Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 101 - 120 of 19654

by Elijah Wolfson @elijahwolfson The class was the most difficult of the fall 2013 semester, and J.D. Leadam had missed all but one lecture. His grandfather’s health had worsened, and he left San Jose State, where he was studying for a degree in business, to return home to Los Angeles to help out. Before he knew it, midterm exams had almost arrived. At this point, Leadam had, for a while, been playing around with transcranial direct-current stimulation, or tDCS, an experimental treatment for all sorts of health issues that, at its most basic, involves running a very weak electric current through the brain. When he first came across tDCS, Leadam was immediately intrigued but thought, “There’s no way I’m gonna put electrodes on my head. It’s just not going to happen.” After extensive research, though, he changed his mind. He looked into buying a device online, but there wasn’t much available — just one extremely expensive machine and then a bare-bones $40 device that didn’t even have a switch. So he dug around online and figured he could build one himself. He bought all the pieces he needed and put it together. He tried it a few times, but didn’t notice much, so he put it aside. But now, with the test looming, he picked it back up. The professor had written a book, and Leadam knew all the information he’d be tested on was written in its pages. “But I’m an auditory learner,” he said, “so I knew it wouldn’t work to just read it.” He strapped on the device, turned it on and read the chapters. “Nothing,” he thought. But when he got to the classroom and put pen to paper, he had a revelation. “I could remember concepts down to the exact paragraphs in the textbook,” Leadam said. “I actually ended up getting an A on the test. I couldn’t believe it.”

Keyword: Learning & Memory
Link ID: 20130 - Posted: 09.29.2014

By Dr Michael Mosley BBC Do you have a "male" or "female" brain? Are there really significant brain differences between the sexes and if so, do these differences matter? BBC Horizon investigates. When it comes to the tricky and explosive question of how much, if at all, male and female behaviour is driven by brain differences, Professor Alice Roberts and I sit on different sides of the fence. I believe that our brains, like our bodies, are shaped by exposure to hormones in the womb and this may help explain why males tend to do better at some tasks (3D rotation), while women tend to do better at others (empathy skills), although there is, of course, an awful lot of overlap and social pressure involved. Alice, on the other hand, thinks these differences are largely spurious, the result of how the tests are carried out. She worries that such claims may discourage girls from going into science. "We live in a country where fewer than three out of ten physics A levels are taken by girls, where just 7% of engineers are women" she points out, before adding "and where men still earn on average nearly 20% more than their female colleagues." So the BBC's Horizon programme asked us to go and explore the science, put forward research that would support our different views, but also look for common ground. BBC © 2014

Keyword: Sexual Behavior
Link ID: 20129 - Posted: 09.29.2014

Posted by James Owen in Weird & Wild Bigger males may get a lot of attention, but sometimes being smaller—and sneakier—is more successful when it comes to mating. In the East African cichlid fish, Lamprologus callipterus, males come in two sizes: giants or dwarves that are 40 times smaller than their beefier rivals. (Watch a video of male cichlid fish fighting.) It’s an example of male polymorphism, a phenomenon in which males of the same species take different forms. Though people vary in height, men don’t come in two different sizes like the cichlids. Several research studies suggest that tall men—those over 5’7″—are more successful in dating and in their careers—but they get divorced at higher rates. But the variation in L. callipterus, which are found only in Lake Tanganyika (map), is “the most extreme there is,” said Michael Taborsky, co-director of the Institute of Ecology and Evolution at the University of Bern, Switzerland. “It’s an enormous size difference.” In a new study, published September 17 in the Proceedings of the Royal Society B, Taborsky and his team linked this gulf in size to the female’s unusual habit of laying eggs in empty snail shells. To attract females, the giant males collect hundreds of these shells, using their mouths to create nesting sites. But while their hefty build is ideal for lugging about the heavy shells and chasing off rivals, the giants can’t access the chambers of their female harem, instead releasing their sperm outside the shell, Taborsky explained. (Also see “Small Squid Have Bigger Sperm—And Their Own Sex Position.”) © 1996-2013 National Geographic Societ

