in Britain are already affected by Alzheimer’s disease and a new study has suggested that as many as one in three babies born this year will get dementia in their lifetime, largely as a result of people living longer. Age is the biggest risk factor for the disease. ©

Keyword: Alzheimers
Link ID: 21428 - Posted: 09.22.2015

By John Pavlus The “brain in a vat” has long been a staple of philosophical thought experiments and science fiction. Now scientists are one step closer to creating the real thing, which could enable groundbreaking experiments of a much more empirical kind. Research teams at Stanford University and the RIKEN Center for Developmental Biology in Japan have each discovered methods for coaxing human stem cells to form three-dimensional neural structures that display activity associated with that of an adult brain. By applying a variety of chemical growth factors, the RIKEN researchers transformed human embryonic stem cells into neurons that self-organized in patterns unique to the cerebellum, a region of the brain that coordinates movement. The Stanford team worked with induced pluripotent stem cells derived from skin cells and chemically nudged them to become neurons that spontaneously wired up into networks of 3-D circuits, much like the ones found in the cerebral cortex—the wrinkled gray matter of the brain that supports attention, memory and self-awareness in humans. “For years people have used mouse embryonic stem cells to generate teratomas—things that look like they could be organs,” says David Panchision, a neuroscientist at the National Institutes of Health, which supported the Stanford research. “But it's not organized and systematic, the way a developing brain needs to be to function.” In contrast, the Stanford team's neural structures not only self-assembled as cortexlike tissue, the neurons also sent signals to one another in coordinated patterns—just as they would in a brain. The cerebellar tissue generated by the Japanese scientists did, too. © 2015 Scientific American

Keyword: Development of the Brain
Link ID: 21427 - Posted: 09.21.2015

By MATTHEW HUTSON ANGER is a primal and destructive emotion, disrupting rational discourse and inflaming illogical passions — or so it often seems. Then again, anger also has its upsides. Expressing anger, for example, is known to be a useful tool in negotiations. Indeed, in the past few years, researchers have been learning more about when and how to deploy anger productively. Consider a forthcoming paper in the November issue of the Journal of Experimental Social Psychology. Researchers tested the effectiveness of expressing anger in three types of negotiations: those that are chiefly cooperative (say, starting a business with a partner), chiefly competitive (dissolving a shared business) or balanced between the two (selling a business to a buyer). In two experiments, negotiators made greater concessions to those who expressed anger — but only in balanced situations. When cooperating, hostility seems inappropriate, and when competing, additional heat only flares tempers. But in between, anger appears to send a strategically useful signal. What does that signal communicate? According to a 2009 paper in Proceedings of the National Academy of Sciences, anger evolved to help us express that we feel undervalued. Showing anger signals to others that if we don’t get our due, we’ll exert harm or withhold benefits. As they anticipated, the researchers found that strong men and attractive women — those who have historically had the most leverage in threatening harm and conferring benefits, respectively — were most prone to anger. The usefulness of anger in extracting better treatment from others seems to be something we all implicitly understand. A 2013 paper in the journal Cognition and Emotion found that when people were preparing to enter a confrontational negotiation, as opposed to a cooperative one, they took steps to induce anger in themselves (choosing to listen to aggressive versus happy music, for example). © 2015 The New York Times Company

Keyword: Emotions
Link ID: 21426 - Posted: 09.21.2015

William Sutcliffe Most epidemics are the result of a contagious disease. ADHD – Attention Deficit Hyperactivity Disorder – is not contagious, and it may not even be a genuine malady, but it has acquired the characteristics of an epidemic. New data has revealed that UK prescriptions for Ritalin and other similar ADHD medications have more than doubled in the last decade, from 359,100 in 2004 to 922,200 last year. In America, the disorder is now the second most frequent long-term diagnosis made in children, narrowly trailing asthma. It generates pharmaceutical sales worth $9bn (£5.7bn) per year. Yet clinical proof of ADHD as a genuine illness has never been found. Sami Timimi, consultant child psychiatrist at Lincolnshire NHS Trust and visiting professor of child psychiatry, is a vocal critic of the Ritalin-friendly orthodoxy within the NHS. While he is at pains to stress that he is “not saying those who have the diagnosis don’t have any problem”, he is adamant that “there is no robust evidence to demonstrate that what we call ADHD correlates with any known biological or neurological abnormality”. The hyperactivity, inattentiveness and lack of impulse control that are at the heart of an ADHD diagnosis are, according to Timimi, simply “a collection of behaviours”. Any psychiatrist who claims that a behaviour is being caused by ADHD is perpetrating a “philosophical tautology” – he is doing nothing more than telling you that hyperactivity is caused by an alternative name for hyperactivity. There is still no diagnostic test – no marker in the body – that can identify a person with ADHD. The results of more than 40 brain scan studies are described by Timimi as “consistently inconsistent”. No conclusive pattern in brain activity had been found to explain or identify ADHD. ©

