Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 41 - 60 of 19774

Sara Reardon Companies selling ‘probiotic’ foods have long claimed that cultivating the right gut bacteria can benefit mental well-being, but neuroscientists have generally been sceptical. Now there is hard evidence linking conditions such as autism and depression to the gut’s microbial residents, known as the microbiome. And neuroscientists are taking notice — not just of the clinical implications but also of what the link could mean for experimental design. “The field is going to another level of sophistication,” says Sarkis Mazmanian, a microbiologist at the California Institute of Technology in Pasadena. “Hopefully this will shift this image that there’s too much commercial interest and data from too few labs.” This year, the US National Institute of Mental Health spent more than US$1 million on a new research programme aimed at the microbiome–brain connection. And on 19 November, neuroscientists will present evidence for the link in a symposium at the annual Society for Neuroscience meeting in Washington DC called ‘Gut Microbes and the Brain: Paradigm Shift in Neuroscience’. Although correlations have been noted between the composition of the gut microbiome and behavioural conditions, especially autism1, neuroscientists are only now starting to understand how gut bacteria may influence the brain. The immune system almost certainly plays a part, Mazmanian says, as does the vagus nerve, which connects the brain to the digestive tract. Bacterial waste products can also influence the brain — for example, at least two types of intestinal bacterium produce the neurotransmitter γ-aminobutyric acid (GABA)2. © 2014 Nature Publishing Group

Keyword: Obesity; Autism
Link ID: 20310 - Posted: 11.13.2014

by Helen Thomson Could a futuristic society of humans with the power to control their own biological functions ever become reality? It's not as out there as it sounds, now the technical foundations have been laid. Researchers have created a link between thoughts and cells, allowing people to switch on genes in mice using just their thoughts. "We wanted to be able to use brainwaves to control genes. It's the first time anyone has linked synthetic biology and the mind," says Martin Fussenegger, a bioengineer at ETH Zurich in Basel, Switzerland, who led the team behind the work. They hope to use the technology to help people who are "locked-in" – that is, fully conscious but unable to move or speak – to do things like self-administer pain medication. It might also be able to help people with epilepsy control their seizures. In theory, the technology could be used for non-medical purposes, too. For example, we could give ourselves a hormone burst on demand, much like in the Culture – Iain M. Banks's utopian society, where people are able to secrete hormones and other chemicals to change their mood. Fussenegger's team started by inserting a light-responsive gene into human kidney cells in a dish. The gene is activated, or expressed, when exposed to infrared light. The cells were engineered so that when the gene activated, it caused a cascade of chemical reactions leading to the expression of another gene – the one the team wanted to switch on. © Copyright Reed Business Information Ltd.

Keyword: Genes & Behavior; Robotics
Link ID: 20309 - Posted: 11.13.2014

Details of the role of glutamate, the brain’s excitatory chemical, in a drug reward pathway have been identified for the first time. This discovery in rodents — published today in Nature Communications — shows that stimulation of glutamate neurons in a specific brain region (the dorsal raphe nucleus) leads to activation of dopamine-containing neurons in the brain’s reward circuit (dopamine reward system). Dopamine is a neurotransmitter present in regions of the brain that regulate movement, emotion, motivation, and feelings of pleasure. Glutamate is a neurotransmitter whose receptors are important for neural communication, memory formation, and learning. The research was conducted at the Intramural Research Program (IRP) of the National Institute on Drug Abuse (NIDA), which is part of the National Institutes of Health. The research focused on the dorsal raphe nucleus, which has long been a brain region of interest to drug abuse researchers, since nerve cells in this area connect to part of the dopamine reward system. Many of the pathways are rich in serotonin, a neurotransmitter linked to mood regulation. Even though electrical stimulation of the dorsal raphe nucleus promotes reward-related behaviors, drugs that increase serotonin have low abuse potential. As a result, this region of the brain has always presented a seeming contradiction, since it is involved in drug reward but is also abundant in serotonin - a chemical not known for a role in drug reinforcement. This has led researchers to theorize that another neurotransmitter may be responsible for the role that the dorsal raphe nucleus plays in reward.

