Chapter 17. Learning and Memory

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.

Links 41 - 60 of 1381

By Helen Briggs BBC News The idea that dogs are more intelligent than cats has been called into question. Japanese scientists say cats are as good as dogs at certain memory tests, suggesting they may be just as smart. A study - involving 49 domestic cats - shows felines can recall memories of pleasant experiences, such as eating a favourite snack. Dogs show this type of recollection - a unique memory of a specific event known as episodic memory. Humans often consciously try to reconstruct past events that have taken place in their lives, such as what they ate for breakfast, their first day in a new job or a family wedding. These memories are linked with an individual take on events, so they are unique to that person. Saho Takagi, a psychologist at Kyoto University, said cats, as well as dogs, used memories of a single past experience, which may imply they have episodic memory similar to that of humans. "Episodic memory is viewed as being related to introspective function of the mind; our study may imply a type of consciousness in cats," she told BBC News. "An interesting speculation is that they may enjoy actively recalling memories of their experience like humans." The Japanese team tested 49 domestic cats on their ability to remember which bowl they had already eaten out of and which remained untouched, after a 15-minute interval. © 2017 BBC

Keyword: Learning & Memory; Evolution
Link ID: 23143 - Posted: 01.25.2017

By Ingfei Chen Learning Morse code, with its tappity-tap rhythms of dots and dashes, could take far less effort—and attention—than one might think. The trick is a wearable computer that engages the sensory powers of touch, according to a recent pilot study. The results suggest that mobile devices may be able to teach us manual skills, almost subconsciously, as we go about our everyday routines. Ph.D. student Caitlyn Seim and computer science professor Thad Starner of the Georgia Institute of Technology tinker with haptics, the integration of vibrations or other tactile cues with computing gadgets. Last September at the 20th International Symposium on Wearable Computers in Heidelberg, Germany, they announced that they had programmed Google Glass to passively teach its wearers Morse code—with preliminary signs of success. For the study, 12 participants wore the smart glasses while engrossed in an online game on a PC. During multiple hour-long sessions, half the players heard Google Glass's built-in speaker repeatedly spelling out words and felt taps behind the right ear (from a bone-conduction transducer built into the frames) for the dots and dashes corresponding to each letter. The other six participants heard only the audio, without the corresponding vibrations. After each run of game playing, all the players were asked to tap out letters in Morse code using a finger on the touch pad of the smart glasses; for example, if they tapped “dot-dot,” an “i” would pop up on the visual display. The brief testing essentially prompted them to try to learn the code. After four one-hour sessions, the group that had received tactile cues could tap a pangram (a sentence using the entire alphabet) with 94 percent accuracy. The audio-only group eventually achieved 47 percent accuracy, learning solely from their trial-and-error inputs. © 2017 Scientific American

Keyword: Learning & Memory
Link ID: 23138 - Posted: 01.24.2017

Ian Sample Science editor Tempting as it may be, it would be wrong to claim that with each generation humans are becoming more stupid. As scientists are often so keen to point out, it is a bit more complicated than that. A study from Iceland is the latest to raise the prospect of a downwards spiral into imbecility. The research from deCODE, a genetics firm in Reykjavik, finds that groups of genes that predispose people to spend more years in education became a little rarer in the country from 1910 to 1975. The scientists used a database of more than 100,000 Icelanders to see how dozens of gene variants that affect educational attainment appeared in the population over time. They found a shallow decline over the 65 year period, implying a downturn in the natural inclination to rack up qualifications. But the genes involved in education affected fertility too. Those who carried more “education genes” tended to have fewer children than others. This led the scientists to propose that the genes had become rarer in the population because, for all their qualifications, better educated people had contributed less than others to the Icelandic gene pool. Spending longer in education and the career opportunities that provides is not the sole reason that better educated people tend to start families later and have fewer children, the study suggests. Many people who carried lots of genes for prolonged education left the system early and yet still had fewer children that the others. “It isn’t the case that education, or the career opportunities it provides, prevents you from having more children,” said Kari Stefansson, who led the study. “If you are genetically predisposed to have a lot of education, you are also predisposed to have fewer children.” © 2017 Guardian News and Media Limited

