Chapter 11. Motor Control and Plasticity

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 81 - 100 of 1340

Helen Shen To researchers who study how living things move, the octopus is an eight-legged marvel, managing its array of undulating appendages by means of a relatively simple nervous system. Some studies have suggested that each of the octopus’s tentacles has a 'mind' of its own, without rigid central coordination by the animal’s brain1. Now neuroscientist Guy Levy and his colleagues at the Hebrew University in Jerusalem report that the animals can rotate their bodies independently of their direction of movement, reorienting them while continuing to crawl in a straight line. And, unlike species that use their limbs to move forward or sideways relative to their body's orientation, octopuses tend to slither around in all directions. The team presented its findings on 10 November at the annual meeting of the Society for Neuroscience in San Diego, California. The new description of octopus movement is “not how one would imagine that would happen, but it seems to give a lot of control to the animal", says Gal Haspel, a neuroscientist at the New Jersey Institute of Technology in Newark. Haspel studies worm locomotion, and he was also surprised by the researchers’ report that the octopus pushes itself with worm-like contractions of its tentacles. Different combinations flex together to produce movement in different directions. Levy, who began the research as part of a project to design and control flexible, octopus-like robots, says that the work could also help to uncover basic biological principles of locomotion. Levy’s team deconstructed octopus movement using a transparent tank rigged with a system of mirrors and video cameras, in which they tested nine adult common octopuses (Octopus vulgaris). © 2013 Nature Publishing Group

Keyword: Movement Disorders; Evolution
Link ID: 18936 - Posted: 11.16.2013

by Jessica Griggs, San Diego No practice required. Wouldn't it be great if you could get better at playing sport or hone your piano skills simply by thinking about it? A small pilot study suggests that it might be possible. In the last few years, brain training using computer games that provide neurofeedback – a real-time representation of your brain activity – has become a popular, if controversial, method of enhancing cognitive abilities such as spatial memory, planning and multitasking. It has even been used to help actors get into character. Most of the games aim to enhance activation in a single part of the brain. But motor skills are known to involve two main areas – the premotor cortex and the supplementary motor cortex. Both are involved when people make movements or imagine moving. Brain activity between these regions is known to be less synchronised in people who are poor at motor tasks than in those who excel at them. So to see if brain training could target both areas and improve motor performance, Sook-Lei Liew and her colleagues from the National Institute of Neurological Disorders and Stroke in Bethesda, Maryland, recruited eight young adults. The researchers and asked the participants to watch a white circle on a screen while an fMRI machine scanned their brain. When the circle turned into a red triangle, the volunteers were told to move their fingers. This movement caused activation in their premotor cortex and supplementary motor cortex, which in turn moved a bar on the screen. The higher the synchronisation of activity between the two brain areas, the higher the bar went. © Copyright Reed Business Information Ltd.

Keyword: Stroke
Link ID: 18928 - Posted: 11.14.2013

Helen Shen Long used to treat movement disorders, deep-brain stimulation (DBS) is rapidly emerging as an experimental therapy for neuropsychiatric conditions including depression, Tourette’s syndrome, obsessive–compulsive disorder and even Alzheimer’s disease. But despite some encouraging results in patients, it remains largely unknown how the electrical pulses delivered by implants deep within the brain affect neural circuits and change behaviour. Now there is a prototype DBS device that could provide some answers, researchers reported on 10 November at the Society for Neuroscience’s annual meeting in San Diego, California. Called Harmoni, the device is the first DBS implant to monitor electrical and chemical responses in the brain while delivering electrical stimulation. “That’s new data that we haven’t really had access to in humans before,” says Cameron McIntyre, a biomedical engineer at Case Western Reserve University in Cleveland, Ohio, who is not involved in the work. Researchers hope that the device will identify the electrical and chemical signals in the brain that correlate in real time with the presence and severity of symptoms, including the tremors experienced by people with Parkinson’s disease. This information could help to uncover where and how DBS exerts its therapeutic effects on the brain, and why it sometimes fails, says Kendall Lee, a neurosurgeon at the Mayo Clinic in Rochester, Minnesota, who is leading the project. The results come at a time of great excitement in the DBS field. Last month, the US government's Defense Advanced Research Projects Agency (DARPA) announced a 5-year, US$70-million initiative to support development of the next generation of therapeutic brain-stimulating technologies. © 2013 Nature Publishing Group,

