Chapter 7. Life-Span Development of the Brain and Behavior

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 4488

By David Dobbs It’s difficult to tell what Gina Pace wants unless you already know what she wants. But sometimes that’s easy, and this is one of those times: Gina wants pizza. “I-buh!” she says repeatedly—her version of “I want.” We all do. We are sitting at Abate’s in New Haven, Connecticut, a town famous for—among other things—pizza and science. Gina and her father, Bernardo, who live on Staten Island in New York City, have made the two-hour drive here for both. The pizza is in the oven. The science is already at the table, represented by Abha Gupta, a developmental pediatrician at Yale’s renowned Child Study Center. Gupta is one of the few scientific experts on a condition that Bernardo and Gina know through hard experience. Gina, now 24, was diagnosed 20 years ago with childhood disintegrative disorder, or CDD. CDD is the strangest and most unsettling developmental condition you have probably never heard of. Also known as Heller’s syndrome, for the Austrian special educator who first described it in 1908, it is a late-blooming, viciously regressive form of autism. It’s rare, striking about 1 or 2 in every 100,000 children. After developing typically for two to 10 years (the average is three or four), a child with CDD will suffer deep, sharp reversals along multiple lines of development, which may include language, social skills, play skills, motor skills, cognition, and bladder or bowel control. The speed and character of this reversal varies, but it often occurs in a horrifyingly short period—as short as a couple of months, says Gupta. In about 75 percent of cases, this loss of skills is preceded by days or weeks in which the child experiences intense anxiety and even terror: nightmares and waking nightmares and bouts of confused, jumpy disturbance that resemble psychosis.

Keyword: Autism; Development of the Brain
Link ID: 22423 - Posted: 07.11.2016

By Jane E. Brody To stem the current epidemic of obesity, there’s no arguing with the adage that an ounce of prevention is worth a pound of cure. As every overweight adult knows too well, shedding excess pounds and keeping them off is far harder than putting them on in the first place. But assuring a leaner, healthier younger generation may often require starting even before a baby is born. The overwhelming majority of babies are lean at birth, but by the time they reach kindergarten, many have acquired excess body fat that sets the stage for a lifelong weight problem. Recent studies indicate that the reason so many American children become overweight is far more complicated than consuming more calories than they burn, although this is certainly an important factor. Rather, preventing children from acquiring excess body fat may have to start even before their mothers become pregnant. Researchers are tracing the origins of being overweight and obese as far back as the pre-pregnancy weight of a child’s mother and father, and their explanations go beyond simple genetic inheritance. Twenty-three genes are known to increase the risk of becoming obese. These genes can act very early in development to accelerate weight gain in infancy and during middle childhood. In the usual weight trajectory, children are born lean, get chubby during infancy, then become lean again as toddlers when they grow taller and become more active. Then, at or before age 10 or so, body fat increases in preparation for puberty – a phenomenon called adiposity rebound. In children with obesity genes, “adiposity rebound occurs earlier and higher,” said Dr. Daniel W. Belsky, an epidemiologist at Duke University School of Medicine. “They stop getting leaner sooner and start putting on fat earlier and put on more of it.” © 2016 The New York Times Company

Keyword: Obesity; Development of the Brain
Link ID: 22421 - Posted: 07.11.2016

By Aviva Rutkin At first glance, she was elderly and delicate – a woman in her 90s with a declining memory. But then she sat down at the piano to play. “Everybody in the room was totally startled,” says Eleanor Selfridge-Field, who researches music and symbols at Stanford University. “She looked so frail. Once she sat down at the piano, she just wasn’t frail at all. She was full of verve.” Selfridge-Field met this woman, referred to as ME to preserve her privacy, at a Christmas party around eight years ago. ME, who is now aged 101, has vascular dementia: she rarely knows where she is, and doesn’t recognise people she has met in the last few decades. But she can play nearly 400 songs by ear – a trick that depends on tapping into a memory of previously stored musical imprints – and continues to learn new songs just by listening to them. She has even composed an original piece of her own. ME’s musical talent, despite her cognitive impairments, inspired Selfridge-Field to spend the last six years observing her, and she presented her observations today at the International Conference on Music Perception and Cognition in San Francisco, California. ME experienced a stroke-like attack when she was in her 80s, and a few years later was diagnosed with vascular dementia. She struggles most to remember events and encounters that are recent, and her memory is selective, focusing on specific periods – such as her childhood between the ages of 3 and 8. She can recognise people that she met before the age of about 75 to 80. She is never quite sure of her surroundings. © Copyright Reed Business Information Ltd.