Keyword: Intelligence; Genes & Behavior
Link ID: 23113 - Posted: 01.17.2017

Michelle Trudeau When Samantha Deffler was young, her mother would often call her by her siblings' names — even the dog's name. "Rebecca, Jesse, Molly, Tucker, Samantha," she says. A lot of people mix up children's names or friends' names, but Deffler is a cognitive scientist at Rollins College, in Winter Park, Fla., and she wanted to find out why it happens. So she did a survey of 1,700 men and women of different ages, and she found that naming mistakes are very common. Most everyone sometimes mixes up the names of family and friends. Her findings were published in the journal Memory & Cognition. "It's a normal cognitive glitch," Deffler says. It's not related to a bad memory or to aging, but rather to how the brain categorizes names. It's like having special folders for family names and friends names stored in the brain. When people used the wrong name, overwhelmingly the name that was used was in the same category, Deffler says. It was in the same folder. And there was one group who was especially prone to the naming mix-ups. "Moms, especially moms," Deffler says. "Any mom I talked to says, 'You know, I've definitely done this.'" It works something like this: Say you've got an armful of groceries and you need some quick help from one of your kids. Your brain tries to rapidly retrieve the name from the family folder, but it may end up retrieving a related name instead, says Neil Mulligan, a cognitive scientist at UNC Chapel Hill. © 2017 npr

Keyword: Learning & Memory
Link ID: 23106 - Posted: 01.16.2017

Alison Abbott Bats have brain cells that keep track of their angle and distance to a target, researchers have discovered. The neurons, called ‘vector cells’, are a key piece of the mammalian’s brain complex navigation system — and something that neuroscientists have been seeking for years. Our brain’s navigation system has many types of cells, but a lot of them seem designed to keep track of where we are. Researchers know of ‘place’ cells, for example, which fire when animals are in a particular location, and ‘head direction’ cells that fire in response to changes in the direction the head is facing. Bats also have a kind of neuronal compass that enables them to orient themselves as they fly. The vector cells, by contrast, keep spatial track of where we are going. They are in the brain’s hippocampus, which is also where ‘place’ and ‘head-direction’ cells were discovered. That’s a surprise, considering how well this area has been studied by researchers, says Nachum Ulanovsky, who led the team at the Weizmann Institute of Science in Rehovot, Israel, that discovered the new cells. His team published their findings in Science on 12 January1. Finding the cells "was one of those very rare discovery moments in a researcher’s life,” says Ulanovsky. “My heart raced, I started jumping around.” The trick to finding them was a simple matter of experimental design, he says. © 2017 Macmillan Publishers Limited

Keyword: Learning & Memory; Hearing
Link ID: 23097 - Posted: 01.13.2017

By Peter Godfrey-Smith Adapted from Other Minds: The Octopus, the Sea and the Deep Origins of Consciousness, by Peter Godfrey-Smith. Copyright © 2016 by Peter Godfrey-Smith. Someone is watching you, intently, but you can't see them. Then you notice, drawn somehow by their eyes. You're amid a sponge garden, the seafloor scattered with shrublike clumps of bright orange sponge. Tangled in one of these sponges and the gray-green seaweed around it is an animal about the size of a cat. Its body seems to be everywhere and nowhere. The only parts you can keep a fix on are a small head and the two eyes. As you make your way around the sponge, so, too, do those eyes, keeping their distance, keeping part of the sponge between the two of you. The creature's color perfectly matches the seaweed, except that some of its skin is folded into tiny, towerlike peaks with tips that match the orange of the sponge. Eventually it raises its head high, then rockets away under jet propulsion. A second meeting with an octopus: this one is in a den. Shells are strewn in front, arranged with some pieces of old glass. You stop in front of its house, and the two of you look at each other. This one is small, about the size of a tennis ball. You reach forward a hand and stretch out one finger, and one octopus arm slowly uncoils and comes out to touch you. The suckers grab your skin, and the hold is disconcertingly tight. It tugs your finger, tasting it as it pulls you gently in. The arm is packed with sensors, hundreds of them in each of the dozens of suckers. The arm itself is alive with neurons, a nest of nervous activity. Behind the arm, large round eyes watch you the whole time. © 2017 Scientific American