Keyword: Parkinsons
Link ID: 18922 - Posted: 11.13.2013

Sedentary adults may improve their memory as soon as six weeks after taking up aerobic exercise, a small brain imaging study suggests. Cardiovascular fitness and cognitive performance such as attention seem to improve after six months or more of aerobic exercise in previous aging studies. Now researchers in Texas have found signs of increased regional blood flow in the brain of 37 sedentary adults with an average age of 64 who were randomized to physical training or a control group who had the training after a waiting period. They found a higher resting cerebral blood flow in the brain's anterior cingulate region in the physical training group compared with controls. The anterior cingulate region is associated with better memory functions. The size of this brain region was also larger in another study of "successful cognitive agers" over the age of 80 compared to middle-aged or elderly controls. "A relatively rapid health benefit across brain, memory and fitness in sedentary adults soon after starting to exercise, some gains starting as early as six weeks, could motivate adults to start exercising regularly," the study's lead author, Sandra Bond Champman of the Center for BrainHealth in Dallas and her co-authors concluded in Monday's issue of the journal Frontiers in Aging Neuroscience. "The current findings shed new light on ways exercise promotes cognitive/brain health in aging." The participants all had a physical exam and screening for dementia, early cognitive impairment, depression and IQ before the study began. A noninvasive type of MRI was used to measure brain blood flow before, half way through the 6-week training sessions and at 12 weeks. © CBC 2013

Keyword: Learning & Memory
Link ID: 18920 - Posted: 11.13.2013

Babies born to women who exercised during pregnancy have enhanced brain development compared with babies born to moms who didn’t exercise while they were pregnant, a new Canadian study suggests. The babies of 10 women who did as little as 20 minutes of moderate exercise three times a week during pregnancy showed more advanced brain activity when they were tested at eight to 12 days old than the babies of eight women who did not exercise during pregnancy, reported University of Montreal researcher David Ellemberg and his colleagues at the Neuroscience 2013 conference in San Diego on Sunday. “We are optimistic that this will encourage women to change their health habits, given that the simple act of exercising during pregnancy could make a difference for their child's future,” Ellemberg said in a statement. The women in the study were randomly assigned to an exercise group or a sedentary group at the beginning of their second trimester. Those in the exercise group had to spend at least 20 minutes three times a week doing exercise intense enough to lead to at least a slight shortness of breath. After their babies were born, the researchers tested them by placing a cap of electrodes on the babies' heads and then playing novel sounds while they slept. They measured the electrical response of the babies' brains to see how well they could distinguish between different sounds. The researchers found that the babies in the exercise group produced signals associated with more mature brains. The researchers said they plan to test the children’s cognitive, motor and language development at age one to see if there are lasting effects. © CBC 2013