Keyword: Alzheimers
Link ID: 22420 - Posted: 07.11.2016

Beatrice Alexandra Golomb, Statins can indeed produce neurological effects. These drugs are typically prescribed to lower cholesterol and thereby reduce the risk of heart attack and stroke. Between 2003 and 2012 roughly one in four Americans aged 40 and older were taking a cholesterol-lowering medication, according to the Centers for Disease Control and Prevention. But studies show that statins can influence our sleep and behavior—and perhaps even change the course of neurodegenerative conditions, including dementia. The most common adverse effects include muscle symptoms, fatigue and cognitive problems. A smaller proportion of patients report peripheral neuropathy—burning, numbness or tingling in their extremities—poor sleep, and greater irritability and aggression. Interestingly, statins can produce very different outcomes in different patients, depending on an individual's medical history, the statin and the dose. Studies show, for instance, that statins generally reduce the risk of ischemic strokes—which arise when a blocked artery or blood clot cuts off oxygen to a brain region—but can also increase the risk of hemorrhagic strokes, or bleeding into the brain. Statins also appear to increase or decrease aggression. In 2015 my colleagues and I observed that women taking statins, on average, showed increased aggression; men typically showed less, possibly because of reduced testosterone levels. Some men in our study did experience a marked increase in aggression, which was correlated with worsening sleep. © 2016 Scientific American

Keyword: ALS-Lou Gehrig's Disease ; Alzheimers
Link ID: 22419 - Posted: 07.11.2016

by Adriana Heguy, molecular biologist and genomics researcher: Interestingly, tongue-curling ability is not solely genetic, and the genetic component may be very small. Monozygotic (identical) twins are not always concordant for tongue-curling ability, so if there is a genetic component, it’s clearly not Mendelian. In other words, it’s not a trait coded by one single gene, and it’s clearly influenced by the environment—in this case, practice. But for some reason this is one of the “myths” about genetics that gets spread around in high school, where it is used as an example of a simple Mendelian trait with a simple dominant-recessive nature. It’s hard to comment on the evolutionary purpose of an ability so heavily influenced by the environment, and not obviously useful. There are many traits for which we do not have the faintest idea why they exist or what purpose they serve. In the case of tongue-curling, it’s possible that it’s a case of fine motor control of the tongue. We need to be able to move our tongues to not bite them when we eat, for example, and for swirling food around. For unknown reasons, some individuals are better than others at controlling tongue movement. And since the ability can be acquired by practicing (though not everybody apparently succeeds), it does seem likely that it is indeed a question of motor control. Most people are able to do it. It’s quite common. But it could be that evolution had nothing to do with it. Or it could be a spandrel; in other words, a side effect of evolution. Maybe the evolution of dexterity or finer motor control of other muscles resulted in tongue “dexterity.” It’s possible that it is an atavism, something that increased tongue muscle control was once useful for tasting or eating certain kinds of foods millions of years ago, and it has not disappeared because the developmental program for fine muscle control is still there.