Keyword: ADHD
Link ID: 21425 - Posted: 09.21.2015

By Michael Balter Are some animals smarter than others? It’s hard to say, because you can’t sit a chimpanzee or a mouse down at a table for an IQ test. But a new study, in which scientists tested wild robins on a variety of skills, concludes that they do differ in the kind of “general intelligence” that IQ tests are supposed to measure. General intelligence is usually defined as the ability to do well on multiple cognitive tasks, from math skills to problem solving. For years, researchers have questioned whether measurable differences exist in humans and nonhumans alike. In humans, factors like education and socioeconomic status can affect performance. When it comes to animals, the problem is compounded for two main reasons: First, it is very difficult to design and administer tests that pick up on overall smarts instead of specific skills, such as the keen memories of food-hoarding birds or the fine motor skills of chimpanzees that make tools for finding insects in trees. Second, differences in animal test scores can depend on how motivated they are to perform. Because most experiments award would-be test-takers with food, an empty (or a full) stomach might be all it takes to skew the results. Thus, even studies that suggest variations in intelligence among mice, birds, and apes all carry the caveat that alternative explanations could be at play. To get around some of these limitations, a team led by Rachael Shaw, an animal behavior researcher at Victoria University of Wellington, turned to a population of New Zealand North Island robins for a new round of experiments. The robins live at the Zealandia wildlife sanctuary, a 225-hectare nature paradise in Wellington where more than 700 of the birds live wild and protected from predators in the middle of the city. © 2015 American Association for the Advancement of Science.

Keyword: Intelligence; Evolution
Link ID: 21424 - Posted: 09.20.2015

Mo Costandi The human brain is often said to be the most complex object in the known universe, and there’s good reason to believe that this old cliché is true. Even the apparently simple task of compiling a census of the different types of cells it contains has proven to be extremely difficult. Researchers still can’t agree on the best way to classify the numerous sub-types of neurons, and different methods produce different results, so estimates range from several hundred to over a thousand. Basket cells illustrate this neuronal identity crisis perfectly. They are currently sub-divided into multiple different types, according to their shape, electrical properties, and molecular profiles. After nearly ten years of detective work, researchers at King’s College London now reveal them to be masters of disguise. In a surprising new study, they show that these cells can dynamically switch from one identity to another in response to neuronal network activity. Basket cells are a type of interneuron, which are found scattered throughout the cerebral cortex, hippocampus, and cerebellum, and make up about 5% of the total number of cells in these brain regions. They form local circuits with each other and with pyramidal neurons, the much larger and more numerous cells that transmit information to distant parts of the brain, and synthesize the inhibitory neurotransmitter GABA, which dampens pyramidal cell activity when released. These enigmatic cells are thought to exist in more than twenty different types, the best known being the fast-spiking ones, which respond rapidly to incoming signals, and slower ones, which respond after a delay. During brain development, immature forms of all types of basket cells are created in a structure called the medial ganglionic eminence, along with various other types of brain cells. They then migrate into the developing cerebral cortex, before going on to form synaptic connections with other cells. © 2015 Guardian News and Media Limited

Keyword: Development of the Brain
Link ID: 21423 - Posted: 09.20.2015

By BENEDICT CAREY Fourteen years ago, a leading drug maker published a study showing that the antidepressant Paxil was safe and effective for teenagers. On Wednesday, a major medical journal posted a new analysis of the same data concluding that the opposite is true. That study — featured prominently by the journal BMJ — is a clear break from scientific custom and reflects a new era in scientific publishing, some experts said, opening the way for journals to post multiple interpretations of the same experiment. It comes at a time of self-examination across science — retractions are at an all-time high; recent cases of fraud have shaken fields as diverse as anesthesia and political science; and earlier this month researchers reported that less than half of a sample of psychology papers held up. “This paper is alarming, but its existence is a good thing,” said Brian Nosek, a professor of psychology at the University of Virginia, who was not involved in either the original study or the reanalysis. “It signals that the community is waking up, checking its work and doing what science is supposed to do — self-correct.” The authors of the reanalysis said that many clinical studies had some of the same issues as the original Paxil study, and that data should be made freely available across clinical medicine, so that multiple parties could analyze them. The dispute itself is a long-running one: Questions surrounding the 2001 study played a central role in the so-called antidepressant wars of the early 2000s, which led to strong warnings on the labels of Paxil and similar drugs citing the potential suicide risk for children, adolescents and young adults. The drugs are considered beneficial and less risky for many adults over 25 with depression. © 2015 The New York Times Company