Keyword: Learning & Memory; Evolution
Link ID: 23095 - Posted: 01.13.2017

Dima Amso, The early years of parenthood involve so many rewarding firsts—when your infant cracks a toothless grin, when he crawls and later walks, and, of course, when he utters a real, nonbabble word. A mother once told me she found it sad that if she were to pass away suddenly, her toddler wouldn't remember her or these exciting years. It is true that most of us don't remember much, if anything, from our infancy. So at what point do children start making long-term memories? I must first explain the different types of memory we possess. As I type this, I am using procedural memory—a form of motor memory in which my fingers just know how to type. In contrast, declarative memories represent two types of long-term recall—semantic and episodic. Semantic memory allows us to remember general facts—for example, that Alfred Hitchcock directed the film Vertigo; episodic memory encompasses our ability to recall personal experiences or facts—that Vertigo is my favorite film. Episodic memories are most relevant for understanding our childhood recollections. Making an episodic memory requires binding together different details of an event—when it happened and where, how we felt and who was there—and retrieving that information later. The processes involve the medial temporal lobes, most notably the hippocampus, and portions of the parietal and prefrontal cortices, which are very important in memory retrieval. Imaging studies often show that the same regions that encode an episode—for example, the visual cortex for vivid visual experiences—are active when we recall that memory, allowing for a kind of “mental time travel” or replay of the event. © 2017 Scientific American

Keyword: Learning & Memory; Development of the Brain
Link ID: 23077 - Posted: 01.10.2017

Riley Beggin Matt Herich uses a tDCS device that was made by another student he met on Reddit. Four 9-volt batteries and sticky self-adhesive electrodes are connected by a circuit board that sends a constant small current to the user's brain. Courtesy of Matt Herich Last October, Matt Herich was listening to the news while he drove door to door delivering pizzas. A story came on the radio about a technology that sends an electric current through your brain to possibly make you better at some things — moving, remembering, learning. He was fascinated. The neurotechnology is called transcranial direct current stimulation, or tDCS for short. At its simplest, the method involves a device that uses little more than a 9-volt battery and some electrodes to send a low-intensity electrical current to a targeted area of the brain, typically via a headset. More than a 1,000 studies have been published in peer-reviewed journals over the last decade suggesting benefits of the technique — maybe regulating mood, possibly improving language skills — but its effects, good or bad, are far from clear. Although researchers see possibilities for tDCS in treating diseases and boosting performance, it's still an exploratory technology, says Mark George, editor-in-chief of Brain Stimulation, a leading journal on neuromodulation. And leading experts have warned against at-home use of such devices. © 2017 npr

Keyword: Learning & Memory
Link ID: 23071 - Posted: 01.09.2017

By LISA FELDMAN BARRETT Think about the people in your life who are 65 or older. Some of them are experiencing the usual mental difficulties of old age, like forgetfulness or a dwindling attention span. Yet others somehow manage to remain mentally sharp. My father-in-law, a retired doctor, is 83 and he still edits books and runs several medical websites. Why do some older people remain mentally nimble while others decline? “Superagers” (a term coined by the neurologist Marsel Mesulam) are those whose memory and attention isn’t merely above average for their age, but is actually on par with healthy, active 25-year-olds. My colleagues and I at Massachusetts General Hospital recently studied superagers to understand what made them tick. Our lab used functional magnetic resonance imaging to scan and compare the brains of 17 superagers with those of other people of similar age. We succeeded in identifying a set of brain regions that distinguished the two groups. These regions were thinner for regular agers, a result of age-related atrophy, but in superagers they were indistinguishable from those of young adults, seemingly untouched by the ravages of time. What are these crucial brain regions? If you asked most scientists to guess, they might nominate regions that are thought of as “cognitive” or dedicated to thinking, such as the lateral prefrontal cortex. However, that’s not what we found. Nearly all the action was in “emotional” regions, such as the midcingulate cortex and the anterior insula. My lab was not surprised by this discovery, because we’ve seen modern neuroscience debunk the notion that there is a distinction between “cognitive” and “emotional” brain regions. © 2017 The New York Times Company