Keyword: Sexual Behavior
Link ID: 20127 - Posted: 09.29.2014

By Bec Crew Mike meet everyone, everyone meet Mike. No, no, don’t wave. He can’t see, you’re just making this awkward. Also known as Miracle Mike, Mike the Headless Chicken was a plump, five-year-old cockerel when he was unceremoniously beheaded on 10 September 1945. Farmer Lloyd Olsen of Fruita in Colorado did the deed because his wife Clara was having her mother over for dinner that night, and Olsen knew she’d always enjoyed a bit of roast chicken neck. With that in mind, Olsen tried to save most of Mike’s neck as he lopped his head off, but in doing so, he accidentally made his axe miss Mike’s jugular vein, plus one ear and most of his brain stem, and to his surprise, Mike didn’t die. In fact, Mike stuck around for a good 18 months without his head. Immediately after it happened, Mike reeled around like any headless chicken would, but soon settled down. He even started pecking at the ground for food with his newly minted stump, and made preening motions. His crows had become throaty gurglings. Olsen, bewildered, left him to it. The next morning, when Olsen found Mike asleep in the barn, having attempted to tuck his head under his wing as he always had, the farmer took it upon himself to figure out how to feed this unwitting monstrosity. Mike had earned that much. All Olsen had to do was deposit food and water into Mike’s exposed oesophagus via a little eyedropper. He even got small grains of corn sometimes as a treat. © 2014 Scientific American

Keyword: Miscellaneous
Link ID: 20126 - Posted: 09.29.2014

by Bethany Brookshire Isaac Newton famously showed that in physics, every action has an equal and opposite reaction. A similar push-and-pull of positive and negative inputs also exists in our brains. Brain cells can send out excitatory chemical signals, and they can also receive inhibitory chemical signals, putting the brakes on further signaling. This delicate balance of excitation and inhibition allows our brains to function normally and to react to the world around us. A new study shows that the same neurons contribute excitatory and inhibitory chemical signals in a brain area linked with how we process disappointment, and that antidepressants might be able to change this delicate molecular dance and stop some of the negative thought cycles associated with depression. But while the work finds an association, it’s not yet proof that the balance of these chemicals holds the key to relieving depressive symptoms. The study, published September 19 in Science, focuses on the lateral habenula. This tiny area makes up the “stalk” connecting the pineal gland to the rest of the brain. It receives inputs from areas of the brain important in reward and emotional processing, including the basal ganglia. Some areas of the brain appear to specialize in predicting rewards, showing increases in activity in response to enjoyable things such as food, sex or drugs. Activity in these areas lets us know when things are about to get good. But for every high there is a low. The lateral habenula is thought to play a role in how we process negative events: Getting a lemon on the slot machine again or the empty inbox on your dating site. Studies in monkeys and other animals have shown that increased activity in the habenula is linked to depressive behaviors, and treatment with antidepressants decreases this activity. In addition, a study in rats and a 2009 case study in a human patient showed that deep-brain stimulation in the lateral habenula could relieve symptoms of depression. © Society for Science & the Public 2000 - 2014.

Keyword: Depression
Link ID: 20125 - Posted: 09.27.2014

By ROBERT KOLKER Reggie Shaw is the man responsible for the most moving portion of “From One Second to the Next,” the director Werner Herzog’s excruciating (even by Werner Herzog standards) 35-minute public service announcement, released last year as part of AT&T’s “It Can Wait” campaign against texting and driving. In the film, Shaw, now in his 20s, recounts the rainy morning in September 2006 that he crossed the line of a Utah highway, knocking into a car containing two scientists, James Furfaro and Keith O’Dell, who were heading to work nearby. Both men were killed. Shaw says he was ­texting a girlfriend at the time, adding in unmistakable anguish that he can’t even ­remember what he was texting about. He is next seen taking part in something almost inconceivable: He enters the scene where one of the dead men’s daughters is being interviewed, and receives from that woman a warm, earnest, tearful, cathartic hug. Reggie Shaw’s redemptive journey — from thoughtless, inadvertent killer to denier of his own culpability to one of the nation’s most powerful spokesmen on the dangers of texting while behind the wheel — was first brought to national attention by Matt Richtel, a reporter for The New York Times, whose series of articles about distracted driving won a Pulitzer Prize in 2010. Now, five years later, in “A Deadly Wandering,” Richtel gives Shaw’s story the thorough, emotional treatment it is due, interweaving a detailed chronicle of the science behind distracted driving. As an instructive social parable, Richtel’s densely reported, at times forced yet compassionate and persuasive book deserves a spot next to “Fast Food Nation” and “To Kill a Mockingbird” in America’s high school curriculums. To say it may save lives is self-evident. What makes the deaths in this book so affecting is how ordinary they are. Two men get up in the morning. They get behind the wheel. A stranger loses track of his car. They crash. The two men die. The temptation is to make the tragedy bigger than it is, to invest it with meaning. Which may explain why Richtel wonders early on if Reggie Shaw lied about texting and driving at first because he was in denial, or because technology “can hijack the brain,” polluting his memory. © 2014 The New York Times Company

