Chapter 17. Learning and Memory

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 81 - 100 of 1328

Robert Plomin, Scientists have investigated this question for more than a century, and the answer is clear: the differences between people on intelligence tests are substantially the result of genetic differences. But let's unpack that sentence. We are talking about average differences among people and not about individuals. Any one person's intelligence might be blown off course from its genetic potential by, for example, an illness in childhood. By genetic, we mean differences passed from one generation to the next via DNA. But we all share 99.5 percent of our three billion DNA base pairs, so only 15 million DNA differences separate us genetically. And we should note that intelligence tests include diverse examinations of cognitive ability and skills learned in school. Intelligence, more appropriately called general cognitive ability, reflects someone's performance across a broad range of varying tests. Genes make a substantial difference, but they are not the whole story. They account for about half of all differences in intelligence among people, so half is not caused by genetic differences, which provides strong support for the importance of environmental factors. This estimate of 50 percent reflects the results of twin, adoption and DNA studies. From them, we know, for example, that later in life, children adopted away from their biological parents at birth are just as similar to their biological parents as are children reared by their biological parents. Similarly, we know that adoptive parents and their adopted children do not typically resemble one another in intelligence. © 2016 Scientific American

Keyword: Intelligence; Genes & Behavior
Link ID: 22264 - Posted: 05.31.2016

By BENEDICT CAREY Suzanne Corkin, whose painstaking work with a famous amnesiac known as H.M. helped clarify the biology of memory and its disorders, died on Tuesday in Danvers, Mass. She was 79. Her daughter, Jocelyn Corkin, said the cause was liver cancer. Dr. Corkin met the man who would become a lifelong subject and collaborator in 1964, when she was a graduate student in Montreal at the McGill University laboratory of the neuroscientist Brenda Milner. Henry Molaison — known in published reports as H.M., to protect his privacy — was a modest, middle-aged former motor repairman who had lost the ability to form new memories after having two slivers of his brain removed to treat severe seizures when he was 27. In a series of experiments, Dr. Milner had shown that a part of the brain called the hippocampus was critical to the consolidation of long-term memories. Most scientists had previously thought that memory was not dependent on any one cortical area. Mr. Molaison lived in Hartford, and Dr. Milner had to take the train down to Boston and drive from there to Connecticut to see him. It was a long trip, and transporting him to Montreal proved to be so complicated, largely because of his condition, that Dr. Milner did it just once. Yet rigorous study of H.M., she knew, would require proximity and a devoted facility — with hospital beds — to accommodate extended experiments. The psychology department at the Massachusetts Institute of Technology offered both, and with her mentor’s help, Dr. Corkin landed a position there. Thus began a decades-long collaboration between Dr. Corkin and Mr. Molaison that would extend the work of Dr. Milner, focus intense interest on the hippocampus, and make H.M. the most famous patient in the history of modern brain science. © 2016 The New York Times Company

Keyword: Learning & Memory
Link ID: 22258 - Posted: 05.28.2016

Laura Sanders In mice, a long course of antibiotics that wiped out gut bacteria slowed the birth of new brain cells and impaired memory, scientists write May 19 in Cell Reports. The results reinforce evidence for a powerful connection between bacteria in the gut and the brain (SN: 4/2/16, p. 23). After seven weeks of drinking water spiked with a cocktail of antibiotics, mice had fewer newborn nerve cells in a part of the hippocampus, a brain structure important for memory. The mice’s ability to remember previously seen objects also suffered. Further experiments revealed one way bacteria can influence brain cell growth and memory. Injections of immune cells called Ly6Chi monocytes boosted the number of new nerve cells. Themonocytes appear to carry messages from gut to brain, Susanne Wolf of the Max Delbrück Center for Molecular Medicine in Berlin and colleagues found. Exercise and probiotic treatment with eight types of live bacteria also increased the number of newborn nerve cells and improved memory in mice treated with antibiotics. The results help clarify the toll of prolonged antibiotic treatment, and hint at ways to fight back, the authors write. L. Möhle et al. Ly6Chi monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Reports. Vol. 15, May 31, 2016. doi: 10.1016/j.celrep.2016.04.074. © Society for Science & the Public 2000 - 2016

