Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.

Links 41 - 60 of 21081

By Arlene Karidis Several years ago, Peggy Chenoweth began having excruciating cramping in her ankle. It felt severely sprained and as if her toe were twisting to the point where it was being ripped off her foot. “The pain is right here,” she told an orthopedic surgeon, “in my ankle and foot.” But the 41-year-old Gainesville, Va., resident no longer had that ankle and foot. Her leg had been amputated below the knee after a large piece of computer equipment fell off a cart, crushed her foot and caused nerve damage. Further, she insisted that since the amputation, she could feel her missing toes move. Chenoweth’s surgeon knew exactly what was going on: phantom pain. Lynn Webster, an anesthesiologist and past president of the American Academy of Pain Medicine, explains the phenomenon: “With ‘phantom pain,’ nerves that transmitted information from the brain to the now-missing body part continue to send impulses, which relay the message of pain.” It feels as if the removed part is still there and hurting, but pain is actually in the brain. The sensation ranges from annoying itching to red-hot burning. Physicians wrote about phantom pain as early as the 1860s, but U.S. research on this condition has increased recently, spurred by the surge of amputees returning from warfare in Iraq and Afghanistan and by increasing rates of diabetes. (Since 2003, nearly 1,650 service members have lost limbs, according to the Congressional Research Service. In 2010, about 73,000 amputations were performed on diabetics in the United States, according to the Centers for Disease Control and Prevention.)

Keyword: Pain & Touch
Link ID: 21620 - Posted: 11.10.2015

By Jason G. Goldman When a monkey has the sniffles or a headache, it doesn't have the luxury of popping a few painkillers from the medicine cabinet. So how does it deal with the common colds and coughs of the wildlife world? University of Georgia ecologist Ria R. Ghai and her colleagues observed a troop of more than 100 red colobus monkeys in Uganda's Kibale National Park for four years to figure out whether the rain forest provides a Tylenol equivalent. Monkeys infected with a whipworm parasite were found to spend more time resting and less time moving, grooming and having sex. The infected monkeys also ate twice as much tree bark as their healthy counterparts even though they kept the same feeding schedules. The findings were published in September in the journal Proceedings of the Royal Society B. The fibrous snack could help literally sweep the intestinal intruder out of the simians' gastrointestinal tracts, but Ghai suspects a more convincing reason. Seven of the nine species of trees and shrubs preferred by sick monkeys have known pharmacological properties, such as antisepsis and analgesia. Thus, the monkeys could have been self-medicating, although she cannot rule out other possibilities. The sick individuals were, however, using the very same plants that local people use to treat illnesses, including infection by whipworm parasites. And that “just doesn't seem like a coincidence,” Ghai says. © 2015 Scientific American,

Keyword: Drug Abuse; Evolution
Link ID: 21619 - Posted: 11.10.2015

By Katherine Ellison Last year, Sinan Sonmezler of Istanbul refused to keep going to school. His eighth-grade classmates called him “weird” and “stupid,” and his teachers rebuked him for his tendency to stare out the window during class. The school director told his parents he was “lazy.” Sinan has attention-deficit hyperactivity disorder, a condition still little understood in many parts of the world. “He no longer believes he can achieve anything, and has quit trying,” said Sinan’s father, Umit Sonmezler, a mechanical engineer. While global diagnoses of A.D.H.D. are on the rise, public understanding of the disorder has not kept pace. Debates about the validity of the diagnosis and the drugs used to treat it — the same that have long polarized Americans — are now playing out from Northern and Eastern Europe to the Middle East and South America. Data from various nations tell a story of rapid change. In Germany, A.D.H.D. diagnosis rates rose 381 percent from 1989 to 2001. In the United Kingdom, prescriptions for A.D.H.D. medications rose by more than 50 percent in five years to 657,000 in 2012, up from 420,000 in 2007. Consumption of A.D.H.D. medications doubled in Israel from 2005 to 2012. The surge in use of the medications has prompted skepticism that pharmaceutical firms, chasing profits in an $11 billion international market for A.D.H.D. drugs, are driving the global increase in diagnoses. In 2007, countries outside the United States accounted for only 17 percent of the world’s use of Ritalin. By 2012, that number had grown to 34 percent. © 2015 The New York Times Company