Keyword: Alzheimers; Learning & Memory
Link ID: 23045 - Posted: 01.02.2017

Alan Yu Being overweight can raise your blood pressure, cholesterol and risk for developing diabetes. It could be bad for your brain, too. A diet high in saturated fats and sugars, the so-called Western diet, actually affects the parts of the brain that are important to memory and make people more likely to crave the unhealthful food, says psychologist Terry Davidson, director of the Center for Behavioral Neuroscience at American University in Washington, D.C. He didn't start out studying what people ate. Instead, he was interested in learning more about the hippocampus, a part of the brain that's heavily involved in memory. He was trying to figure out which parts of the hippocampus do what. He did that by studying rats that had very specific types of hippocampal damage and seeing what happened to them. In the process, Davidson noticed something strange. The rats with the hippocampal damage would go to pick up food more often than the other rats, but they would eat a little bit, then drop it. Davidson realized these rats didn't know they were full. He says something similar may happen in human brains when people eat a diet high in fat and sugar. Davidson says there's a vicious cycle of bad diets and brain changes. He points to a 2015 study in the Journal of Pediatrics that found obese children performed more poorly on memory tasks that test the hippocampus compared with kids who weren't overweight. He says if our brain system is impaired by that kind of diet, "that makes it more difficult for us to stop eating that diet. ... I think the evidence is fairly substantial that you have an effect of these diets and obesity on brain function and cognitive function." © 2016 npr

Keyword: Obesity; Learning & Memory
Link ID: 23039 - Posted: 12.31.2016

By Drake Baer Convergent evolution is what happens when nature takes different courses from different starting points to arrive at similar results. Consider bats, birds, and butterflies developing wings; sharks and dolphins finding fins; and echidnas and porcupines sporting spines. Or, if you want to annoy a traditionalist scientist, talk about humans and octopuses — and how they may both have consciousness. This is the thrust of Other Minds: The Octopus, the Sea, and the Deep Origins of Consciousness, a new book by the scuba-diving, biology-specializing philosopher Peter Godfrey-Smith, originally of Australia and now a distinguished professor at the City University of New York’s graduate center. The book was written up by Olivia Judson in The Atlantic, and you should read the whole thing, but what I find mesmerizing is how categorically other the eight-tentacled ink-squirters are, and how their very nature challenges our conceptualizations of intelligence. “If we can make contact with cephalopods as sentient beings, it is not because of a shared history, not because of kinship, but because evolution built minds twice over,” Godfrey-Smith is quoted as saying. “This is probably the closest we will come to meeting an intelligent alien.” (He’s not the first to think so: The Hawaiian creation myth holds that octopuses are the only creatures left over from an earlier incarnation of the Earth, making them more proto-terrestrials than extraterrestrials.) © 2016, New York Media LLC.

Keyword: Evolution; Learning & Memory
Link ID: 23020 - Posted: 12.26.2016

By Laurence O’Dwyer Daniel Tammet correctly recited the first 22,514 digits of Pi over the course of five hours and nine minutes. Less well-known, but similarly impressive, is the ability of a Clark’s nutcracker (Nucifraga columbiana)—a bird commonly found along the western flanks of North America—to remember where it stores thousands of separate caches of food. Tammet, who has autism spectrum disorder, is a savant. Some researchers have proposed that Clark’s nutcrackers might also represent a type of autistic savant. However, the unique abilities of a person with an autism spectrum disorder and savant syndrome usually comes at the price of social deficits. Experts in animal cognition who have examined similar abilities in birds and other creatures maintain that nonhuman animals that exhibit savant-like behavior do not display any equivalent dysfunction. The prodigious memory of the Clark’s nutcracker seems to be accompanied by an enlarged hippocampus compared with related species of birds that have not developed caching abilities, but in all other respects the bird seems to function normally. The hippocampus is a brain structure that is crucial for memory formation. In other words, its hyper-performance in one domain does not appear to come at a cost in another. (Admittedly, it is difficult to determine whether Clark’s nutcrackers are socially competent birds.) The “gift at a price” idea stems in part from the left hemisphere dysfunction and right hemisphere compensation that is often associated with savant syndrome. © 1986-2016 The Scientist