Keyword: Obesity; Learning & Memory
Link ID: 22231 - Posted: 05.21.2016

By JONATHAN BALCOMBE Washington — IN March, two marine biologists published a study of giant manta rays responding to their reflections in a large mirror installed in their aquarium in the Bahamas. The two captive rays circled in front of the mirror, blew bubbles and performed unusual body movements as if checking their reflection. They made no obvious attempt to interact socially with their reflections, suggesting that they did not mistake what they saw as other rays. The scientists concluded that the mantas seemed to be recognizing their reflections as themselves. Mirror self-recognition is a big deal. It indicates self-awareness, a mental attribute previously known only among creatures of noted intelligence like great apes, dolphins, elephants and magpies. We don’t usually think of fishes as smart, let alone self-aware. As a biologist who specializes in animal behavior and emotions, I’ve spent the past four years exploring the science on the inner lives of fishes. What I’ve uncovered indicates that we grossly underestimate these fabulously diverse marine vertebrates. The accumulating evidence leads to an inescapable conclusion: Fishes think and feel. Because fishes inhabit vast, obscure habitats, science has only begun to explore below the surface of their private lives. They are not instinct-driven or machinelike. Their minds respond flexibly to different situations. They are not just things; they are sentient beings with lives that matter to them. A fish has a biography, not just a biology. Those giant manta rays have the largest brains of any fish, and their relative brain-to-body size is comparable to that of some mammals. So, an exception? Then you haven’t met the frillfin goby. © 2016 The New York Times Company

Keyword: Intelligence; Evolution
Link ID: 22221 - Posted: 05.16.2016

By Julia Shaw You see a crime take place. You are interviewed about it. You give a statement about what you saw. Do you think that at a later date you would be able to detect whether someone had tampered with your statement? Or re-written parts of it? This is currently a hot topic in the UK, where a very recently published inquiry into the so-called Hillsborough disaster, in which 96 people were crushed to death during a soccer match in 1989, found that testimonies had been deliberately altered by police. Research published earlier this year by the false memory dream team at the University of California, looked directly into the implications of such police (mis)conduct. They found that it is possible that changed statements can go unnoticed by the person who gave the original testimony, and may even develop into a false memory that accommodates the false account. To describe this effect, the researchers came up with the term "memory blindness"—the phenomenon of failing to recognize our own memories. The term was intended to mirror the ‘choice blindness’ literature. Choice blindness is forgetting choices that we have made. The researchers wanted to know “Can choice blindness have lasting effects on eyewitness memory?” To examine this, PhD Student Kevin Cochran and his colleagues conducted two experiments. © 2016 Scientific American

Keyword: Learning & Memory
Link ID: 22218 - Posted: 05.16.2016

Bret Stetka Last year, in an operating room at the University of Toronto, a 63-year-old women with Alzheimer's disease experienced something she hadn't for 55 years: a memory of her 8-year-old self playing with her siblings on their family farm in Scotland. The woman is a patient of Dr. Andres Lozano, a neurosurgeon who is among a growing number of researchers studying the potential of deep brain stimulation to treat Alzheimer's and other forms of dementia. If the approach pans out it could provide options for patients with fading cognition and retrieve vanished memories. Right now, deep brain stimulation is used primarily to treat Parkinson's disease and tremor, for which it's approve by the Food and Drug Administration. DBS involves delivering electrical impulses to specific areas of the brain through implanted electrodes. The technique is also approved for obsessive-compulsive disorder and is being looked at for a number of other brain disorders, including depression, chronic pain and, as in Lozano's work, dementia. In 2008 Lozano's group published a study in which an obese patient was treated with deep brain stimulation of the hypothalamus. Though no bigger than a pea, the hypothalamus is a crucial bit of brain involved in appetite regulation and other bodily essentials such as temperature control, sleep and circadian rhythms. It seemed like a reasonable target in trying to suppress excessive hunger. To the researcher's surprise, following stimulation the patient reported a sensation of deja vu. He also perceived feeling 20 years younger and recalled a memory of being in a park with friends, including an old girlfriend. With increasing voltages his memories became more vivid. He remembered their clothes. © 2016 npr