Keyword: Development of the Brain
Link ID: 18916 - Posted: 11.12.2013

By PAM BELLUCK It is probably no accident that the pivotal object in Martin Cruz Smith’s newest detective thriller, “Tatiana,” is a notebook nobody can read. Early on, Mr. Smith worried that his novel, being published Tuesday by Simon & Schuster, would be unreadable too — or wouldn’t be written at all. Author of the 1981 blockbuster “Gorky Park” and many acclaimed books since, Mr. Smith writes about people who uncover and keep secrets. But for 18 years, he has had a secret of his own. In 1995, he received a diagnosis of Parkinson’s disease. But he kept it hidden, not only from the public, but from his publisher and editors. He concealed it, although for years, tremors and stiffness have kept him from taking detailed notes and sketching people, places and objects for his research — and even as he became unable to type the words he needed to finish his 2010 best seller “Three Stations.” “I didn’t want to be judged by that,” Mr. Smith, 71, explained recently in his light-filled Victorian home north of San Francisco. “Either I’m a good writer or I’m not. ‘He’s our pre-eminent Parkinson’s writer.’ Who needs that?” In talking about his Parkinson’s odyssey, including a relatively new but promising treatment, Mr. Smith is opening a window on the still incurable disorder affecting four million people worldwide, a disease that is becoming increasingly prevalent as baby boomers age. His experience reflects a common desire to conceal often-stigmatizing symptoms, like shaking, slowness, and rigidity. (He mostly didn’t mind his Parkinsonian hallucinations: a black cat in his lap, whirlwinds spiraling from computer keys, a butler, a British military officer in full regalia. “Having hallucinations for a fiction writer is redundant,” he said.) Copyright 2013 The New York Times Company

Keyword: Parkinsons
Link ID: 18914 - Posted: 11.12.2013

by Ashley Yeager The compound that gives mold its musty smell can cause changes in fruit flies’ brains that mimic those of patients with Parkinson’s disease. Scientists do not know the exact cause of Parkinson’s disease, but studies have shown that exposure to human-made chemicals may be a risk factor for developing the movement disorder. Now researchers have found that the chemical 1-octen-3-ol, which mold naturally emits, kills flies’ brain cells that transmit dopamine, a compound involved in controlling movement. The mold molecule also reduces dopamine levels in the flies’ brains. In experiments with human cells, the mold chemical also blocked the cells from taking in dopamine, researchers report November 11 in the Proceedings of the National Academy of Sciences. The results offer insight into cases of movement problems that doctors have associated with fungi exposure, the scientists say. © Society for Science & the Public 2000 - 2013

Keyword: Movement Disorders; Neurotoxins
Link ID: 18911 - Posted: 11.12.2013

Sarah DeWeerdt Parts of the brain that process vision and control movements are poorly connected in children with autism, according to results presented Saturday at the 2013 Society for Neuroscience annual meeting in San Diego. In addition to the social deficits that are a core feature of autism, children with the disorder often have clumsy movements. Studies have also found that people with autism have trouble imitating others. The new study uncovers patterns of brain activity suggesting all three of these deficits may be related. The researchers used functional magnetic resonance imaging (fMRI) to measure resting-state activation — brain activity that occurs while individuals are resting quietly in the scanner — in 45 children with autism and 45 controls. Parts of the brain that tend to activate and deactivate together during this procedure are said to be functionally connected. The researchers zeroed in on two sets of brain structures involved in motor activity. One of them, the ventral motor component, includes parts of the cortex, the thalamus and lobule 6 of the cerebellum. They also focused on three areas of the brain involved in visual processing. The most interesting is a region at the back of the brain responsible for complex interpretation of visual information. © Copyright 2013 Simons Foundation

Keyword: Autism; Vision
Link ID: 18906 - Posted: 11.11.2013

Roughly a year ago, I found myself at an elegant dinner party filled with celebrities and the very wealthy. I am a young professor at a major research university, and my wife and I were invited to mingle and chat with donors to the institution. To any outside observer, my career was ascendant. Having worked intensely and passionately at science for my entire adult life, I had secured my dream job directing an independent neuroscience research laboratory. I was talking to a businessman who had family members affected by a serious medical condition. He turned to me and said: “You're a neuroscientist. What do you know about Parkinson's disease?” My gaze darted to catch the eyes of my wife, but she was involved in another conversation. I was on my own, and I paused to gather my thoughts before responding. Because I had a secret. It was a secret that I hadn't yet told any of my colleagues: I have Parkinson's. I am still at the beginning of my fascinating, frightening and ultimately life-affirming journey as a brain scientist with a disabling disease of the brain. Already it has given me a new perspective on my work, it has made me appreciate life and it has allowed me to see myself as someone who can make a difference in ways that I never expected. But it took a bit of time to get here. The first signs I remember the first time I noticed that something was wrong. Four years ago, I was filling out a mountain of order forms for new lab equipment. After a few pages, my hand became a quaking lump of flesh and bone, locked uselessly in a tense rigor. A few days later, I noticed my walk was changing: rather than swinging my arm at my side, I held it in front of me rigidly, even grabbing the bottom edge of my shirt. I also had an occasional twitch in the last two fingers of my hand. © 2013 Nature Publishing Group