Keyword: Genes & Behavior; Evolution
Link ID: 22415 - Posted: 07.09.2016

By Louise Whiteley It’s an appealing idea: the notion that understanding the learning brain will tell us how to maximise children’s potential, bypassing the knotty complexities of education research. But promises to replace sociological complexity with biological certainty should always be treated with caution. Hilary and Steven Rose are deeply sceptical of claims that neuroscience can inform education and early intervention policy, and deeply concerned about the use of such claims to support neoliberal agendas. They argue that focusing on the brain encourages a focus on the individual divorced from their social context, and that this is easily aligned with a view of poor achievement as a personal moral failing, rather than a practical consequence of poverty and inequality. Whether or not you end up cheerleading for the book’s political agenda, its deconstruction of faulty claims about how neuroscience translates into the classroom is relevant to anyone interested in education. The authors tear apart the scientific logic of policy documents, interrogate brain-based interventions and dismantle prevalent neuro-myths. One of the book’s meatiest chapters deals with government reports advocating early intervention to increase “mental capital”, and thus reduce the future economic burden of deprived, underachieving brains. As we discover, the neuroscientific foundations of these reports are shaky. For instance, they tend to assume that the more synaptic connections between brain cells the better, and that poor environment in a critical early period permanently reduces the number of synapses. This makes early intervention focusing on the individual child and “poor parenting” seem like the obvious solution. But pruning of synapses is just as important to brain development, and learning involves the continual forming and reforming of synaptic connections. More is not necessarily better. And while an initial explosion in synapses can be irreversibly disrupted by extreme neglect, the evidence just isn’t there yet for extrapolating this to the more common kinds of childhood deprivation that such reports address.

Keyword: Development of the Brain; Learning & Memory
Link ID: 22409 - Posted: 07.08.2016

By Jessica Hamzelou TEENAGE pregnancies have hit record lows in the Western world, largely thanks to increased use of contraceptives of all kinds. But strangely, we don’t really know what hormonal contraceptives – pills, patches and injections that contain synthetic sex hormones – are doing to the developing bodies and brains of teenage girls. You’d be forgiven for assuming that we do. After all, the pill has been around for more than 50 years. It has been through many large trials assessing its effectiveness and safety, as have the more recent patches and rings, and the longer-lasting implants and injections. But those studies were done in adult women – very few have been in teenage girls. And biologically, there is a big difference. At puberty, our bodies undergo an upheaval as our hormones go haywire. It isn’t until our 20s that things settle down and our brains and bones reach maturity. “If a drug is going to be given to 11 and 12-year-olds, it needs to be tested in 11 and 12-year-olds,” says Joe Brierley of the clinical ethics committee at Great Ormond Street Hospital in London. Legislation introduced in the US in 2003 and in Europe in 2007 was intended to make this happen but a New Scientist investigation can reveal that there is still scant data on what contraceptives actually do to developing girls. The few studies that have been done suggest that tipping the balance of oestrogen and progesterone during this time may have far-reaching effects, although there is not yet enough data to say whether we should be alarmed. © Copyright Reed Business Information Ltd.

Keyword: Hormones & Behavior; Development of the Brain
Link ID: 22407 - Posted: 07.08.2016

By ERICA GOODE Irving Gottesman, a pioneer in the field of behavioral genetics whose work on the role of heredity in schizophrenia helped transform the way people thought about the origins of serious mental illness, died on June 29 at his home in Edina, Minn., a suburb of Minneapolis. He was 85. His wife, Carol, said he died while taking an afternoon nap. Although Dr. Gottesman had some health problems, she said, his death was unexpected, and several of his colleagues said they received emails from him earlier that day. Dr. Gottesman was perhaps best known for a study of schizophrenia in British twins he conducted with another researcher, James Shields, at the Maudsley Hospital in London in the 1960s. The study, which found that identical twins were more likely than fraternal twins to share a diagnosis of schizophrenia, provided strong evidence for a genetic component to the illness and challenged the notion that it was caused by bad mothering, the prevailing view at the time. But the findings also underscored the contribution of a patient’s environment: If genes alone were responsible for schizophrenia, the disorder should afflict both members of every identical pair; instead, it appeared in both twins in only about half of the identical pairs in the study. This interaction between nature and nurture, Dr. Gottesman believed, was critical to understanding human behavior, and he warned against tilting too far in one direction or the other in explaining mental illness or in accounting for differences in personality or I.Q. © 2016 The New York Times Company