Keyword: Learning & Memory
Link ID: 22213 - Posted: 05.14.2016

Laura Sanders Brain waves during REM sleep solidify memories in mice, scientists report in the May 13 Science. Scientists suspected that the eye-twitchy, dream-packed slumber known as rapid eye movement sleep was important for memory. But REM sleep’s influence on memory has been hard to study, in part because scientists often resorted to waking people or animals up — a stressful experience that might influence memory in different ways. Richard Boyce of McGill University in Montreal and colleagues interrupted REM sleep in mice in a more delicate way. Using a technique called optogenetics, the researchers blocked a brain oscillation called theta waves in the hippocampus, a brain structure involved in memory, during REM sleep. This light touch meant that the mice stayed asleep but had fewer REM-related theta waves in their hippocampi. Usually, post-learning sleep helps strengthen memories. But mice with disturbed REM sleep had memory trouble, the researchers found. Curious mice will spend more time checking out an object that’s been moved to a new spot than an unmoved object. But after the sleep treatment, the mice seemed to not remember objects’ earlier positions, spending equal time exploring an unmoved object as one in a new place. These mice also showed fewer signs of fear in a place where they had previously suffered shocks. Interfering with theta waves during other stages of sleep didn’t seem to cause memory trouble, suggesting that something special happens during REM sleep. R. Boyce et al. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science. Vol. 352, p. 812, May 13, 2016. doi: 10.1126/science.aad5252. © Society for Science & the Public 2000 - 2016.

Keyword: Sleep; Learning & Memory
Link ID: 22211 - Posted: 05.14.2016

Erika Check Hayden The largest-ever genetics study in the social sciences has turned up dozens of DNA markers that are linked to the number of years of formal education an individual completes. The work, reported this week in Nature, analysed genetic material from around 300,000 people. “This is good news,” says Stephen Hsu, a theoretical physicist at Michigan State University in East Lansing, who studies the genetics of intelligence. “It shows that if you have enough statistical power you can find genetic variants that are associated with cognitive ability.” Yet the study’s authors estimate that the 74 genetic markers they uncovered comprise just 0.43% of the total genetic contribution to educational achievement (A. Okbay et al. Nature http://dx.doi.org/10.1038/nature17671; 2016). By themselves, the markers cannot predict a person’s performance at school. And because the work examined only people of European ancestry, it is unclear whether the results apply to those with roots in other regions, such as Africa or Asia. The findings have proved divisive. Some researchers hope that the work will aid studies of biology, medicine and social policy, but others say that the emphasis on genetics obscures factors that have a much larger impact on individual attainment, such as health, parenting and quality of schooling. © 2016 Nature Publishing Group

Keyword: Genes & Behavior; Learning & Memory
Link ID: 22209 - Posted: 05.12.2016

By Hazem Zohny Here is a picture of the nine-dot problem. The task seems simple enough: connect all nine dots with four straight lines, but, do so without lifting the pen from the paper or retracing any line. If you don’t already know the solution, give it a try – although your chances of figuring it out within a few minutes hover around 0 percent. In fact, even if I were to give you a hint like “think outside of the box,” you are unlikely to crack this deceptively (and annoyingly!) simple puzzle. And yet, if we were to pass a weak electric current through your brain (specifically your anterior temporal lobe, which sits somewhere between the top of your ear and temple), your chances of solving it may increase substantially. That, at least, was the finding from a study where 40 percent of people who couldn’t initially solve this problem managed to crack it after 10 minutes of transcranial direct current stimulation (tDCS) – a technique for delivering a painlessly weak electric current to the brain through electrodes on the scalp. How to explain this? It is an instance of the alleged power of tDCS and similar neurostimulation techniques. These are increasingly touted as methods that can “overclock” the brain in order to boost cognition, improve our moods, make us stronger, and even alter our moral dispositions. The claims are not completely unfounded: there is evidence that some people become slightly better at holding and manipulating information in their minds after a bout of tDCS. It also appears to reduce some people’s likelihood of formulating false memories, and seems to have a lasting improvement on some people’s ability to work with numbers. It can even appear to boost creativity, enhancing the ability of some to make abstract connections between words to come up with creative analogies. But it goes further, with some evidence that it can help people control their urges as well improve their mood. And beyond these psychological effects, tDCS of the part of the brain responsible for movement seems to improve muscular endurance and reduce fatigue. © 2016 Scientific American