Keyword: Attention
Link ID: 20124 - Posted: 09.27.2014

By Melissa Dahl If you are the sort of person who has a hard time just watching TV — if you’ve got to be simultaneously using your iPad or laptop or smartphone — here’s some bad news. New research shows a link between juggling multiple digital devices and a lower-than-usual amount of gray matter, the stuff that’s made up of brain cells, in the region of the brain associated with cognitive and emotional control. More details, via the press release: The researchers at the University of Sussex's Sackler Centre for Consciousness used functional magnetic resonance imaging (fMRI) to look at the brain structures of 75 adults, who had all answered a questionnaire regarding their use and consumption of media devices, including mobile phones and computers, as well as television and print media. They found that, independent of individual personality traits, people who used a higher number of media devices concurrently also had smaller grey matter density in the part of the brain known as the anterior cingulate cortex (ACC), the region notably responsible for cognitive and emotional control functions. But a predilection for using several devices at once isn’t necessarily causing a decrease in gray matter, the authors note — this is a purely correlational finding. As Earl Miller, a neuroscientist at MIT who was not involved in this research, wrote in an email, “It could be (in fact, is possibly more likely) that the relationship is the other way around.” In other words, the people who are least content using just one device at a time may have less gray matter in the first place.

Keyword: Attention; Aggression
Link ID: 20123 - Posted: 09.27.2014

By Rachel Feltman With the help of electrical stimulation, a paralyzed rat is "walking" again. It's actually being controlled by a computer that monitors its gait and adjusts it to keep the rat balanced. When a spinal cord is severed, the electrical pulses sent out by the brain to control limb movement are interrupted. With this method of treatment, the rat's leg movements are driven by electrical pulses shot directly into the spinal cord (which has unfortunately been severed in the name of science). Scientists have been working on this method in humans for awhile, but have only had moderate success — some subjects have regained sensation and movement in their legs, but haven't walked on their own. In the experiment described in the video above, published Wednesday in Science Translational Medicine, researchers tweaked this use of electrical stimulation: They primed the rats with a drug to boost their ability to respond to the electrical signal. Then, while the rats were placed in treadmill harnesses to support their weight, the researchers trained a camera on their subjects. The camera tracked the rats as they took electrically stimulated steps, and corrected their movement in real time. This instant feedback made the system precise enough to get the rats up tiny sets of stairs. MIT Technology Review reports that the team hopes to use a human volunteer within the next year. If the system works on humans, doctors can prescribe its use in rehabilitation therapy. You can watch the actual experiment in the video below:

Keyword: Regeneration; Aggression
Link ID: 20122 - Posted: 09.27.2014

by Helen Thomson My, what big eyes you have – you must be trying really hard. A study of how pupils dilate with physical effort could allow us to make strenuous tasks seem easier by zapping specific areas of the brain. We know pupils dilate with mental effort, when we think about a difficult maths problem, for example. To see if this was also true of physical exertion, Alexandre Zenon at the Catholic University of Louvain in Belgium, measured the pupils of 18 volunteers as they squeezed a device which reads grip strength. Sure enough, the more force they exerted, the larger their pupils. To see whether pupil size was related to actual or perceived effort, the volunteers were asked to squeeze the device with four different grip strengths. Various tests enabled the researchers to tell how much effort participants felt they used, from none at all to the most effort possible. Comparing the results from both sets of experiments suggested that pupil dilation correlated more closely with perceived effort than actual effort. The fact that both mental effort and perceived physical effort are reflected in pupil size suggests there is a common representation of effort in the brain, says Zenon. To see where in the brain this might be, the team looked at which areas were active while similar grip tasks were being performed. Zenon says they were able to identify areas within the supplementary motor cortex – which plays a role in movement – associated with how effortful a task is perceived to be. © Copyright Reed Business Information Ltd.

Keyword: Attention
Link ID: 20121 - Posted: 09.27.2014

By Roni Caryn Rabin When I was in college, my father David started walking with an odd, barely perceptible limp. He was in his mid-40s, a gregarious physician, teacher and researcher who was always upbeat. He told his four kids that he had a “back problem” — a deliberately vague cover story that I, for one, was willing to believe. I had never heard of the real culprit — amyotrophic lateral sclerosis, or A.L.S. In fact, no one had. A.L.S. was a disease in the shadows. During my father’s life, it didn’t even have its own advocacy organization. This was the early ’80s, long before support groups and the Internet and a colored ribbon for every cause. And it was way before ice bucket challenges. My parents continued to use their code — “back problem” — to talk about the disease. They used it to protect my younger sisters, who were about to start high school, but I think they were also protecting themselves. My mother was also a physician, and they both knew exactly what lay ahead. Saying “A.L.S.” out loud was too threatening. But soon there was no getting around it. My father’s legs were getting weaker, his muscles were wasting, and he started relying on a cane to get around. I was 19, and my mother and I were out running errands one afternoon when she pulled the car over to the curb and stopped. She told me the truth. This was no slipped disc. She laid it all out for me in black and white: A.L.S. is a progressive, degenerative neurological disease that causes paralysis in the entire body. It’s fatal. There is no cure. It sounded like something from a horror movie. Over the next five years, as my father’s health deteriorated, he remained remarkably determined. He ate a high-protein diet and swam laps every day in an attempt to maintain his muscle and fend off the atrophy caused by the disease. He kept on swimming laps in our next-door neighbor’s pool, even when he had to use a walker — and later a wheelchair — to get there. © 2014 The New York Times Company

Keyword: ALS-Lou Gehrig's Disease
Link ID: 20120 - Posted: 09.27.2014

By Smitha Mundasad Health reporter, BBC News A spice commonly found in curries may boost the brain's ability to heal itself, according to a report in the journal Stem Cell Research and Therapy. The German study suggests a compound found in turmeric could encourage the growth of nerve cells thought to be part of the brain's repair kit. Scientists say this work, based in rats, may pave the way for future drugs for strokes and Alzheimer's disease. But they say more trials are needed to see whether this applies to humans. Researchers from the Institute of Neuroscience and Medicine in Julich, Germany, studied the effects of aromatic-turmerone - a compound found naturally in turmeric. Rats were injected with the compound and their brains were then scanned. Particular parts of the brain, known to be involved in nerve cell growth, were seen to be more active after the aromatic-turmerone infusion. Scientists say the compound may encourage a proliferation of brain cells. In a separate part of the trial, researchers bathed rodent neural stem cells (NSCs) in different concentrations of aromatic-tumerone extract. NSCs have the ability to transform into any type of brain cell and scientists suggest they could have a role in repair after damage or disease. Dr Maria Adele Rueger, who was part of the research team, said: "In humans and higher developed animals their abilities do not seem to be sufficient to repair the brain but in fish and smaller animals they seem to work well." Picture of the spice turmeric Turmeric belongs to the same plant family as ginger BBC © 2014