Keyword: Autism; Learning & Memory
Link ID: 23010 - Posted: 12.23.2016

By Veronique Greenwood Baffling grammar, strange vowels, quirky idioms and so many new words—all of this makes learning a new language hard work. Luckily, researchers have discovered a number of helpful tricks, ranging from exposing your ears to a variety of native speakers to going to sleep soon after a practice session. A pair of recent papers suggests that even when you are not actively studying, what you hear can affect your learning and that sometimes listening without speaking works best. In one study, published in 2015 in the Journal of the Acoustical Society of America, linguists found that people who took breaks from learning new sounds performed just as well as those who took no breaks, as long as the sounds continued to play in the background. The researchers trained two groups of people to distinguish among trios of similar sounds—for instance, Hindi has “p,” “b” and a third sound English speakers mistake for “b.” One group practiced telling these apart one hour a day for two days. Another group alternated between 10 minutes of the task and 10 minutes of a “distractor” task that involved matching symbols on a worksheet while the sounds continued to play in the background. Remarkably, the group that switched between tasks improved just as much as the one that focused on the distinguishing task the entire time. “There's something about our brains that makes it possible to take advantage of the things you've already paid attention to and to keep paying attention to them,” even when you are focused on something else, suggests Melissa Baese-Berk, a linguist at the University of Oregon and a co-author of the study. In a 2016 study published in the Journal of Memory and Language, Baese-Berk and another colleague found that it is better to listen to new sounds silently rather than practice saying them yourself at the same time. Spanish speakers learning to distinguish among sounds in the Basque language performed more poorly when they were asked to repeat one of the sounds during training. The findings square with what many teachers have intuited—that a combination of focused practice and passive exposure to a language is the best approach. “You need to come to class and pay attention,” Baese-Berk says, “but when you go home, turn on the TV or turn on the radio in that language while you're cooking dinner, and even if you're not paying total attention to it, it's going to help you.” © 2016 Scientific American

Keyword: Language; Learning & Memory
Link ID: 22982 - Posted: 12.13.2016

By Michael Price The titular detective of the BBC television series Sherlock possesses a “mind palace”—a highly organized mental catalog of nearly every memory he’s ever had. We mere mortals can’t match Holmes’s remarkable recollection, but when we store and recall memories, our brain activity probably looks a lot like his, according to a new study. The findings might help us find early warning signs of memory loss in diseases like Alzheimer’s. Previous research has found that when people perceive an event for the first time and when they are asked to remember it later, the same brain regions are activated. But whether different people encode the same memory in the same way has been a topic of debate. So scientists turned to Sherlock Holmes for answers. A group led by Janice Chen, a postdoc in the psychology department at Princeton University, and Yuan Chang Leong, a graduate student studying psychology at Stanford University in Palo Alto, California, strapped 22 study participants into a functional magnetic resonance imaging (fMRI) machine, which traces blood flow in the brain to measure brain activity. The scientists then showed them a 48-minute segment of BBC’s Sherlock. (Roughly the first half of the series’s first episode, “A Study in Pink,” for the curious superfans.) Immediately afterward, Chen asked the volunteers to tell her as much about the episode as they could. © 2016 American Association for the Advancement of Science.