Keyword: Learning & Memory
Link ID: 22205 - Posted: 05.11.2016

By Ann Gibbons We may not be raring to go on a Monday morning, but humans are the Energizer Bunnies of the primate world. That’s the conclusion of a new study that, for the first time, measures precisely how many calories humans and apes burn each day. Compared with chimpanzees and other apes, our revved-up internal engines burn calories 27% faster, according to a paper in Nature this week. This higher metabolic rate equips us to quickly fuel energy-hungry brain cells, sustaining our bigger brains. And lest we run out of gas when food is short, the study also found that humans are fatter than other primates, giving us energy stores to draw on in lean times. “The brilliant thing here is showing for the first time that we do have a higher metabolic rate, and we do use more energy,” says paleoanthropologist Leslie Aiello, president of the Wenner-Gren Foundation for Anthropological Research in New York City. “Humans during evolution have become more and more hypermetabolic,” says biological anthropologist Carel van Schaik of the University of Zurich in Switzerland. “We turned up the thermostat.” For decades, researchers assumed that “there weren’t any differences in the rate at which different species burned calories,” says biological anthropologist Herman Pontzer of Hunter College in New York City, lead author of the new study. Comparing humans and other primates, they saw little difference in basal metabolic rate, which reflects the total calories used by our organs while we are at rest. © 2016 American Association for the Advancement of Science

Keyword: Obesity; Evolution
Link ID: 22183 - Posted: 05.05.2016

By Jessica Lahey Before she became a neuroscientist, Mary Helen Immordino-Yang was a seventh-grade science teacher at a school outside Boston. One year, during a period of significant racial and ethnic tension at the school, she struggled to engage her students in a unit on human evolution. After days of apathy and outright resistance to Ms. Immordino-Yang’s teaching, a student finally asked the question that altered her teaching — and her career path — forever: “Why are early hominids always shown with dark skin?” With that question, one that connected the abstract concepts of human evolution and the very concrete, personal experiences of racial tension in the school, her students’ resistance gave way to interest. As she explained the connection between the effects of equatorial sunlight, melanin and skin color and went on to explain how evolutionary change and geography result in various human characteristics, interest blossomed into engagement, and something magical happened: Her students began to learn. Dr. Immordino-Yang’s eyes light up as she recounts this story in her office at the Brain and Creativity Institute at the University of Southern California. Now an associate professor of education, psychology and neuroscience, she understands the reason behind her students’ shift from apathy to engagement and, finally, to deep, meaningful learning. Her students learned because they became emotionally engaged in material that had personal relevance to them. Emotion is essential to learning, Dr. Immordino-Yang said, and should not be underestimated or misunderstood as a trend, or as merely the “E” in “SEL,” or social-emotional learning. Emotion is where learning begins, or, as is often the case, where it ends. Put simply, “It is literally neurobiologically impossible to think deeply about things that you don’t care about,” she said. © 2016 The New York Times Company