Keyword: Parkinsons
Link ID: 18896 - Posted: 11.08.2013

Most of us don’t think twice when we extend our arms to hug a friend or push a shopping cart—our limbs work together seamlessly to follow our mental commands. For researchers designing brain-controlled prosthetic limbs for people, however, this coordinated arm movement is a daunting technical challenge. A new study showing that monkeys can move two virtual limbs with only their brain activity is a major step toward achieving that goal, scientists say. The brain controls movement by sending electrical signals to our muscles through nerve cells. When limb-connecting nerve cells are damaged or a limb is amputated, the brain is still able to produce those motion-inducing signals, but the limb can't receive them or simply doesn’t exist. In recent years, scientists have worked to create devices called brain-machine interfaces (BMIs) that can pick up these interrupted electrical signals and control the movements of a computer cursor or a real or virtual prosthetic. So far, the success of BMIs in humans has been largely limited to moving single body parts, such as a hand or an arm. Last year, for example, a woman paralyzed from the neck down for 10 years commanded a robotic arm to pick up and lift a piece of chocolate to her mouth just by thinking about it. But, "no device will ever work for people unless it restores bimanual behaviors,” says neuroscientist Miguel Nicolelis at Duke University in Durham, North Carolina, senior author of the paper. "You need to use both arms and hands for the simplest tasks.” In 2011, Nicolelis made waves by announcing on The Daily Show that he is developing a robotic, thought-controlled "exoskeleton" that will allow paralyzed people to walk again. Further raising the stakes, he pledged that the robotic body suit will enable a paralyzed person to kick a soccer ball during the opening ceremony of the 2014 Brazil World Cup. (Nicolelis is Brazilian and his research is partly funded by the nation’s government.) © 2013 American Association for the Advancement of Science

Keyword: Robotics
Link ID: 18888 - Posted: 11.07.2013

By DONALD G. McNEIL Jr. The World Health Organization has approved a new vaccine for a strain of encephalitis that kills thousands of children and leaves many survivors with permanent brain damage. The move allows United Nations agencies and other donors to buy it. The disease, called Japanese encephalitis or brain fever, is caused by a mosquito-transmitted virus that can live in pigs, birds and humans. Less than 1 percent of those infected get seriously ill, but it kills up to 15,000 children a year and disables many more. Up to four billion people, from southern Russia to the Pacific islands, are at risk; it is more prevalent near rice paddies. There is no cure. The low-cost vaccine, approved last month, is the first authorized by the agency for children and the first Chinese-made vaccine it has approved. It is made by China National Biotec Group and was tested by PATH, a nonprofit group in Seattle with funding from the Bill and Melinda Gates Foundation. Dr. Margaret Chan, W.H.O.’s director-general, said she hoped that approval would encourage other vaccine makers from China and elsewhere to enter the field. China had given the vaccine domestically to 200 million children over many years but had never sought W.H.O. approval. India, which previously bought 88 million doses from China, launched the first locally produced version last month. © 2013 The New York Times Company