Keyword: Drug Abuse
Link ID: 20308 - Posted: 11.13.2014

By Kate Kelland LONDON (Reuters) - British scientists say they have found the best way yet to analyze the effects of smoking on the brain -- by taking functional magnetic resonance imaging (fMRI) scans of people while they puff on e-cigarettes. In a small pilot study, the researchers used electronic cigarettes, or e-cigarettes, to mimic the behavioral aspects of smoking tobacco cigarettes, and say future studies could help scientists understand why smoking is so addictive. E-cigarettes use battery-powered cartridges to produce a nicotine-laced vapor to inhale -- hence the new term "vaping". Their use has rocketed in recent years, but there is fierce debate about the risks and benefits. Some public health experts say they could help millions quit tobacco cigarettes, while others argue they could "normalize" the habit and lure children into smoking. While that argument rages, tobacco kills some 6 million people a year, and the World Health Organization estimates that could rise beyond 8 million by 2030. Matt Wall, an imaging scientist at Imperial College London who led the study using e-cigarettes, said he was not aiming to pass judgment on their rights or wrongs, but to use them to dig deeper into smoking addiction. The fact that other forms of nicotine replacement therapy, such as patches or gum, have had only limited success in getting hardened smokers to quit suggests they are hooked on more than just nicotine, he noted. © 2014 Scientific American

Keyword: Drug Abuse; Brain imaging
Link ID: 20307 - Posted: 11.13.2014

Emily Anthes Anna's life began to unravel in 2005 when her husband of 30 years announced that he had fallen in love with another woman. “It had never even occurred to me that my marriage could ever end,” recalls Anna, a retired lawyer then living in Philadelphia, Pennsylvania. “It was pretty shocking.” Over the course of several months, Anna stopped wanting to get up in the morning. She felt tired all the time, and consumed by negative thoughts. “'I'm worthless.' 'I messed up everything.' 'It's all my fault.'” She needed help, but her first therapist bored her and antidepressants only made her more tired. Then she found Cory Newman, director of the Center for Cognitive Therapy at the University of Pennsylvania, who started her on a different kind of therapy. Anna learned how to obsess less over her setbacks and give herself more credit for her triumphs. “It was so helpful to talk to someone who steered me to more positive ways of thinking,” says Anna, whose name has been changed at her request. Cognitive therapy, commonly known as cognitive behavioural therapy (CBT), aims to help people to identify and change negative, self-destructive thought patterns. And although it does not work for everyone with depression, data have been accumulating in its favour. “CBT is one of the clear success stories in psychotherapy,” says Stefan Hofmann, a psychologist at Boston University in Massachusetts. Antidepressant drugs are usually the first-line treatment for depression. They are seen as a quick, inexpensive fix — but clinical trials reveal that only 22–40% of patients emerge from depression with drugs alone. Although there are various approaches to psychotherapy, CBT is the most widely studied; a meta-analysis1 published this year revealed that, depending on how scientists measure outcomes, between 42% and 66% of patients no longer meet the criteria for depression after therapy. © 2014 Nature Publishing Group

Keyword: Depression
Link ID: 20306 - Posted: 11.13.2014

Heidi Ledford If the extent of human suffering were used to decide which diseases deserve the most medical attention, then depression would be near the top of the list. More than 350 million people are affected by depression, making it one of the most common disorders in the world. It is the biggest cause of disability, and as many as two-thirds of those who commit suicide have the condition. But although depression is common, it is often ignored. Three-quarters of people with depression in the United Kingdom go undiagnosed or untreated — and even if the disorder is diagnosed, today's medications will work well for only about half of those who seek help. “It's unbelievable,” says Tom Foley, a psychiatrist at Newcastle University, UK. “If that was the case in cancer care, it would be an absolute scandal.” The comparison between depression and cancer is a common one. Cancer, too, is a terrible blight: it affects more than 32 million people and kills some 8 million a year, many more than depression. But at least in developed countries, the vast majority of people with recognized cancers do receive treatment. In research, too, depression has failed to keep up with cancer. Cancer research today is a thriving field, unearthing vast catalogues of disease-associated mutations, cranking out genetically targeted therapies and developing sophisticated animal models. Research into depression, meanwhile, seems to have floundered: once-hopeful therapies have failed in clinical trials, genetic studies have come up empty-handed. The field is still struggling to even define the disease — and overcome the stigma associated with it. © 2014 Nature Publishing Grou