Keyword: Learning & Memory
Link ID: 22956 - Posted: 12.06.2016

By CHRISTOPHER MELE Have you called your daughter by your wife’s name or your son by his brother’s name? Have you misplaced your car keys or forgotten where you parked at the mall? If you worry these might be signs of significant memory loss or the early stages of Alzheimer’s disease, which causes a slow deterioration in memory and reasoning skills, fear not, experts said. By the age of 45, the average person experiences a decline in memory, Dr. Gary W. Small, a professor of psychiatry and biobehavioral sciences at the David Geffen School of Medicine at the University of California, Los Angeles, said in an email. Forgetting facts or events over time, absent-mindedness and incorrectly recalling a detail are among six “normal” memory problems that should not cause concern, according to the Center for Brain-Mind Medicine at Brigham and Women’s Hospital in Boston. When people do experience normal memory decline related to aging, 85 percent of their complaints involve recalling people’s names, Dr. Small said. You can blame multitasking for overloading your mind. Think about the ways we are driven to distraction with smartphones and social media, for instance. “Whenever our brains are taxed by multiple demands, cognitive ‘slips’ or errors are more likely to occur due to a concept called memory ‘interference,’ ” Carrington Wendell, a neuropsychology specialist at the Anne Arundel Medical Group in Annapolis, Md., said in an email. Name mix-ups are also more likely to occur when the two names share the same beginning, middle or ending, such as Bob and Ben or Dave and Jake, and are the same sex and similar age, she added. © 2016 The New York Times Company

Keyword: Learning & Memory; Alzheimers
Link ID: 22955 - Posted: 12.06.2016

By PETER GODFREY-SMITH Around 2008, while snorkeling and scuba diving in my free time, I began watching the unusual group of animals known as cephalopods, the group that includes octopuses, cuttlefish and squid. The first ones I encountered were giant cuttlefish, large animals whose skin changes color so quickly and completely that swimming after them can be like following an aquatic, multi-armed television. Then I began watching octopuses. Despite being mollusks, like clams and oysters, these animals have very large brains and exhibit a curious, enigmatic intelligence. I followed them through the sea, and also began reading about them, and one of the first things I learned came as a shock: They have extremely short lives — just one or two years. I was already puzzled by the evolution of large brains in cephalopods, and this discovery made the questions more acute. What is the point of building a complex brain like that if your life is over in a year or two? Why invest in a process of learning about the world if there is no time to put that information to use? An octopus’s or cuttlefish’s life is rich in experience, but it is incredibly compressed. The particular puzzle of octopus life span opens up a more general one. Why do animals age? And why do they age so differently? A scruffy-looking fish that inhabits the same patch of sea as my cephalopods has relatives who live to 200 years of age. This seems extraordinarily unfair: A dull-looking fish lives for centuries while the cuttlefish, in their chromatic splendor, and the octopuses, in their inquisitive intelligence, are dead before they are 2? There are monkeys the size of a mouse that can live for 15 years, and hummingbirds that can live for over 10. Nautiluses (who are also cephalopods) can live for 20 years. A recent Nature paper reported that despite continuing medical advances, humans appear to have reached a rough plateau at around 115 years, though a few people will edge beyond it. The life spans of animals seem to lack all rhyme or reason. © 2016 The New York Times Company

Keyword: Intelligence; Development of the Brain
Link ID: 22951 - Posted: 12.05.2016

By Jessica Boddy Memory researchers have shone light into a cognitive limbo. A new memory—the name of someone you've just met, for example—is held for seconds in so-called working memory, as your brain's neurons continue to fire. If the person is important to you, the name will over a few days enter your long-term memory, preserved by permanently altered neural connections. But where does it go during the in-between hours, when it has left your standard working memory and is not yet embedded in long-term memory? In Science, a research team shows that memories can be resurrected from this limbo. Their observations point to a new form of working memory, which they dub prioritized long-term memory, that exists without elevated neural activity. Consistent with other recent work, the study suggests that information can somehow be held among the synapses that connect neurons, even after conventional working memory has faded. "This is a really fundamental find—it's like the dark matter of memory," says Geoffrey Woodman, a cognitive neuroscientist at Vanderbilt University in Nashville who was not involved with the work. "It's hard to really see it or measure it in any clear way, but it has to be out there. Otherwise, things would fly apart." Cognitive neuroscientist Nathan Rose and colleagues at the University of Wisconsin (UW) in Madison initially had subjects watch a series of slides showing faces, words, or dots moving in one direction. They tracked the resulting neural activity using functional magnetic resonance imaging (fMRI) and, with the help of a machine learning algorithm, showed they could classify the brain activity associated with each item. Then the subjects viewed the items in combination—a word and face, for example—but were cued to focus on just one item. At first, the brain signatures of both items showed up, as measured in this round with electroencephalography (EEG). But neural activity for the uncued item quickly dropped to baseline, as if it had been forgotten, whereas the EEG signature of the cued item remained, a sign that it was still in working memory. Yet subjects could still quickly recall the uncued item when prompted to remember it a few seconds later. © 2016 American Association for the Advancement of Science.