Keyword: ADHD
Link ID: 21618 - Posted: 11.10.2015

By Michelle Roberts Health editor, BBC News online An increasingly warped sense of humour could be an early warning sign of impending dementia, say UK experts. The University College London study involved patients with frontotemporal dementia, with the results appearing in the Journal of Alzheimer's Disease. Questionnaires from the friends and family of the 48 patients revealed many had noticed a change in humour years before the dementia had been diagnosed. This included laughing inappropriately at tragic events. Experts say more studies are now needed to understand how and when changes in humour could act as a red flag for dementia. There are many different types of dementia and frontotemporal dementia is one of the rarer ones. The area of the brain it affects is involved with personality and behaviour, and people who develop this form of dementia can lose their inhibition, become more impulsive and struggle with social situations. Dr Camilla Clark and colleagues recruited 48 patients from their dementia clinic at University College London. And they asked the friends or relatives of the patients to rate their loved one's liking for different kinds of comedy - slapstick comedy such as Mr Bean, satirical comedy such as Yes, Minister or absurdist comedy such as Monty Python - as well as any examples of inappropriate humour. Nearly all of the respondents said, with hindsight, that they had noticed a shift in the nine years before the dementia had been diagnosed. Many of the patients had developed a dark sense of humour - for example, laughing at tragic events in the news or in their personal lives. The dementia patients also tended to prefer slapstick to satirical humour, when compared with 21 healthy people of a similar age. © 2015 BBC.

Keyword: Alzheimers
Link ID: 21617 - Posted: 11.10.2015

Angus Chen English bursts with consonants. We have words that string one after another, like angst, diphthong and catchphrase. But other languages keep more vowels and open sounds. And that variability might be because they evolved in different habitats. Consonant-heavy syllables don't carry very well in places like windy mountain ranges or dense rainforests, researchers say. "If you have a lot of tree cover, for example, [sound] will reflect off the surface of leaves and trunks. That will break up the coherence of the transmitted sound," says Ian Maddieson, a linguist at the University of New Mexico. That can be a real problem for complicated consonant-rich sounds like "spl" in "splice" because of the series of high-frequency noises. In this case, there's a hiss, a sudden stop and then a pop. Where a simple, steady vowel sound like "e" or "a" can cut through thick foliage or the cacophony of wildlife, these consonant-heavy sounds tend to get scrambled. Hot climates might wreck a word's coherence as well, since sunny days create pockets of warm air that can punch into a sound wave. "You disrupt the way it was originally produced, and it becomes much harder to recognize what sound it was," Maddieson says. "In a more open, temperate landscape, prairies in the Midwest of the United States [or in Georgia] for example, you wouldn't have that. So the sound would be transmitted with fewer modifications." © 2015 npr

Keyword: Language; Evolution
Link ID: 21616 - Posted: 11.07.2015

By Elahe Izadi The days growing shorter and colder can be more than just a nuisance; the seasonal change can also trigger clinical depression. Those who suffer from seasonal affective disorder, or SAD, may turn to a light box to help make them feel better. But a new study suggests another form of therapy could be more powerful and enduring: talking. The benefits of cognitive behavioral therapy — a form of talk therapy — outlasted light therapy sessions for people suffering from SAD, according to a study published Thursday in the American Journal of Psychiatry. "Light therapy is a treatment that suppresses symptoms as long as you're using it," said lead author Kelly Rohan, a psychology professor at the University of Vermont. "So if you're not using it, there's no reason to expect the continued benefit for a treatment that works that way, whereas cognitive behavioral therapy teaches skills." And the people who learn those skills can use them long after their therapy sessions. For the study, researchers tracked 177 people who suffer from major depression that follows a recurring seasonal pattern. About half of the subjects received six weeks of daily light therapy; the others received 12 sessions of cognitive behavioral therapy over the same period of time.