Keyword: Schizophrenia; Genes & Behavior
Link ID: 22405 - Posted: 07.07.2016

By David Shultz Making eye contact for an appropriate length of time is a delicate social balancing act: too short, and we look shifty and untrustworthy; too long, and we seem awkward and overly intimate. To make this Goldilocks-like dilemma even trickier, it turns out that different people prefer to lock eyes for different amounts of time. So what’s too long or too short for one person might be just right for another. In a new study, published today in Royal Society Open Science, researchers asked a group of 498 volunteers to watch a video of an actor staring out from a screen and press a button if their gazes met for an uncomfortably long or short amount of time (above). During the test, the movement of their eyes and the size of their pupils were recorded with eye-tracking technology. On average, participants had a “preferred gaze duration” of 3.3 seconds, give or take 0.7 seconds. That’s a pretty narrow band for someone on their first date! Making things even harder, individual preferences can also be measured: Researchers found that how quickly people’s pupils dilated—an automatic reflex whenever someone looks into the eyes of another—was a good indicator of how long they wanted to gaze. The longer their preferred gaze, the faster their pupils expanded. The differences are so subtle, though, that they can only be seen with the eye-tracking software—making any attempts to game the system is likely to end up awkward rather than informative. © 2016 American Association for the Advancement of Science.

Keyword: Autism; Emotions
Link ID: 22398 - Posted: 07.06.2016

Carl Zimmer Our genes are not just naked stretches of DNA. They’re coiled into intricate three-dimensional tangles, their lengths decorated with tiny molecular “caps.” These so-called epigenetic marks are crucial to the workings of the genome: They can silence some genes and activate others. Epigenetic marks are crucial for our development. Among other functions, they direct a single egg to produce the many cell types, including blood and brain cells, in our bodies. But some high-profile studies have recently suggested something more: that the environment can change your epigenetic marks later in life, and that those changes can have long-lasting effects on health. In May, Duke University researchers claimed that epigenetics could explain why people who grow up poor are at greater risk of depression as adults. Even more provocative studies suggest that when epigenetic marks change, people can pass them to their children, reprogramming their genes. But criticism of these studies has been growing. Some researchers argue that the experiments have been weakly designed: Very often, they say, it’s impossible for scientists to confirm that epigenetics is responsible for the effects they see. Three prominent researchers recently outlined their skepticism in detail in the journal PLoS Genetics. The field, they say, needs an overhaul. “We need to get drunk, go home, have a bit of a cry, and then do something about it tomorrow,” said John M. Greally, one of the authors and an epigenetics expert at the Albert Einstein College of Medicine in New York. © 2016 The New York Times Company

Keyword: Epigenetics; Genes & Behavior
Link ID: 22391 - Posted: 07.02.2016

By Tara Parker-Pope About one in eight women take an antidepressant at some time during pregnancy, reports Roni Rabin in today’s Science Times. But is it safe? Some new research shows that antidepressant use during pregnancy may be linked to certain problems in newborns. A new review of the medical literature concludes that treatment decisions for depression during pregnancy must be made on a case-by-case basis. “There’s not a one-size-fits-all answer,” said Dr. Kimberly Yonkers, a professor of psychiatry and obstetrics and gynecology at Yale School of Medicine who was the report’s lead author, and who acknowledged receiving research support from antidepressant manufacturers. “You can’t say, ‘Stop medication for all women because it’s harmful,’ and you can’t put all women on medication either.” To learn more, read the full story, “Depression Is a Dilemma for Women in Pregnancy,” and then please join the discussion below. Did you experience depression during pregnancy? Did you take medication to treat it? © 2016 The New York Times Company

Keyword: Depression; Development of the Brain
Link ID: 22386 - Posted: 07.01.2016

By Amina Zafar, CBC News The Zika virus can cause devastating brain defects in newborns with microcephaly, but also in babies with normal-sized heads and those born to women infected late in pregnancy, Brazilian doctors say. In Wednesday's issue of the journal The Lancet, researchers said that of 602 babies born in Brazil with definite or probable Zika cases one in five had head circumferences in the normal range. Dr. Cesar Victora of the Federal University of Pelotas in Rio Grande do Sul, Brazil, and his team say the current focus on screening for microcephaly or small head circumference alone is too narrow. "We should not equate Zika congenital infection with microcephaly," Victora said in an interview from Washington. "We could well have many babies with normal head size who are affected. We will need to think about other exams to screen these babies, such as improving the diagnostic test we have for Zika and also possibly in areas that are undergoing an epidemic, doing ultrasound of the brains of these babies as soon as they are born." The epidemic in the worst-hit northeastern regions of the country peaked in November 2015. While the current season is cooler and mosquitoes aren't reproducing in Brazil, public health authorities continue to advise pregnant women to avoid travel to countries with Zika outbreaks. Countries in South Asia, the Western Pacific Islands, and South and Central America also have outbreaks. ©2016 CBC/Radio-Canada.