Keyword: Depression
Link ID: 20305 - Posted: 11.13.2014

By Abby Phillip You know the ones: They seem to be swaying to their own music or clapping along to a beat only they can hear. You may even think that describes you. The majority of humans, however, do this very well. We clap, dance, march in unison with few problems; that ability is part of what sets us apart from other animals. But it is true that rhythm — specifically, coordinating your movement with something you hear — doesn't come naturally to some people. Those people represent a very small sliver of the population and have a real disorder called "beat deafness." Unfortunately, your difficulty dancing or keeping time in band class probably doesn't quite qualify. A new study by McGill University researchers looked more closely at what might be going on with "beat deaf" individuals, and the findings may shed light on why some people seem to be rhythm masters while others struggle. Truly beat deaf people have a very difficult time clapping or tapping to an auditory beat or swaying to one. It's a problem that is far more severe than a lack of coordination. And it isn't attributable to motor skills, hearing problems or even a person's inability to create a regular rhythm. Illustrating how rare the disorder really is, McGill scientists received hundreds of inquiries from people who thought they were beat deaf, but only two qualified as having truly severe problems.

Keyword: Hearing
Link ID: 20304 - Posted: 11.13.2014

By Jia You Like humans, flies are attracted to alcohol. Fruit flies (Drosophila melanogaster, above) prefer to lay their eggs on rotten food that can contain ethanol in as high as 7% concentration. (That’s 14 proof to you bar hoppers.) And just like people, the insects differ in their ability to hold their drinks. Biologists know that compared with flies from tropical Africa, flies from temperate regions such as Europe survive longer when exposed to ethanol vapors of high concentrations, and they know it has something to do with enzymes on the flies’ second chromosomes, which break down alcohol and are more active in European flies. But now, biologist James Fry of the University of Rochester in New York has pinpointed a missing piece of the story: the role played by the flies’ third chromosomes. After studying flies collected from Vienna and Cameroon, Fry found that the Vienna flies break down alcohol much faster than Cameroon ones, as expected. But when he replaced the third chromosomes in Cameroon flies with those from Vienna, the African flies gained much more resistance, Fry reports online today in The Journal of Experimental Biology. In a specialized population of flies that could not detoxify alcohol, however, the genetic engineering made no difference whatsoever. Fry suggests that’s because the third chromosomes in European flies help them tolerate acetic acid, a byproduct of internal alcohol breakdown that also gives vinegar its sour taste. There’s no telling what the acetic acid does to the flies, but previous studies on mice have found that it may be responsible for hangover headaches, Fry says. © 2014 American Association for the Advancement of Science

Keyword: Drug Abuse; Genes & Behavior
Link ID: 20303 - Posted: 11.13.2014

By JAMES GORMAN Research on the brain is surging. The United States and the European Union have launched new programs to better understand the brain. Scientists are mapping parts of mouse, fly and human brains at different levels of magnification. Technology for recording brain activity has been improving at a revolutionary pace. The National Institutes of Health, which already spends $4.5 billion a year on brain research, consulted the top neuroscientists in the country to frame its role in an initiative announced by President Obama last year to concentrate on developing a fundamental understanding of the brain. Scientists have puzzled out profoundly important insights about how the brain works, like the way the mammalian brain navigates and remembers places, work that won the 2014 Nobel Prize in Physiology or Medicine for a British-American and two Norwegians. So many large and small questions remain unanswered. How is information encoded and transferred from cell to cell or from network to network of cells? Science found a genetic code but there is no brain-wide neural code; no electrical or chemical alphabet exists that can be recombined to say “red” or “fear” or “wink” or “run.” And no one knows whether information is encoded differently in various parts of the brain. Brain scientists may speculate on a grand scale, but they work on a small scale. Sebastian Seung at Princeton, author of “Connectome: How the Brain’s Wiring Makes Us Who We Are,” speaks in sweeping terms of how identity, personality, memory — all the things that define a human being — grow out of the way brain cells and regions are connected to each other. But in the lab, his most recent work involves the connections and structure of motion-detecting neurons in the retinas of mice. Larry Abbott, 64, a former theoretical physicist who is now co-director, with Kenneth Miller, of the Center for Theoretical Neuroscience at Columbia University, is one of the field’s most prominent theorists, and the person whose name invariably comes up when discussions turn to brain theory. © 2014 The New York Times Company