Keyword: Learning & Memory
Link ID: 22947 - Posted: 12.03.2016

Rosie Mestel The 2016 US election was a powerful reminder that beliefs tend to come in packages: socialized medicine is bad, gun ownership is a fundamental right, and climate change is a myth — or the other way around. Stances that may seem unrelated can cluster because they have become powerful symbols of membership of a group, says Dan Kahan, who teaches law and psychology at Yale Law School in New Haven, Connecticut. And the need to keep believing can further distort people’s perceptions and their evaluation of evidence. Here, Kahan tells Nature about the real-world consequences of group affinity and cognitive bias, and about research that may point to remedies. This interview has been edited for length and clarity. One measure is how individualistic or communitarian people are, and how egalitarian or hierarchical. Hierarchical and individualistic people tend to have confidence in markets and industry: those represent human ingenuity and power. People who are egalitarian and communitarian are suspicious of markets and industry. They see them as responsible for social disparity. It’s natural to see things you consider honourable as good for society, and things that are base, as bad. Such associations will motivate people’s assessment of evidence. Can you give an example? In a study, we showed people data from gun-control experiments and varied the results1. People who were high in numeracy always saw when a study supported their view. If it didn’t support their view, they didn’t notice — or argued their way out of it. © 2016 Macmillan Publishers Limited

Keyword: Attention; Emotions
Link ID: 22946 - Posted: 12.03.2016

Anya Kamenetz Brains, brains, brains. One thing we've learned at NPR Ed is that people are fascinated by brain research. And yet it can be hard to point to places where our education system is really making use of the latest neuroscience findings. But there is one happy nexus where research is meeting practice: bilingual education. "In the last 20 years or so, there's been a virtual explosion of research on bilingualism," says Judith Kroll, a professor at the University of California, Riverside. Again and again, researchers have found, "bilingualism is an experience that shapes our brain for a lifetime," in the words of Gigi Luk, an associate professor at Harvard's Graduate School of Education. At the same time, one of the hottest trends in public schooling is what's often called dual-language or two-way immersion programs. Traditional programs for English-language learners, or ELLs, focus on assimilating students into English as quickly as possible. Dual-language classrooms, by contrast, provide instruction across subjects to both English natives and English learners, in both English and in a target language. The goal is functional bilingualism and biliteracy for all students by middle school. New York City, North Carolina, Delaware, Utah, Oregon and Washington state are among the places expanding dual-language classrooms. © 2016 npr

Keyword: Language; Learning & Memory
Link ID: 22934 - Posted: 11.30.2016

By Andy Coghlan Don’t go to bed angry. Now there’s evidence for this proverb: it’s harder to suppress bad memories if you sleep on them. The discovery could reveal new ways to treat people who suffer from conditions like post-traumatic stress disorder, and reinforces an earlier idea that it is possible to suppress bad memories through sleep deprivation. “The results are of major interest for treating the frequent clinical problem of unwanted memories, memories of traumatic events being the most prominent example,” says Christoph Nissen at the University of Freiburg Medical Center in Germany, who was not involved in the work. In the study, 73 male students memorised 26 mugshots, each paired with a disturbing image, such as a mutilated body, corpse or crying child. The next day they were asked to recall the images associated with half the mugshots and actively try to exclude memories of the rest of the associated images. The group were then directed to memorise another 26 pairs of mugshots and nasty images. Half an hour later they again thought about half the associated images and actively suppressed memories of the rest. Finally, they were asked to describe the image associated with each of the 52 mugshots. The idea was to see if trying to suppress a bad memory works better before or after sleep. © Copyright Reed Business Information Ltd.

Keyword: Sleep; Learning & Memory
Link ID: 22933 - Posted: 11.30.2016