Keyword: Development of the Brain
Link ID: 22384 - Posted: 07.01.2016

By Rachel Rabkin Peachman It began with a simple roller-skating accident three years ago. Taylor Aschenbrenner, then 8 years old, lost her balance amid a jumble of classmates, tumbled to the floor and felt someone else’s skate roll over her left foot. The searing pain hit her immediately. The diagnosis, however, would take much longer. An X-ray, M.R.I.s, a CT scan and blood tests over several months revealed no evidence of a break, sprain or other significant problem. Taylor’s primary symptom was pain — so severe that she could not put weight on the foot. “Our family doctor first told us to give it some time,” said Taylor’s mother, Jodi Aschenbrenner, of Hudson, Wis. But time didn’t heal the pain. After about a month, an orthopedist recommended physical therapy. That didn’t end the problem, either. “I couldn’t walk or play outside or do anything,” Taylor said. After she had spent a year and a half on crutches, her orthopedist suggested she see Dr. Stefan Friedrichsdorf, the medical director ofpain medicine, palliative care and integrative medicine at Children’s Hospitals and Clinics of Minnesota. He and his team promptly recognized Taylor’s condition as complex regional pain syndrome, a misfiring within the peripheral and central nervous systems that causes pain signals to go into overdrive and stay turned on even after an initial injury or trauma has healed. He came up with a treatment plan for Taylor that included cognitive behavioral therapy, physical therapy, mind-body techniques, stress-reduction strategies, topical pain-relief patches and a focus on returning to her normal life and sleep routine, among other things. © 2016 The New York Times Company

Keyword: Pain & Touch; Development of the Brain
Link ID: 22368 - Posted: 06.28.2016

By Perri Klass, M.D. In the 1990s, in my first month in practice as a pediatrician, I asked the mother of a 4-year-old about discipline and she told me that her son was often out of line and wild, and spanking was the only thing that worked, though she was sure I was going to tell her not to, just as her previous pediatrician had done. Around the same time, my colleague in the same clinic walked into an exam room to find a cranky toddler who was acting out, and a frustrated father who was taking off his belt and threatening punishment. In each case, and in many others, we had to decide how to talk to the parents, and whether to bring up the issue of child abuse — which is definitely an issue when a child is being struck, or threatened, with a belt. Corporal punishment, also known as “physical discipline,” has become illegal in recent decades in many countries, starting with Sweden in 1979. The United States is not one of those countries, and pediatricians regularly find ourselves talking with parents about why hitting children is a bad idea. The American Academy of Pediatrics officially recommends against physical discipline, saying that evidence shows it is ineffective and puts children at risk for abuse; pediatricians are mandated reporters, responsible for notifying the authorities if we think there is a possibility of abuse, though the boundaries are not clearly defined by law. But many parents continue to spank, even when they don’t think it does much good. In a recent report by the nonprofit organization Zero to Three of a national sample of 2,200 parents of children birth to age 5, parents were asked which discipline strategies they used a few times a week or more. Twenty-six percent said they “pop or swat” their child, 21 percent spank, and 17 percent reported hitting with an object like a belt or a wooden spoon. (Parents could respond that they used more than one strategy.) Zero to Three reported that even those who used these strategies frequently did not rate them as effective, and 30 percent agreed with the statement, “I spank even though I don’t feel O.K. about it.” © 2016 The New York Times Company

Keyword: Aggression; Development of the Brain
Link ID: 22362 - Posted: 06.27.2016