Keyword: Brain imaging
Link ID: 20302 - Posted: 11.11.2014

Mo Costandi The father of modern neuroscience had a sharp eye and an even sharper mind, but he evidently overlooked something rather significant about the basic structure of brain cells. Santiago Ramón y Cajal spent his entire career examining and comparing nervous tissue from different species. He observed the intricate branches we now call dendrites, and the thicker axonal fibres. He also recognised them as distinct components of the neuron, and convinced others that neurons are fundamental components of the nervous system. For Cajal, these cells were “the mysterious butterflies of the soul… whose beating of wings may one day reveal to us the secrets of the mind.” He hunted for them in “the gardens of the grey matter” and, being an accomplished artist, meticulously catalogued the many “delicate and elaborate forms” that they take. As his beautiful drawings show, all neurons have a single axon emanating from one area of the cell body, and one or more dendrites arising from another. This basic structure has been enshrined in textbooks ever since. But there appear to be unusual varieties of soul butterflies that Cajal failed to spot – neuroscientists in Germany have identified neurons that have axons growing from their dendrites, a discovery that challenges our century-old assumption about the form and function of these cells. Cajal stated that information flows through neurons in only one direction – from the dendrites, which receive electrical impulses from other neurons, to the cell body, which processes the information and conveys it to the initial segment of the axon, which then produces its own impulses that travel down it to the nerve terminal. (He indicated this with small arrows in some of his diagrams, such as the one above.) © 2014 Guardian News and Media Limited

Keyword: Brain imaging
Link ID: 20301 - Posted: 11.11.2014

By Julia Calderone Antidepressant use among Americans is skyrocketing. Adults in the U.S. consumed four times more antidepressants in the late 2000s than they did in the early 1990s. As the third most frequently taken medication in the U.S., researchers estimate that 8 to 10 percent of the population is taking an antidepressant. But this spike does not necessarily signify a depression epidemic. Through the early 2000s pharmaceutical companies were aggressively testing selective serotonin reuptake inhibitors (SSRIs), the dominant class of depression drug, for a variety of disorders—the timeline below shows the rapid expansion of FDA-approved uses. As the drugs' patents expired, companies stopped funding studies for official approval. Yet doctors have continued to prescribe them for more ailments. One motivating factor is that SSRIs are a fairly safe option for altering brain chemistry. Because we know so little about mental illness, many clinicians reason, we might as well try the pills already on the shelf. Doctors commonly use antidepressants to treat many maladies they are not approved for. In fact, studies show that between 25 and 60 percent of prescribed antidepressants are actually used to treat nonpsychological conditions. The most common and well-supported off-label uses of SSRIs include: Abuse and dependence ADHD (in children and adolescents) Anxiety disorders Autism (in children) Bipolar disorder Eating disorders Fibromyalgia Neuropathic pain Obsessive-compulsive disorder Premenstrual dysphoric disorder © 2014 Scientific American

Keyword: Depression
Link ID: 20300 - Posted: 11.11.2014

By Abby Phillip If you're confused about what marijuana use really does to people who use it, you're not alone. For years, the scientific research on health effects of the drug have been all over the map. Earlier this year, one study suggested that even casual marijuana use could cause changes to the brain. Another found that marijuana use was also associated with poor sperm quality, which could lead to infertility in men. But marijuana advocates point to other research indicating that the drug is far less addictive than other drugs, and some studies have found no relationship between IQ and marijuana use in teens. Researchers at the Center for Brain Health at the University of Texas in Dallas sought to clear up some of the confusion with a study that looked at a relatively large group of marijuana users and evaluated their brains for a slew of different indicators. What they found was complex, but the pattern was clear: The brains of marijuana users were different than those of non-marijuana users. The area of the brain responsible for establishing the reward system that helps us survive and also keeps us motivated was smaller in users than in non-marijuana users. But there was also evidence that the brain compensated for this loss of volume by increasing connectivity and the structural integrity of the brain tissue. Those effects were more pronounced for marijuana users who started young. "The orbitofrontal cortex is one of the primary regions in a network of brain areas called the reward system," explained Francesca Filbey, lead author of the study and an associate professor of the neurogenetics of addictive behavior at the University of Texas in Dallas. "