Keyword: Learning & Memory; Emotions
Link ID: 22181 - Posted: 05.05.2016

By Jennifer Jolly Every January for the past decade, Jessica Irish of Saline, Mich., has made the same New Year’s Resolution: to “cut out late night snacking and lose 30 pounds.” Like millions of Americans, Ms. Irish, 31, usually makes it about two weeks. But this year is different. “I’ve already lost 18 pounds,” she said, “and maintained my diet more consistently than ever. Even more amazing — I rarely even think about snacking at night anymore.” Ms. Irish credits a new wearable device called Pavlok for doing what years of diets, weight-loss programs, expensive gyms and her own willpower could not. Whenever she takes a bite of the foods she wants to avoid, like chocolate or Cheez-Its, she uses the Pavlok to give herself a lightning-quick electric shock. “Every time I took a bite, I zapped myself,” she said. “I did it five times on the first night, two times on the second night, and by the third day I didn’t have any cravings anymore.” As the name suggests, the $199 Pavlok, worn on the wrist, uses the classic theory of Pavlovian conditioning to create a negative association with a specific action. Next time you smoke, bite your nails or eat junk food, one tap of the device or a smartphone app will deliver a shock. The zap lasts only a fraction of a second, though the severity of the shock is up to you. It can be set between 50 volts, which feels like a strong vibration, and 450 volts, which feels like getting stung by a bee with a stinger the size of an ice pick. (By comparison, a police Taser typically releases about 50,000 volts.) Other gadgets and apps dabble in behavioral change by way of aversion therapy, such as the $49 MotivAider that is worn like a pager, or the $99 RE-vibe wristband. Both can be set to vibrate at specific intervals as a reminder of a habit to break or a goal to reach. The $80 Lumo Lift posture coach is a wearable disk that vibrates when you slouch. The $150 Spire clip-on sensor tracks physical activity and state of mind by detecting users’ breathing patterns. If it detects you’re stressed or anxious, it vibrates or sends a notification to your smartphone to take a deep breath. © 2016 The New York Times Company

Keyword: Learning & Memory
Link ID: 22171 - Posted: 05.03.2016

By Julia Shaw In the last couple of years memory science has really upped its game. I generally write about social processes that can change our memories, but right now I can’t help but get excited that memory science is getting an incredible new toy to play with. A toy that I believe will revolutionise how we talk about, and deal with, memory. This not-so-new sounding, but totally-newly-applied, neuroscience toy is ultrasound. Ultrasound is also called sonography and is essentially a type of ‘medical sonar’. It has revolutionized medicine since the 1940s, giving us the ability to look into the body in a completely safe way (without leaving icky radiation behind, like xrays). Beyond predicting whether your baby shower will be blue or pink, lesser known applications of ultrasound include the ability to essentially burn and destroy cells inside your body. As such, it has been successfully used to do surgery without making any cuts into the human body. This is a technique that has been used to remove cancerous cells while not affecting any of the surrounding tissue, and without any of the side-effects associated with other kinds of cancer treatment. This is referred to by scientist Yoav Medan as focused ultrasound. If you are unfamiliar with this, you need to watch this TED talk. Non-invasive procedures like this are the future of surgery. Non-invasive procedures are also the future of neuroscience. It is at this point that we find ourselves at the application of this astonishing science to memory research. © 2016 Scientific American

Keyword: Brain imaging; Learning & Memory
Link ID: 22170 - Posted: 05.03.2016

by Laura Sanders Some researchers believe that when memories are called to mind, they enter a fragile, wobbly state during which they are vulnerable to being weakened or changed. One way to erode old memories is to learn something new just after recalling the older memory, scientists reported in 2003 (SN: 10/11/2003, p. 228). But that result itself is wobbly, scientists report April 25 in the Proceedings of the National Academy of Sciences. In an attempt to replicate the original finding, experimental psychologist Tom Hardwicke of University College London and colleagues didn’t see any memory alterations in people who learned a new sequence of finger taps shortly after recalling an old sequence. Nor did the researchers turn up signs of this memory interference in other tests. The new study focused specifically on new learning, but the findings cast suspicion on the legitimacy of other ways to interfere with people’s memories, Hardwicke says. Approaches such as brain stimulation or drugs might also be flawed, the researchers argue. © Society for Science & the Public 2000 - 2016