By Elizabeth Pennisi Cave fish have long fascinated biologists because of their missing eyes and pale skin. Now, one researcher is studying them for another reason: Their behavior may provide clues to the genetic basis of some human psychiatric disorders. Last week at the 23rd International Conference on Subterranean Biology in Fayetteville, Arkansas, he demonstrated how drugs that help people with schizophrenia and autism similarly affect the fish. “I think there is a lot of potential” for these fish to teach us about mental disorders, says David Culver, an evolutionary biologist at American University in Washington, D.C., who was not involved in the study. Culver adds that—like other work on the cause of cave fish blindness—the new research may also have implications for human disease. A decade ago, the lead author on the new study, Masato Yoshizawa, wanted to understand brain evolution by investigating the effects of natural selection on behavior. The Mexican tetra (Astyanax mexicanus), a cave fish with very close surface relatives, seemed an excellent prospect for that work. Because the two populations can interbreed, it’s easier to pin down genes that might be related to the neural defects underlying behavioral differences. Such breeding studies are not possible in humans. The blind cave fish differ from their surface relatives in several notable ways. They don’t have a social structure and they don’t school. Instead, they lead solitary lives—a behavior that makes sense given their lack of natural predators. They also almost never sleep. They are hyperactive, and—unlike other fish—they are attracted to certain vibrations in the water. Finally, they tend to do the same behavior over and over again and seem to have higher anxiety than their surface relatives. © 2016 American Association for the Advancement of Science.

Keyword: Autism; Vision
Link ID: 22361 - Posted: 06.25.2016

By Nancy Stearns Bercaw In her memoir “Aliceheimer’s: Alzheimer’s Through the Looking Glass,” Dana Walrath uses drawings and stories to chronicle three years of caregiving for her mother, Alice, who was in the middle stages of Alzheimer’s disease. The experience turned out to be a magical trip down the rabbit hole of memory loss, an outcome that inspired Dr. Walrath, a medical anthropologist who taught at the University of Vermont College of Medicine and who also studied art and writing, to share their tale. Refusing to accept the dominant narrative of Alzheimer’s disease as a horror story, Dr. Walrath used the techniques of graphic medicine to create “Aliceheimer’s,” an 80-page, 35-picture tribute to her mother’s animated mind. Graphic medicine uses text and graphics to, as she writes in the book’s introduction, “let us better understand those who are hurting, feel their stories, and redraw and renegotiate those social boundaries.” We spoke with Dr. Walrath to learn more about graphic medicine, how the book came into being, and what it can teach others about caring for someone with Alzheimer’s disease. Here’s an edited excerpt of our conversation. Q. You say that “Aliceheimer’s” found you, not the other way around. What’s the backstory of your story? A. After a lifetime of mutually abrasive interaction, my mother moved into my home when a lock-down memory-care unit was her only other option. The years of living together not only brought us closure, but it also integrated my disparate career threads. Medical anthropology, creative writing, visual art — who knew they were connected? I sure didn’t. But Alice must have. During dementia, she said to me, “You should quit your job and make art full time.” © 2016 The New York Times Company

Keyword: Alzheimers
Link ID: 22350 - Posted: 06.23.2016

Alison Abbott It isn’t a scam, as neuroscientist Elena Cattaneo had first assumed. A total stranger really has left the prominent Italian, who is also a senator and a relentless campaigner against the misuse of science, his entire fortune to distribute for research. The sum is likely to be upwards of €1.5 million (US$1.7 million). The short, handwritten will of Franco Fiorini, an accountant from the small town of Molinella near Bologna, was officially made public on 21 June. “I’ll never know for sure why he decided to do this,” says Cattaneo, who adds that she has wept with regret that she cannot thank Fiorini. “But it gives a hopeful message that there are some people like Franco who are able to work out on their own the importance of science and research for Italy’s future.” She intends to make the money available for fellowships for young scientists in Italy, where funds for research are notoriously scarce. Cattaneo, who is based at the University of Milan, is no ordinary researcher. In 2013, then-president Giorgio Napolitano appointed her a senator-for-life in recognition of her activities in promoting science. One of her most famous achievements, made with a handful of colleagues, was a successful two-year battle to stop the Stamina Foundation in Brescia from administering unproven stem-cell therapies. Fiorini died on 21 May at the age of 64. A wheelchair user since a bout of childhood polio left him partially paralysed, he had been director of a construction company in Molinella before taking early retirement 15 years ago. © 2016 Macmillan Publishers Limited,