Keyword: Drug Abuse; Development of the Brain
Link ID: 20299 - Posted: 11.11.2014

Email David By David Grimm Place a housecat next to its direct ancestor, the Near Eastern wildcat, and it may take you a minute to spot the difference. They’re about the same size and shape, and, well, they both look like cats. But the wildcat is fierce and feral, whereas the housecat, thanks to nearly 10,000 years of domestication, is tame and adaptable enough to have become the world’s most popular pet. Now scientists have begun to pinpoint the genetic changes that drove this remarkable transformation. The findings, based on the first high-quality sequence of the cat genome, could shed light on how other creatures, even humans, become tame. “This is the closest thing to a smoking gun we’ve ever had,” says Greger Larson, an evolutionary biologist at the University of Oxford in the United Kingdom who has studied the domestication of pigs, dogs, and other animals. “We’re much closer to understanding the nitty-gritty of domestication than we were a decade ago.” Cats first entered human society about 9500 years ago, not long after people first took up farming in the Middle East. Drawn to rodents that had invaded grain stores, wildcats slunk out of the deserts and into villages. There, many scientists suspect, they mostly domesticated themselves, with the friendliest ones able to take advantage of human table scraps and protection. Over thousands of years, cats shrank slightly in size, acquired a panoply of coat colors and patterns, and (largely) shed the antisocial tendencies of their past. Domestic animals from cows to dogs have undergone similar transformations, yet scientists know relatively little about the genes involved. Researchers led by Michael Montague, a postdoc at the Washington University School of Medicine in St. Louis, have now pinpointed some of them. The scientists started with the genome of a domestic cat—a female Abyssinian—that had been published in draft form in 2007, then filled in missing sequences and identified genes. They compared the resulting genome with those of cows, tigers, dogs, and humans. © 2014 American Association for the Advancement of Science.

Keyword: Genes & Behavior; Evolution
Link ID: 20298 - Posted: 11.11.2014

By Paula Span A few days after I wrote about conditions that can mimic dementia, reader Sue Murray emailed me from Westchester County. Her subject line: “Have you heard of Charles Bonnet Syndrome?” I hadn’t, and until about six months ago, neither had Ms. Murray. Her mother Elizabeth, who is 91, has glaucoma and macular degeneration, and has been gradually losing her vision, Ms. Murray explained. So at first, her family was excited when Elizabeth seemed to be seeing things more clearly. Maybe, they thought, her vision was returning. But the things she was seeing — patterns and colors, strangers, a green man — weren’t there. She insisted that “there were people in the cellar, people on the porch, people in the house,” Ms. Murray said. “She’d point and say, ‘Don’t you see them?’ And she’d get mad when we didn’t.” Elizabeth and her husband Victor, 95, live in Connecticut, in a house they bought 50 years ago. For a while, the Green Man, as Elizabeth began calling him, seemed to have moved in, too. “She’d start hiding things in the closet so the Green Man wouldn’t take them,” Ms. Murray said. “There wasn’t any real fear; it was just, ‘Look at that!’” Elizabeth’s ophthalmologist promptly supplied the name for this condition: Charles Bonnet Syndrome, named for a Swiss philosopher who described such visual hallucinations in the 18th century. “We were relieved,” said Ms. Murray. What they feared, of course, was mental illness or dementia. “To have an eye doctor say, ‘I’m familiar with this,’ it’s still jarring but it’s not so terrible.” Bonnet Syndrome (pronounced Boh-NAY) isn’t terribly rare, it turns out. Oliver Sacks described several cases in his 2012 book, “Hallucinations.” Dr. Abdhish Bhavsar, a clinical spokesperson for the American Academy of Ophthalmology and a retina specialist in Minneapolis, estimates that he has probably seen about 200 patients with the syndrome over 17 years of practice. © 2014 The New York Times Company