Keyword: Depression; Development of the Brain
Link ID: 21422 - Posted: 09.20.2015

We all have our favourite movie moments, ones we love to watch again from time to time. Now it seems chimpanzees and bonobos, too, have the nous to recall thrilling scenes in movies they have previously seen and anticipate when they are about to come up. The results suggest apes can readily recall and anticipate significant recent events, just by watching those events once. Rather than use hidden food as a memory test, Japanese researchers made short movies and showed them to apes on two consecutive days. “We showed a movie instead, and asked whether they remember it when they only watch an event once, and an event totally new to them,” says Fumihiro Kano of Kyoto University in Japan. “Their anticipatory glances told us that they did.” Plot moment Kano and his colleague Satoshi Hirata made and starred in two short films. Another of the characters was a human dressed up as an ape in a King Kong costume who carried out attacks on people, providing the key plot moment in the first movie (see video). Both films were designed to contain memorable dramatic events, and the researchers deployed laser eye-tracking technology to see if the animals preferentially noticed and remembered these moments. © Copyright Reed Business Information Ltd.

Keyword: Learning & Memory
Link ID: 21421 - Posted: 09.20.2015

Nathan Seppa For a historically mistrusted drink, coffee is proving to be a healthy addiction. Scientific findings in support of coffee’s nutritional attributes have been arriving at a steady drip since the 1980s, when Norwegian researchers reported that coffee seemed to fend off liver disease. Since then, the dark brown beverage has shown value against liver cancer, too, as well as type 2 diabetes, heart disease and stroke. Coffee even appears to protect against depression, Parkinson’s and Alzheimer’s diseases. Taken as a whole, these results might explain the most astonishing finding of all. People who drink two or more cups of coffee a day live longer than those who don’t, after accounting for behavioral differences, U.S. researchers reported in 2012. Studies in Japan, Scotland and Finland agree. Talk about a twofer. Coffee not only picks you up, it might put off the day they lower you down. Yet coffee has had trouble shaking its bad-for-you reputation. It may be one of the most widely consumed drinks in the world, but people have long assumed that, at least in its energizing caffeinated version, coffee comes with a catch. “People notice the caffeine,” says cardiologist Arthur Klatsky, who has researched coffee for decades at the Kaiser Permanente Northern California Division of Research in Oakland. “And there is this general feeling that anything that has some effect on the nervous system has to have something bad about it.” It doesn’t help that caffeine is mildly addictive.

Keyword: Drug Abuse; Parkinsons
Link ID: 21420 - Posted: 09.20.2015

By C. CLAIBORNE RAY A. Wild canines that rely on strenuous hunting to survive may sleep or rest as much as, or even more than, indolent human-created breeds that rely on a can or a bag of kibble. Domestic dogs, with their great range of body types and personalities, show a tremendous variety of sleep patterns, often including relatively brief periods of deep sleep spread out over several hours. A half-century-long study of wolves and their interaction with their prey on Isle Royale, a wilderness island in Lake Superior, found that in winter the wolves would feed for hours on a fresh kill, then sprawl out or curl up in the snow and rest or sleep about 30 percent of the time. “Wolves have plenty of reason to rest,” the study’s researchers wrote. “When wolves are active, they are really active. On a daily basis, wolves burn about 70 percent more calories compared to typical animals of similar size.” The researchers note that while hunting, wolves may burn calories at 10 to 20 times the rate they do while resting. “When food is plentiful, wolves spend a substantial amount of time simply resting, because they can,” the study said. “When food is scarce, wolves spend much time resting because they need to.” Wolves may eat only once every five to 10 days, the researchers said, losing as much as 8 to 10 percent of body weight, but regaining all the lost weight in just two days of eating and resting. © 2015 The New York Times Company

Keyword: Sleep
Link ID: 21419 - Posted: 09.20.2015

By David Grimm The journal Nature is revising its policy on publishing animal experiments after a study it ran in 2011 received criticism because the authors allowed tumors to grow excessively large in mice. The paper reported that a compound isolated from a pepper plant killed cancer cells without harming healthy cells. Yesterday, the journal published a correction to the study (the paper’s second), which noted that “some tumors on some of the animals exceeded the maximum size … permitted by the Institutional Animal Care and Use Committee.” The tumors were only supposed to grow to a maximum of 1.5 cubic centimeters, but some reached 7 cubic centimeters, according to David Vaux, a cell biologist at the Walter and Eliza Hall Institute of Medical Research in Melbourne, Australia, who first raised concerns about the paper in 2012. (Vaux spoke to Retraction Watch, which first reported the correction.) In an editorial published yesterday, Nature calls the large tumors “a breach of experimental protocol,” one that could have caused the mice to “have experienced more pain and suffering than originally allowed for.” The journal also noted the lapse could have implications beyond the one study, saying that “cases such as this could provoke a justifiable backlash against animal research.” Nature says it will now require authors to include the maximum tumor size allowed by its institutional animal-use committee, and to state that this size was not exceeded during the experiments. The journal does say, however, that it is not retracting the paper, and that the study remains “valid and useful.”