Keyword: Miscellaneous
Link ID: 18872 - Posted: 11.05.2013

By JAMES GORMAN Worldwide, 100,000 people have electrical implants in their brains to treat the involuntary movements associated with Parkinson’s disease, and scientists are experimenting with the technique for depression and other disorders. But today’s so-called deep brain stimulation only treats — it does not monitor its own effectiveness, partly because complex ailments like depression do not have defined biological signatures. The federal Defense Advanced Research Projects Agency, known as Darpa, announced Thursday that it intended to spend more than $70 million over five years to jump to the next level of brain implants, either by improving deep brain stimulation or by developing new technology. Justin Sanchez, Darpa program manager, said that for scientists now, “there is no technology that can acquire signals that can tell them precisely what is going on with the brain.” And so, he said, Darpa is “trying to change the game on how we approach these kinds of problems.” The new program, called Systems-Based Neurotechnology and Understanding for the Treatment of Neuropsychological Illnesses, is part of an Obama administration brain initiative, announced earlier this year, intended to promote innovative basic neuroscience. Participants in the initiative include Darpa, as well as the National Institutes of Health and the National Science Foundation. The announcement of Darpa’s goal is the first indication of how that research agency will participate in the initiative. The money is expected to be divided among different teams, and research proposals are now being sought. Darpa’s project is partly inspired by the needs of combat veterans who suffer from mental and physical conditions, and is the first to invest directly in researching human illness as part of the brain initiative. © 2013 The New York Times Company

Keyword: Depression; Parkinsons
Link ID: 18835 - Posted: 10.26.2013

By NELSON GRAVES Six years ago I suffered a stroke that forced me to relearn how to walk. The other day I ran a half-marathon. Strokes strike with stealth, but for me it was not entirely a surprise. During a physical in Milan in 2007, the doctor listened to my heart, then ordered an electrocardiogram. “Fair enough,” I reassured myself. “I’m 52 years old, and it’s no use taking anything for granted.” The nurse furrowed her brow as she studied the first read-out, then conducted a second, longer EKG. I put my shirt back on and returned to the doctor’s office. “I have some news for you,” he said. “You have atrial fibrillation. AF for short.” He wrote down the two words and explained they meant an irregular beating of the heart’s upper chambers. “It’s not life threatening. But it increases the risk of stroke six-fold.” I was too young to have a stroke. “I work 12-hour days, play squash three times a week and haven’t missed a day of work in 24 years,” I said. My attention piqued, I could now hear my heart’s irregular beat as I lay my head on my pillow. That must explain the dizziness when I get up at night to go to the bathroom. Or the fatigue at the end of a squash match. So when, on a September afternoon in Tokyo, my head began to spin wildly and I could hardly speak, I knew what was happening. After an ambulance ride to the hospital and an M.R.I., I heard the doctor say, “You’ve had a cerebral embolism.” That would be a stroke. Copyright 2013 The New York Times Company

Keyword: Stroke
Link ID: 18833 - Posted: 10.26.2013

People with Parkinson's disease are dancing at the National Ballet School as part of a study into how learning dance moves can change the brain. Anecdotally, learning to dance seems to improve motor skills in the short-term among people with Parkinson's disease, a neurological disorder that interferes with gait and balance. As part of a 12-week program, 20 people with Parkinson's disease are taking weekly dance classes at the National Ballet School in Toronto. The classes began in September. The research team is led by neuroscientist Prof. Joseph DeSouza of York University's Faculty of Health and National Ballet School instructor Rachel Bar. The volunteers are also getting a series of functional MRI scans to help researchers understand how the brain reacts and learns. "We know that balance can improve and gait can improve and even there's social benefits but we want to see why that's happening, how is it happening? To do that, we're looking inside the brain," Bar said. People aren't able to dance in scanner but they are asked to visualize the dance while listening to the accompanying music. "If you visualize a dance, theoretically you're using almost all the same neural circuitry as if you were doing it," DeDouza said. The hypothesis is that the brain of someone with Parkinson's may develop new paths around damaged areas if stimulated by the movement of dance. © CBC 2013