Keyword: Vision; Attention
Link ID: 20297 - Posted: 11.10.2014

By Meeri Kim Patients suffering from pagophagia compulsively crave and chomp on ice, even scraping buildup off freezer walls for a fix. The disorder appears to be caused by an iron deficiency, and supplements of the mineral tend to ease the cravings. But what is it about ice that makes it so irresistible? A new study proposes that, like a strong cup of coffee, ice may give those with insufficient iron a much-needed mental boost. Fatigue is the most common symptom of iron-deficiency anemia, which occurs when the body can’t produce enough oxygen-carrying hemoglobin because of low iron. “I had a friend who was suffering from iron-deficiency anemia who was just crunching through massive amounts of ice a day,” said study author Melissa Hunt, a clinical psychologist at the University of Pennsylvania. “She said: ‘It’s like a cup of coffee. I don’t feel awake until I have a cup of ice in my hand.’ ” Hunt and her colleagues had both anemic and healthy subjects complete a standardized, 22-minute attention test commonly used to diagnose attention deficit hyperactivity disorder. Just before the test, participants were given either a cup of ice or lukewarm water to consume. Iron-deficient subjects who had sipped on water performed far more slugglishly on the test than controls, as expected. But those who ate ice beforehand did just as well as their healthy counterparts. For healthy subjects, having a cup of ice instead of water appeared to make no difference in test performance. “It’s not like craving a dessert. It’s more like needing a cup of coffee or that cigarette,” Hunt said.

Keyword: Attention
Link ID: 20296 - Posted: 11.10.2014

By James Gallagher Health editor, BBC News website The brain has specialist neurons for each of the five taste categories - salty, bitter, sour, sweet and umami - US scientists have discovered. The study, published in the journal Nature, should settle years of debate on how the brain perceives taste. The Columbia University team showed the separate taste sensors on the tongue had a matching partner in the brain. The scientists hope the findings could be used to help reverse the loss of taste sensation in the elderly. It is a myth that you taste sweet only on the tip of the tongue. Each of the roughly 8,000 taste buds scattered over the tongue is capable of sensing the full suite of tastes. But specialised cells within the taste bud are tuned to either salty, bitter, sour, sweet or umami tastes. When they detect the signal, a message is sent to the brain. Although how the brain deals with the information has been up for discussion. A team at Columbia University engineered mice so that their taste neurons would fluoresce when they were activated. They then trained their endoscopes on the neurons deep at their base of the brain. The animals were fed chemicals to trigger either a salty, bitter, sour, sweet or umami response on the tongue and the researchers monitored the change in the brain. They found a "hard wired" connection between tongue and brain. Prof Charles Zuker told the BBC News website: "The cells were beautifully tuned to discrete individual taste qualities, so you have a very nice match between the nature of the cells in your tongue and the quality they represent [in the brain]." It scotches the alternative idea that brain cells respond to multiple tastes. BBC © 2014

Keyword: Chemical Senses (Smell & Taste)
Link ID: 20295 - Posted: 11.10.2014

By Katy Waldman How much control do you have over how much control you think you have? The researchers Michael R. Ent and Roy F. Baumeister have been studying what makes a person more or less likely to believe in free will. Is it a deep connection to the philosophy of David Hume? An abiding faith in divine omnipotence? Try a really, really full bladder. In an online survey, 81 adults ages 18 to 70 reported the extent to which they felt hungry, tired, desirous of sex, and desirous of a toilet. They then rated the extent to which they considered themselves in command of their destinies. People experiencing intense physical needs were less likely to say they believed in free will. People who were not inexplicably taking an online survey while desperately holding in their pee (or starving, or wanting sex, or trying to stay awake) mostly claimed that the universe had handed them the keys to their lives. Also, people who brought their laptops with them into the bathroom to fill out the survey reported that they were God. (I kid on that last part.) Ent and Baumeister also used a survey to take the free will temperature of 23 people with panic disorder, 16 people with epilepsy, and 35 healthy controls. Those suffering from the two conditions—both of which can unpredictably plunge the mind into chaos—tended to put less stock in the notion of mental autonomy. There was a third experiment, too. I said earlier that people not taking an online survey while jonesing for various creature comforts mostly claimed that they wore the metaphysical pants. However, despite robust results for horniness, fatigue, and needing-to-go-ness, Ent and Baumeister didn’t initially see much correlation between people’s philosophical visions and their hunger levels. So they re-administered the survey to 112 new volunteers, some of whom were dieting and some of whom were not. © 2014 The Slate Group LLC.