Keyword: Animal Rights
Link ID: 21418 - Posted: 09.20.2015

Helen Shen Neuroscientists have used ultrasound to stimulate individual brain cells in a worm, and hope that the technique — which they call ‘sonogenetics’ — might be adapted to switch on neurons in mice and larger animals. The technique relies on touch-sensitive ‘channel’ proteins, which can be added to particular brain cells through genetic engineering. The channels open when hit by an ultrasonic pulse, which allows ions to flood into a neuron and so causes it to turn on. Ultrasound could be a less-invasive way for researchers to stimulate specific cell types or individual neurons, rather than using implanted electrodes or fibre-optic cables, says neurobiologist Sreekanth Chalasani, at the Salk Institute for Biological Studies in La Jolla, California, who led the study reported today in Nature Communications1. “Our hope is to create a toolbox of different channels that would each respond to different intensities of ultrasound,” he says. "It's a cool new idea, and they show that this could really be feasible," says Jon Pierce-Shimomura, a neuroscientist who studies the nematode Caenorhabditis elegans at the University of Texas at Austin. “This could open a whole new way for manipulating the nervous system non-invasively through genetically encodable tools.” © 2015 Nature Publishing Group,

Keyword: Brain imaging
Link ID: 21417 - Posted: 09.16.2015

By JAMES GORMAN Among the deep and intriguing phenomena that attract intense scientific interest are the birth and death of the universe, the intricacies of the human brain and the way dogs look at humans. That gaze — interpreted as loving or slavish, inquisitive or dumb — can cause dog lovers to melt, cat lovers to snicker, and researchers in animal cognition to put sausage into containers and see what wolves and dogs will do to get at it. More than one experiment has made some things pretty clear. Dogs look at humans much more than wolves do. Wolves tend to put their nose to the Tupperware and keep at it. This evidence has led to the unsurprising conclusion that dogs are more socially connected to humans and wolves more self-reliant. Once you get beyond the basics, however, agreement is elusive. In order to assess the latest bit of research, published in Biology Letters Tuesday by Monique Udell at Oregon State University, some context can be drawn from an earlier experiment that got a lot of attention more than a decade ago. In a much publicized paper in 2003, Adam Miklosi, now director of the Family Dog Project, at Eotvos Lorand University in Budapest, described work in which dogs and wolves who were raised by humans learned to open a container to get food. Then they were presented with the same container, modified so that it could not be opened. Wolves persisted, trying to solve the unsolvable problem, while dogs looked back at nearby humans. At first glance it might seem to a dog lover that the dogs were brilliant, saying, in essence, “Can I get some help here? You closed it; you open it.” But Dr. Miklosi didn’t say that. He concluded that dogs have a genetic predisposition to look at humans, which could have been the basis for the intense but often imperfect communication that dogs and people engage in. © 2015 The New York Times Company

Keyword: Animal Communication; Language
Link ID: 21416 - Posted: 09.16.2015

By Sarah C. P. Williams Immune cells are usually described as soldiers fighting invading viruses and bacteria. But they may also be waging another battle: the war against fat. When mice lack a specific type of immune cell, researchers have discovered, they become obese and show signs of high blood pressure, high cholesterol, and diabetes. The findings have yet to be replicated in humans, but they are already helping scientists understand the triggers of metabolic syndrome, a cluster of conditions associated with obesity. The new study “definitely moves the field forward,” says immunologist Vishwa Deep Dixit of the Yale School of Medicine, who was not involved in the work. “The data seem really solid.” Scientists already know that there is a correlation between inflammation—a heightened immune response—and obesity. But because fat cells themselves can produce inflammatory molecules, distinguishing whether the inflammation causes weight gain or is just a side effect has been tricky. When he stumbled on this new cellular link between obesity and the immune system, immunologist Yair Reisner of the Weizmann Institute of Science in Rehovot, Israel, was studying something completely different: autoimmune diseases. An immune molecule called perforin had already been shown to kill diseased cells by boring a hole in their outer membrane. Reisner’s group suspected that dendritic cells containing perforin might also be destroying the body’s own cells in some autoimmune diseases. To test the idea, Reisner and his colleagues engineered mice to lack perforin-wielding dendritic cells, and then waited to see whether they developed any autoimmune conditions. © 2015 American Association for the Advancement of Science

Keyword: Obesity; Neuroimmunology
Link ID: 21415 - Posted: 09.16.2015