Keyword: Alzheimers; Aggression
Link ID: 20119 - Posted: 09.27.2014

By Jennifer Cutraro and Michael Gonchar Marijuana is illegal in the United States. Yet 35 states and the District of Columbia permit some form of marijuana consumption for medical purposes, and, as of this year, two states now allow its recreational use. As national policy evolves on this issue, the New York Times editorial board this summer published a six-part series calling for legalization. In this lesson, we pull together those opinion pieces as well as many other Times articles, graphics and videos to offer starting points for science, social studies and English teachers aiming to use the debate as an opportunity for learning, research and discussion. Like other crops, marijuana is largely cultivated — legally and illegally — in greenhouse-type “grow houses” and on farms. And like other crops, marijuana comes from a plant — cannabis, originally found in the wild and cultivated over thousands of years. Have students research the history of cannabis, from its origins in South and Central Asia to its introduction to the Americas. How have people used the different parts of the plant throughout history? Then, have students work in groups to annotate a map of the world, tracing the history of marijuana cultivation. Marijuana is best known for its psychoactive properties. But how does marijuana bring about these sensations and how else does it behave in the body? To answer these questions, students might research how the active compounds in marijuana affect the body at the level of the cell, and draw parallels with how other drugs act in the body. As is the case with many other drugs — from legal, over-the-counter medications to illegal street drugs, like heroin — the active compounds interact with locations on the surfaces of cells called receptors. Cell surface receptors provide a means for cells to receive information and input from the environment; when a molecule attaches, or binds, to a cell surface receptor, it triggers a series of events inside the cell, like the release of hormones, neurotransmitters or other molecules. A discussion about marijuana’s effects on the body might dovetail nicely with a broader class discussion or review of cell biology, the makeup and function of the cell membrane, and the function of neurotransmitters. © 2014 The New York Times Company

Keyword: Drug Abuse
Link ID: 20118 - Posted: 09.27.2014

By Alyssa Abkowitz If you’re wary of investing in a certain stock or exchange-traded fund, it could be because of the your brain’s physical composition. In a recent study, 61 participants from the Northeastern U.S. were asked to choose between monetary options that differed in the level of risk. Questions included: “Would you prefer a 50 percent chance of receiving $5 or would you rather take a 13 percent chance of winning $50?” and “Would you prefer $10 for sure or a 50 percent chance of receiving $50?” Researchers found that individuals with more gray matter in a specific part of their brains tend to tolerate more financial risks, says Agnieszka Tymula, an economist at the University of Sydney and co-author of the findings. Most of the participants answered questions while their brains were being scanned, while others received MRIs afterward (the timing doesn’t make a difference because the researchers were looking at brain structure, not brain function). The study involved measuring the volume of gray matter, or the outer layer of the brain, in the right posterior parietal region of the cortex. Thicker gray matter corresponded to riskier responses. Tymula worked with researchers from Yale University, University College London, New York University, and the University of Pennsylvania. Their findings, published in the Journal of Neuroscience this month, dovetail with previous work in which Tymula found that adults become more risk-averse as they age. Other neuroscience research shows that people’s cortexes become thinner as they get older, meaning there could be a link between a thinning cortex and risk aversion. ©2014 Bloomberg L.P

Keyword: Emotions; Aggression
Link ID: 20117 - Posted: 09.25.2014

by Laura Sanders Earlier this month, a star running back for the Minnesota Vikings was indicted for whipping his young son bloody with a switch. Leaked photographs allegedly showed Adrian Peterson’s 4-year-old son with cuts and bruises on his legs, back, buttocks and scrotum. As details about the incident emerged, Peterson took to Twitter to say that he’s not a perfect parent but what he did was not abuse. It was discipline. “My goal is always to teach my son right from wrong and that’s what I tried to do that day,” he wrote. Many people, and I’m one of them, that think Peterson’s actions were disgusting. There’s no way that hitting 4-year-old with a switch until his body is cut and bruised is a good way to impart values and morals. Peterson’s extreme actions, done in the name of corporal punishment, ignited a ferocious, emotionally fraught debate over whether it’s OK to hit your kid. The debate reflects deep divides in our society, chasms that track along political, religious, regional and racial lines. Half of all U.S. parents say they’ve spanked their kid. Spanking doesn’t just happen in the privacy of homes, either. Nineteen states allow teachers or principals to hit children. Opponents often point to scientific studies as proof that spanking is bad. And I confess, I originally thought this post was going to describe those results that we’ve all heard: how children who have been spanked are more aggressive and have more behavioral problems. But despite the headlines, the science behind spanking is actually quite limited, says clinical psychologist Christopher Ferguson of Stetson University in DeLand, Fla. “Because it’s a culture war issue, I think a lot of what we hear has misrepresented what is very nuanced science,” he says. © Society for Science & the Public 2000 - 2014.