Keyword: Consciousness
Link ID: 20294 - Posted: 11.10.2014

By Dr. Catherine A. Madison “Now why did I walk into this room? Oh, yes, looking for my …” This scenario, familiar to many, is most often a sign of normal aging — or of having too much on our minds. But when these events seem to be happening frequently, is it a more serious problem, such as Alzheimer’s disease or another dementia? Even more importantly, are there good health habits that can help lower the risk of these neurodegenerative conditions? Research continues to demonstrate that healthy lifestyles lower one’s risk of developing cognitive decline later in life. Wise food choices and lots of exercise are a good base, along with learning new material and keeping socially connected. But another key element to brain health is good sleep. We may take sleep for granted, but research suggests this is not a passive process. There is a growing consensus that sleep is linked to learning, memory, nerve cell remodeling and repair. Evidence also suggests lack of sleep can contribute to mood and immune disorders, as well as to a decline in overall health. Most of us have read the dos and don’ts of good sleep hygiene: avoid napping, don’t drink alcohol or caffeine close to bedtime, avoid late-evening exercise and sleep in a room that is quiet, dark and cool. We’ve also been told about sleep cycles, in which we typically progress from light sleep early in the night to slow wave sleep with rapid eye movement, or REM, later on. We need a balance of sleep cycles for optimal health.

Keyword: Sleep; Alzheimers
Link ID: 20293 - Posted: 11.10.2014

Stem cells can be used to heal the damage in the brain caused by Parkinson's disease, according to scientists in Sweden. They said their study on rats heralded a "huge breakthrough" towards developing effective treatments. There is no cure for the disease, but medication and brain stimulation can alleviate symptoms. Parkinson's UK said there were many questions still to be answered before human trials could proceed. The disease is caused by the loss of nerve cells in the brain that produce the chemical dopamine ,which helps to control mood and movement. To simulate Parkinson's, Lund University researchers killed dopamine-producing neurons on one side of the rats' brains. They then converted human embryonic stem cells into neurons that produced dopamine. Parkinson's Disease Parkinson's is one of the commonest neurodegenerative diseases These were injected into the rats' brains, and the researchers found evidence that the damage was reversed. There have been no human clinical trials of stem-cell-derived neurons, but the researchers said they could be ready for testing by 2017. Malin Parmar, associate professor of developmental and regenerative neurobiology, said: "It's a huge breakthrough in the field [and] a stepping stone towards clinical trials." A similar method has been tried in a limited number of patients. It involved taking brain tissue from multiple aborted foetuses to heal the brain. Clinical trials were abandoned after mixed results, but about a third of the patients had foetal brain cells that functioned for 25 years. BBC © 2014

Keyword: Parkinsons
Link ID: 20292 - Posted: 11.08.2014

Carl Zimmer Milk is not just food. The more closely scientists examine it, the more complexity they find. Along with nutrients like protein and calcium, milk contains immune factors that protect infants from disease. It hosts a menagerie of microbes, too, some of which may colonize the guts of babies and help them digest food. Milk even contains a special sugar that can fertilize that microbial garden. Now, it turns out, milk also contains messages. A new study of monkeys, published in the journal Behavioral Ecology, demonstrates that a hormone present in milk, cortisol, can have profound effects on how babies develop. Infant monkeys rely on cortisol to detect the condition of their mothers, the authors suggest, then adjust their growth and even shift their temperaments. Jeffrey French, a neuroendocrinologist at the University of Nebraska at Omaha who was not involved in the study, praised its “remarkable sophistication” and said that it helped to change how we think about breast milk. “Milk serves almost like a pheromone, a chemical signal sent from one individual to another,” he said. Katie Hinde, a behavioral biologist at Harvard and lead author on the new study, and her colleagues studied 108 rhesus macaque mothers nursing infants at the California National Primate Research Center. The researchers collected samples of milk, measuring how much energy each provided and the cortisol it contained. Dr. Hinde and her colleagues also measured how much weight each nursing monkey gained and tracked its behavior. Cortisol serves many functions in mammals, but it is best known as a stress hormone. When cortisol courses through our bodies, it prepares us to handle alarming or fearful situations, increasing the brain’s consumption of glucose and suppressing the digestive system. © 2014 The New York Times Company

Keyword: Sexual Behavior; Chemical Senses (Smell & Taste)
Link ID: 20291 - Posted: 11.08.2014