Keyword: Stem Cells
Link ID: 22349 - Posted: 06.23.2016

Laura Sanders Busy nerve cells in the brain are hungry and beckon oxygen-rich blood to replenish themselves. But active nerve cells in newborn mouse brains can’t yet make this request, and their silence leaves them hungry, scientists report June 22 in the Journal of Neuroscience. Instead of being a dismal starvation diet, this lean time may actually spur the brain to develop properly. The new results, though, muddy the interpretation of the brain imaging technique called functional MRI when it is used on infants. Most people assume that all busy nerve cells, or neurons, signal nearby blood vessels to replenish themselves. But there were hints from fMRI studies of young children that their brains don’t always follow this rule. “The newborn brain is doing something weird,” says study coauthor Elizabeth Hillman of Columbia University. That weirdness, she suspected, might be explained by an immature communication system in young brains. To find out, she and her colleagues looked for neuron-blood connections in mice as they grew. “What we’re trying to do is create a road map for what we think you actually should see,” Hillman says. When 7-day-old mice were touched on their hind paws, a small group of neurons in the brain responded instantly, firing off messages in a flurry of activity. Despite this action, no fresh blood arrived, the team found. By 13 days, the nerve cell reaction got bigger, spreading across a wider stretch of the brain. Still the blood didn’t come. But by the time the mice reached adulthood, neural activity prompted an influx of blood. The results show that young mouse brains lack the ability to send blood to busy neurons, a skill that influences how the brain operates (SN: 11/14/15, p. 22). © Society for Science & the Public 2000 - 2016.

Keyword: Development of the Brain; Brain imaging
Link ID: 22348 - Posted: 06.22.2016

Bentley Yoder was born with his brain outside his skull. Doctors said he didn’t have a chance, but he not only survived—he thrived. Now, some seven months later, Bentley has undergone reconstructive surgery to move his brain back into his skull. Bentley’s parents, Sierra and Dustin, both 25, found out something was wrong when they went in for a routine ultrasound at 22 weeks. Still in the womb, he was diagnosed with a rare condition called encephalocele, or cranium bifidum, in which parts of the brain protrude outside of gaps that have formed in the developing skull. The parents were told that their baby likely wouldn’t survive very long after birth, or that if he did he wouldn’t have any brain function; he was simply “incompatible with life.” As Sierra told the Washington Post, “We had no hope whatsoever.” The parents were unwilling to terminate the pregnancy, saying they wanted at least one chance to meet him before saying goodbye. To virtually everyone’s surprise, Bentley came out on his due date, October 31, 2015, kicking and screaming. After the first 36 hours, Sierra and Dustin had to take him home wearing the only onesie they bothered to purchase. Over the course of the next few weeks and months, Bentley continued to march on, save for a staph infection in his lungs. Aside from the large sac containing critical parts of his brain atop his head, Bentley developed normally. He continued to grow, and cried when he was hungry. The doctors were incredulous, and insisted that the growth above his head was just “damaged tissue,” and that “there’s no way it could be functioning,” but Bentley’s behaviors and normal developmental trajectory suggested otherwise.

Keyword: Development of the Brain
Link ID: 22347 - Posted: 06.22.2016

Agata Blaszczak-Boxe, People with higher levels of education may be more likely to develop certain types of brain tumors, a new study from Sweden suggests. Researchers found that women who completed at least three years of university courses were 23 percent more likely to develop a type of cancerous brain tumor called glioma, compared with women who only completed up to nine years of mandatory education and did not go to a university. And men who completed at least three years of university courses were 19 percent more likely to develop the same type of tumor, compared with men who did not go to a university. Though the reasons behind the link are not clear, "one possible explanation is that highly educated people may be more aware of symptoms and seek medical care earlier," and therefore are more likely to be diagnosed, said Amal Khanolkar, a research associate at the Institute of Child Health at the University College Londonand a co-author of the study. [Top 10 Cancer-Fighting Foods] In the study, the researchers looked at data on more than 4.3 million people in Sweden who were a part of the Swedish Total Population Register. The researchers tracked the people for 17 years, beginning in 1993, to see if they developed brain tumors during that time. They also collected information about the people's education levels, income, marital status and occupation. During the 17-year study, 5,735 men and 7,101 women developed brain tumors, according to the findings, published today (June 20) in the Journal of Epidemiology & Community Health. Copyright 2016 LiveScience,

Keyword: Intelligence; Development of the Brain
Link ID: 22346 - Posted: 06.22.2016