Keyword: Sexual Behavior; Aggression
Link ID: 20116 - Posted: 09.25.2014

Some people don't just work — they text, Snapchat, check Facebook and Tinder, listen to music and work. And a new study reveals those multitaskers have brains that look different than those of people who stick to one task. Researchers at the University of Sussex scanned 75 adults using an fMRI to examine their gray matter. Those who admitted to multitasking with a variety of electronic devices at once had less dense gray matter in their anterior cingulate cortexes (ACC). This region controls executive function, such as working memory, reasoning, planning and execution. There is no way of knowing if people with smaller anterior cingulate cortexes are more likely to multitask or if multitaskers are shrinking their gray matter. It could even show that our brains become more efficient from multitasking, said Dr. Gary Small, director of UCLA’s Memory and Aging Research Center at the Semel Institute for Neuroscience and Human Behavior, who was not involved in the study. “When you exercise the brain … it becomes effective at performing a mental task,” he said. While previous research has shown that multitasking leads to more mistakes, Small said research remains important to our understanding of something we’re all guilty of doing.

Keyword: Attention
Link ID: 20115 - Posted: 09.25.2014

by Greg Laden I heard yesterday that my friend and former advisor Irven DeVore died. He was important, amazing, charming, difficult, harsh, brilliant, fun, annoying. My relationship to him as an advisee and a friend was complex, important to me for many years, and formative. For those who don’t know he was instrumental in developing several subfields of anthropology, including behavioral biology, primate behavioral studies, hunter-gatherer research, and even ethnoarchaeology. He was a cultural anthropologist who realized during his first field season that a) he was not cut out to be a cultural anthropologist and b) most of the other cultural anthropologists were not either. Soon after he became Washburn’s student and independently invented the field study of complex social behavior in primates (though some others were heading in that direction at the same time), producing his famous work on the baboons of Kenya’s Nairobi National Park. For many years, what students learned about primate behavior, they learned from that work. Later he and Richard Lee, along with John Yellen, Alison Brooks, Henry Harpending, and others started up the study of Ju/’hoansi Bushmen along the Namibian/Botswana border. One of the outcomes of that work was the famous Werner Gren conference and volume called “Man the Hunter.” That volume has two roles in the history of anthropology. First, it launched modern forager studies. Second, it became one of the more maligned books in the field of Anthropology. I have yet to meet a single person who has a strong criticism of that book that is not based on having not read it. For many years, much of what students learned about human foragers, they learned from that work.

Keyword: Evolution
Link ID: 20114 - Posted: 09.25.2014

By Sarah C. P. Williams Press the backs of your hands against the inside of a door frame for 30 seconds—as if you’re trying to widen the frame—and then let your arms down; you’ll feel something odd. Your arms will float up from your sides, as if lifted by an external force. Scientists call this Kohnstamm phenomenon, but you may know it as the floating arm trick. Now, researchers have studied what happens in a person’s brain and nerve cells when they repress this involuntary movement, holding their arms tightly by their sides instead of letting them float up. Two theories existed as to how this repression worked: The brain could send a positive “push down” signal to the arm muscles at the same time as the involuntary “lift up” signal was being transmitted to cancel it out; or the brain could entirely block the involuntary signal at the root of the nerves. The new study, which analyzed brain scans and muscle activity recordings from 39 volunteers, found that the latter was true—when a person stifles Kohnstamm phenomenon, the involuntary “lift” signal is blocked before it reaches the muscle. The difference between the repression mechanisms may seem subtle, but understanding it could help people repress other involuntary movements—including the tremors associated with Parkinson’s disease and the tics associated with Tourette syndrome, the team reports online today in the Proceedings of the Royal Society B. © 2014 American Association for the Advancement of Science