Keyword: Parkinsons
Link ID: 18826 - Posted: 10.23.2013

by NPR Staff Soon you'll be able to direct the path of a cockroach with a smartphone and the swipe of your finger. Greg Gage and his colleagues at Backyard Brains have developed a device called the that lets you control the path of an insect. It may make you squirm, but Gage says the device could inspire a new generation of neuroscientists. "The sharpest kids amongst us are probably going into other fields right now. And so we're kind of in the dark ages when it comes to neuroscience," he tells NPR's Arun Rath. He wants to get kids interested in neuroscience early enough to guide them toward that career path. And a cyborg cockroach might be the inspiration. "The neurons in the insects are very, very similar to the neurons inside the human brain," Gage says. "It's a beautiful way to just really understand what's happening inside your brain by looking at these little insects." The idea was spawned by a device the Backyard Brain-iacs developed called , which is capable of amplifying real living neurons. Insert a small wire into a cockroach's antennae, and you can hear the sound of actual neurons. "Lining the inside of the cockroach are these neurons that are picking up touch or vibration sensing, chemical sensing," Gage says. "They use it like a nose or a large tongue, their antennas, and they use it to sort of navigate the world. "So when you put a small wire inside of there, you can actually pick up the information as it's being encoded and being sent to the brain." With the RoboRoach device and smartphone app, you can interact with the antennae to influence the insect's behavior. ©2013 NPR

Keyword: Robotics
Link ID: 18819 - Posted: 10.22.2013

Henry Astley In the Mark Twain story The Celebrated Jumping Frog of Calaveras County, a frog named Daniel Webster "could get over more ground at one straddle than any animal of his breed you ever see." Now, scientists have visited the real Calaveras County in hopes of learning more about these hopping amphibians. They’ve found that what they see in the lab doesn’t always match the goings-on in the real world. If you wanted to know how far the bullfrog Rana catesbeiana could jump, the scientific literature would give you one answer: 1.295 meters, published in Smithsonian Contributions to Zoology in 1978. If you looked at the Guinness Book of World Records, though, you'd find a different answer. In 1986, a bullfrog called Rosie the Ribeter covered 6.55 meters in three hops. If you divide by three, at least one of those hops had to be no shorter than 2.18 meters—about four bullfrog body lengths more than the number in the scientific paper. The disparity matters. If bullfrogs can hop only 1.3 meters, they have enough power in their muscles to pull off the jump without any other anatomical help. But if they can jump farther, they must also be using a stretchy tendon to power their hops—an ability that other frogs have but that researchers thought bullfrogs had lost. These particular amphibians, scientists speculated, might have made some kind of evolutionary tradeoff that shortened their jumps but enabled them to swim better in the water, where they spend much of their lives. © 2013 American Association for the Advancement of Science

Keyword: Miscellaneous
Link ID: 18800 - Posted: 10.17.2013

By Lary C. Walker Clumps of proteins twisted into aberrant shapes cause the prion diseases that have perplexed biologists for decades. The surprises just keep coming with a new report that the simple clusters of proteins responsible for Mad Cow and other prions diseases may, without help from DNA or RNA, be capable of changing form to escape the predations of drugs that target their eradication. Prion drug resistance could be eerily similar to that found in cancer and HIV—and may have implications for drug development for Alzheimer’s and Parkinson’s, neurodegenerative diseases also characterized by misfolded proteins. Prion diseases include scrapie, chronic wasting disease and bovine spongiform encephalopathy (mad cow disease) in nonhuman species, and Creutzfeldt-Jakob disease and fatal insomnia in humans. They are unusual in that they can arise spontaneously, as a result of genetic mutations, or, in some instances, through infection. Remarkably, the infectious agent is not a microbe or virus, but rather the prion itself, a clump of proteins without genetic material. The noxious agents originate when a normally generated protein – called the prion protein – mistakenly folds into a stable, sticky, and potentially toxic shape. When the misfolded protein contacts other prion protein molecules, they too are corrupted and begin to bind to one another. In the ensuing chain reaction, the prions grow, break apart, and spread; within the nervous system, they relentlessly destroy neurons, ultimately, and invariably, leading to death. © 2013 Scientific American