Keyword: Learning & Memory
Link ID: 22141 - Posted: 04.26.2016

Eleanor Ainge Roy in Dunedin An octopus has made a brazen escape from the national aquarium in New Zealand by breaking out of its tank, slithering down a 50-metre drainpipe and disappearing into the sea. In scenes reminiscent of Finding Nemo, Inky – a common New Zealand octopus – made his dash for freedom after the lid of his tank was accidentally left slightly ajar. Staff believe that in the middle of the night, while the aquarium was deserted, Inky clambered to the top of his cage, down the side of the tank and travelled across the floor of the aquarium. Rob Yarrell, national manager of the National Aquarium of New Zealand in Napier, said: “Octopuses are famous escape artists. “But Inky really tested the waters here. I don’t think he was unhappy with us, or lonely, as octopus are solitary creatures. But he is such a curious boy. He would want to know what’s happening on the outside. That’s just his personality.” One theory is that Inky slid across the aquarium floor – a journey of three or four metres – and then, sensing freedom was at hand, into a drainpipe that lead directly to the sea. The drainpipe was 50 metres long, and opened on to the waters of Hawke’s Bay, on the east coast of New Zealand’s North Island. Another possible escape route could have involved Inky squeezing into an open pipe at the top of his tank, which led under the floor to the drain. © 2016 Guardian News and Media Limited

Keyword: Intelligence; Evolution
Link ID: 22103 - Posted: 04.14.2016

By Gareth Cook What are the most intelligent creatures on the planet? Humans come first. (Though there are days when we have to wonder.) After Homo sapiens, most people might answer chimpanzees, and then maybe dogs and dolphins. But what of birds? The science writer Jennifer Ackerman offers a lyrical testimony to the wonders of avian intelligence in her new book, “The Genius of Birds.” There have long been hints of bird smarts, but it’s become an active field of scientific inquiry, and Ackerman serves as tour guide. She answered questions from Mind Matters editor Gareth Cook. What drew you to birds? I’ve watched birds for most of my life. I admire all the usual things about them. Their plumage and song. Their intense way of living. Their flight. I also admire their resourcefulness and pluck. I’ve always been intrigued by their apparently smart behavior, whether learned or innate. I grew up in Washington, D.C. — the second youngest in a gaggle of five girls. My parents had precious little time for one-on-one. Especially my dad, who had a demanding government job. So when he asked me if I wanted to go birdwatching with him one spring morning when I was seven or eight, I jumped at the chance. It was magical, going out in the dark woods along the C&O canal and listening for bird song. My father had learned his calls and songs in Boy Scout camp from an expert, an elderly Greek man named Apollo, so he was pretty good at identifying birds, even the shy woodland species. Eventually he gave me my own copy of Peterson’s Field Guide, along with a small pair of binoculars. I’ve loved birds ever since. My first run in with a clever bird was on our dining room table. We had a pet parakeet, a budgerigar named Gre-Gre, who was allowed to fly around the dining room and perch on our head or shoulders. He had a kind of social genius. He made you love him. But at breakfast, it was impossible to eat your cereal without his constant harassment. He liked to perch on the edge of my bowl and peck at the cereal, flapping his wings frantically to keep his balance, splashing my milk. I’d build a barricade of boxes around my place setting, but he always found a way in, moving a box or popping over the top. He was a good problem-solver. © 2016 Scientific American

Keyword: Intelligence; Evolution
Link ID: 22101 - Posted: 04.13.2016

Sam Doernberg and Joe DiPietro It’s the first day of class, and we—a couple of instructors from Cornell—sit around a table with a few of our students as the rest trickle in. Anderson, one of the students seated across from us, smiles and says, “I’m going to get an A+ in your class.” “No,” VanAntwerp retorts, “I’m getting the A+.” You might think that this scene is typical of classes at a school like Cornell University, where driven students compete for top marks. But this didn’t happen on a college campus: It took place in a maximum-security prison. To the outside world, they are inmates, but in the classroom, they are students enrolled in the Cornell Prison Education Program, or “CPEP.” Per New York State Department of Corrections rules, we have permission to use the inmates’ last names only—which is also often how we know them best. Those who graduate from the program—taught by Cornell instructors—will receive an associate’s degree from Cayuga Community College. Before teaching neuroscience to prison inmates, we taught it to Cornell undergraduates as part of the teaching staff for Cornell’s Introduction to Neuroscience course. Most Cornell neuroscience students are high-achieving biology majors and premeds, who are well prepared to succeed in a demanding course. They generally have gone from one academic success to another, and it is no secret that they expect a similar level of success in a neuroscience class. © 2016 by The Atlantic Monthly Group