Keyword: Pain & Touch; Aggression
Link ID: 20113 - Posted: 09.24.2014

By Dick Miller, CBC News Dan Campbell felt the bullets whiz past his head. The tracer rounds zipped between his legs. It was his first firefight as a Canadian soldier in Afghanistan. "I was completely frightened and scared like I’d never been before in my life,” he says. As the attack continued, the sights, sounds and smells started to form memories inside his brain. The fear he felt released the hormone norepinephrine, and in the complex chemistry of the brain, the memories of the battle became associated with the fear. 'I think one day, hopefully in the not-too-distant future, we will be able to delete a memory.'- Dr. Sheena Josselyn, senior scientist, Hospital For Sick Children Research Institute Six years later, a sight or sound such as a firecracker or car backfiring can remind him of that night in 2008. The fear comes back and he relives rather than remembers the moments. "It can be hard. Physically, you know, there’s the tapping foot, my heart beating,” he says. Like so many soldiers and victims of assault or people who have experienced horrific accidents, Campbell was diagnosed with post traumatic stress disorder. Now a newspaper reporter in Yellowknife, Campbell thinks one day he may get therapy. But for now he is working on his own to control the fear and anger the memories bring. © CBC 2014

Keyword: Stress; Aggression
Link ID: 20111 - Posted: 09.24.2014

By SAM BORDEN Bellini, a Brazilian soccer star who led the team that won the 1958 World Cup and was honored with a statue outside the Estádio do Maracanã in Rio de Janeiro, had a degenerative brain disease linked to dozens of boxers and American football players when he died in March at age 83. At the time, his death was attributed to complications related to Alzheimer’s disease. But researchers now say he had an advanced case of chronic traumatic encephalopathy, or C.T.E., which is caused by repeated blows to the head and has symptoms similar to those of Alzheimer’s. C.T.E. can be diagnosed only posthumously, and few brains of former soccer players have been examined. Bellini is the second known case, according to Dr. Ann McKee, a neuropathologist at Boston University and the Veterans Affairs Medical Center in Bedford, Mass., who assisted in examining Bellini’s brain. McKee was also involved this year when researchers found C.T.E. in the brain of a 29-year-old man from New Mexico who had played soccer semiprofessionally. McKee said in an interview that she was aware of a third former soccer player who had C.T.E. but that she was not yet authorized to publicly identify the person. As C.T.E. began to gain widespread attention about six years ago, it was often thought of as an American problem. Many of the early cases of the disease, for which there is no known cure, were connected to boxers and American football players. © 2014 The New York Times Company

Keyword: Brain Injury/Concussion
Link ID: 20110 - Posted: 09.24.2014

by Sarah Zielinski Chimps may be cute and have mannerisms similar to humans, but they are wild animals. A new study finds that chimps raised as pets or entertainers have behavioral problems as adults. There are plenty of good reasons why chimpanzees should not be pets or performers, no matter how cute or humanlike they appear: They are wild animals. They can be violent with each other. And they can be violent toward humans — even humans that have a long history with the chimp. Plus, there’s evidence that seeing an adorable chimp dressed up like a miniature human actually makes us care less about the plight of their species. Now comes evidence that the way that chimps are raised to become pets or entertainers — taking them away from other chimps at a young age and putting them in the care of humans, who may or may not feed and care for them properly — has long-term, negative effects on their behavior. “We now add empirical evidence of the potentially negative welfare effects on the chimpanzees themselves as important considerations in the discussion of privately owned chimpanzees,” Hani Freeman and Stephen Ross of the Lincoln Park Zoo in Chicago write September 23 in PeerJ. Freeman and Ross compiled life history and behavioral data on 60 captive chimps living in zoos. Some of the animals had always lived in zoos and grew up in groups of chimpanzees. Six were raised solely by humans and were later placed in zoos after they became too big or too old for their owners to care for them. Others had a more mixed background. © Society for Science & the Public 2000 - 2014

Keyword: Development of the Brain; Aggression
Link ID: 20109 - Posted: 09.24.2014