Keyword: Prions; Alzheimers
Link ID: 18799 - Posted: 10.17.2013

Kashmira Gander A team in Bristol have created an implant that encourages cells damaged by the disease to grow again. It does this through a system of tubes and catheters that pump proteins into patients’ brain once a month, potentially stopping the disease from progressing by encouraging the damaged cells to grow again. The port located behind a patient’s ear releases a protein called glial cell line-derived neurotrophic factor (GDNF). Six patients at Frenchay Hospital, Bristol, have trialled the system, and doctors are now looking for another 36 to help them continue their research. Dr Kieran Breen, director of research and innovation at Parkinson's UK, said: “For years, the potential of GDNF as a treatment for Parkinson's has remained one of the great unanswered research questions. ”This new study will take us one step closer to finally answering this question once and for all. “We believe GDNF could have the potential to unlock a new approach for treating Parkinson's that may be able to slow down and ultimately stop the progression of the condition all together. ”Currently there are very few treatments available for people with Parkinson's and none capable of stopping the condition from advancing.“ More than 127,000 people in the UK currently have the disease, which is caused when nerve cells in the brain die due to a lack of the chemical dopamine. Symptoms include slowness of movement, stiffness and tremors. © independent.co.uk

Keyword: Parkinsons; Trophic Factors
Link ID: 18783 - Posted: 10.14.2013

Mind over matter. New research explains how abstract benefits of exercise—from reversing depression to fighting cognitive decline—might arise from a group of key molecules. While our muscles pump iron, our cells pump out something else: molecules that help maintain a healthy brain. But scientists have struggled to account for the well-known mental benefits of exercise, from counteracting depression and aging to fighting Alzheimer’s and Parkinson’s disease. Now, a research team may have finally found a molecular link between a workout and a healthy brain. Much exercise research focuses on the parts of our body that do the heavy lifting. Muscle cells ramp up production of a protein called FNDC5 during a workout. A fragment of this protein, known as irisin, gets lopped off and released into the bloodstream, where it drives the formation of brown fat cells, thought to protect against diseases such as diabetes and obesity. (White fat cells are traditionally the villains.) While studying the effects of FNDC5 in muscles, cellular biologist Bruce Spiegelman of Harvard Medical School in Boston happened upon some startling results: Mice that did not produce a so-called co-activator of FNDC5 production, known as PGC-1α, were hyperactive and had tiny holes in certain parts of their brains. Other studies showed that FNDC5 and PGC-1α are present in the brain, not just the muscles, and that both might play a role in the development of neurons. © 2013 American Association for the Advancement of Science.

Keyword: Depression
Link ID: 18781 - Posted: 10.12.2013

By JAMES GORMAN SEATTLE — To hear Michael Dickinson tell it, there is nothing in the world quite as wonderful as a fruit fly. And it’s not because the fly is one of the most important laboratory animals in the history of biology, often used as a simple model for human genetics or neuroscience. “I don’t think they’re a simple model of anything,” he says. “If flies are a great model, they’re a great model for flies. “These animals, you know, they’re not like us,” he says, warming to his subject. “We don’t fly. We don’t have a compound eye. I don’t think we process sensory information the same way. The muscles that they use are just incredibly much more sophisticated and interesting than the muscles we use. “They can taste with their wings,” he adds, as his enthusiasm builds. “No one knows any reason why they have taste cells on their wing. Their bodies are just covered with sensors. This is one of the most studied organisms in the history of science, and we’re still fundamentally ignorant about many features of its basic biology. It’s like having an alien in your lab. “And,” he says, pausing, seeming puzzled that the world has not joined him in open-mouthed wonder for his favorite creature, “they can fly!” If he had to define his specialty, Dr. Dickinson, 50, who counts a MacArthur “genius” award among his honors, would call himself a neuroethologist. As such, he studies the basis of behavior in the brain at the University of Washington, in Seattle. In practice he is a polymath of sorts who has targeted the fruit fly, Drosophila melanogaster, and its flying behavior for studies that involve physics, mathematics, neurobiology, computer vision, muscle physiology and other disciplines. © 2013 The New York Times Company

Keyword: Movement Disorders
Link ID: 18762 - Posted: 10.08.2013