Keyword: Learning & Memory
Link ID: 22093 - Posted: 04.12.2016

By Melinda Wenner Moyer What if you could pop a pill that made you smarter? It sounds like a Hollywood movie plot, but a new systematic review suggests that the decades-long search for a safe and effective “smart drug” (see below) might have notched its first success. Researchers have found that modafinil boosts higher-order cognitive function without causing serious side effects. Modafinil, which has been prescribed in the U.S. since 1998 to treat sleep-related conditions such as narcolepsy and sleep apnea, heightens alertness much as caffeine does. A number of studies have suggested that it could provide other cognitive benefits, but results were uneven. To clear up the confusion, researchers then at the University of Oxford analyzed 24 studies published between 1990 and 2014 that specifically looked at how modafinil affects cognition. In their review, which was published last year in European Neuropsychopharmacology, they found that the methods used to evaluate modafinil strongly affected the outcomes. Research that looked at the drug's effects on the performance of simple tasks—such as pressing a particular button after seeing a certain color—did not detect many benefits. Yet studies that asked participants to do complex and difficult tasks after taking modafinil or a placebo found that those who took the drug were more accurate, which suggests that it may affect “higher cognitive functions—mainly executive functions but also attention and learning,” explains study co-author Ruairidh Battleday, now a medical doctor and Ph.D. student at the University of California, Berkeley. But don't run to the pharmacy just yet. Although many doctors very likely prescribe the drug off-label to help people concentrate—indeed, a 2008 survey by the journal Nature found that one in five of its readers had taken brain-boosting drugs, and half those people had used modafinil—trials have not yet been done on modafinil's long-term effectiveness or safety. © 2016 Scientific American

Keyword: Drug Abuse; Learning & Memory
Link ID: 22085 - Posted: 04.09.2016

Laura Sanders NEW YORK — Cells in a brain structure known as the hippocampus are known to be cartographers, drawing mental maps of physical space. But new studies show that this seahorse-shaped hook of neural tissue can also keep track of social space, auditory space and even time, deftly mapping these various types of information into their proper places. Neuroscientist Rita Tavares described details of one of these new maps April 2 at the annual meeting of the Cognitive Neuroscience Society. Brain scans had previously revealed that activity in the hippocampus was linked to movement through social space. In an experiment reported last year in Neuron, people went on a virtual quest to find a house and job by interacting with a cast of characters. Through these social interactions, the participants formed opinions about how much power each character held, and how kindly they felt toward him or her. These judgments put each character in a position on a “social space” map. Activity in the hippocampus was related to this social mapmaking, Tavares and colleagues found. It turns out that this social map depends on the traits of the person who is drawing it, says Tavares, of Icahn School of Medicine at Mount Sinai in New York City. People with more social anxiety tended to give more power to characters they interacted with. What’s more, these people's social space maps were smaller overall, suggesting that they explored social space less, Tavares says. Tying these behavioral traits to the hippocampus may lead to a greater understanding of social behavior — and how this social mapping may go awry in psychiatric conditions, Tavares said. © Society for Science & the Public 2000 - 2016.

Keyword: Learning & Memory
Link ID: 22076 - Posted: 04.06.2016

by Daniel Galef Footage from a revolutionary behavioural experiment showed non-primates making and using tools just like humans. In the video, a crow is trying to get food out of a narrow vessel, but its beak is too short for it to reach through the container. Nearby, the researchers placed a straight wire, which the crow bent against a nearby surface into a hook. Then, holding the hook in its beak, it fished the food from the bottle. Corvids—the family of birds that includes crows, ravens, rooks, jackdaws, and jays—are pretty smart overall. Although not to the level of parrots and cockatoos, ravens can also mimic human speech. They also have a highly developed system of communication and are believed to be among the most intelligent non-primate animals in existence. McGill Professor Andrew Reisner recalls meeting a graduate student studying corvid intelligence at Oxford University when these results were first published in 2015. “I had read early in the year that some crows had been observed making tools, and I mentioned this to him,” Reisner explained. “He said that he knew about that, as it had been he who had first observed it happening. Evidently the graduate students took turns watching the ‘bird box,’ […] and the tool making first occurred there on his shift.”

Keyword: Evolution; Intelligence
Link ID: 22072 - Posted: 04.06.2016