Keyword: Depression; Biological Rhythms
Link ID: 21615 - Posted: 11.07.2015

By Rachel E. Gross For decades, Michael Jackson had struggled to fall asleep at night. But in 2009 the pop singer was preparing for his worldwide comeback tour, and he couldn’t afford to be at anything less than 100 percent. Desperate for sleep, he convinced an unscrupulous physician to give it to him synthetically in the form of an anesthetic so strong that it sent him almost immediately into a “druglike coma.” At first, Jackson would wake up feeling refreshed. But the nightly injections conferred only the shadow of true sleep, with none of the deep, dream-filled REM cycles that his body needed. Soon he was fading fast, his mind and mood slipping away. Within two months Jackson was dead of an overdose. If that hadn’t killed him, doctors later testified during his wrongful death trial, he would have died of sleep deprivation. Jackson’s is a particularly dramatic case. But his struggle for oblivion rings true to anyone who has dealt with insomnia. “I’m for anything that gets you through the night,” Frank Sinatra once said, “be it prayer, tranquilizers, or a bottle of Jack Daniel’s.” If you have insomnia, you’ll understand this sentiment, and you’re not alone: Regular sleep eludes up to 15 percent of the population, making insomnia the most commonly diagnosed sleep problem in America. Fortunately, the nighttime affliction is becoming steadily less mysterious—at least from the perspective of neuroscience. While insomniacs toss and turn, researchers are finally starting to understand this elusive disease. As it turns out, chronic insomnia may be more hard-wired into our brains than we had thought, and indicative of larger differences that separate the brains of the sleepless from those who so effortlessly enter the land of dreams. © 2015 The Slate Group LLC

Keyword: Sleep
Link ID: 21614 - Posted: 11.07.2015

by Laura Sanders Babies’ minds are mysterious. Thoughts might be totally different in a brain that lacks words, and sensations might feel alien in a body so new. Are babies’ perceptions like ours, or are they completely different? Even if babies could talk, words would surely fail to convey what it’s like to experience, oh, every single thing for the first time. A recent paper offers a sliver of insight into young babies’ inner lives. The study, published October 19 in Current Biology, finds an example in which 4-month-old babies are happily oblivious to the external world. The research focuses on a perceptual trick that suckers adults and 6-month-old babies alike. When the hands are crossed, people often mistake which hand feels a touch. Let’s say your left hand (now crossed over to the right side of your body) gets a tickle. Your eyes would see a hand on the right side of your body get touched — a place usually claimed by your right hand, but now occupied by your left. Those mismatches between sight, touch and expectation can thwart you from quickly and correctly saying which hand was touched. Here’s the twist: 4-month-old babies don’t fall for this trick, Andrew Bremner of Goldsmiths, University of London and his colleagues found. In the experiment, a researcher would hold infants’ legs in either a crossed position or straight, while one of two remote-controlled buzzers taped to their feet tickled one foot. The researchers then watched which foot or leg wiggled as a result. If the buzzed foot moved, that meant that the baby got it right. © Society for Science & the Public 2000 - 2015.

Keyword: Development of the Brain; Pain & Touch
Link ID: 21613 - Posted: 11.07.2015

By Erika Beras From the backseat of a cab, the moves a driver makes may at times seem, let’s say, daring. In fact, cabbies may actually be better, more agile drivers than the rest of us. Because they know their streets so well. Previous research found that the hippocampus in the brain of a typical cab driver is enlarged. That’s the part of the brain used in navigation. But now a study confirms that learning detailed navigation information does indeed cause that part of the brain to grow. The findings are in the journal NeuroImage. Researchers had young adults who were not regular gamers play a driving simulation game. Some practiced maneuvering the same route 20 times, while other players were confronted with 20 different routes. The participants’ brains were scanned before they performed the simulated driving and again after. Researchers found that subjects who kept repeating the same route increased their speed more than those driving multiple routes. The single-route drivers were also much better able to put in order a sequence of random pictures taken along the way and to draw a map of the route. The investigators also found increases in the single-route drivers in the functional connectivity between the hippocampus and other parts of the brain involved with navigation. And the amount of change was directly related to the amount of improvement each participant displayed. © 2015 Scientific American

Keyword: Learning & Memory
Link ID: 21612 - Posted: 11.07.2015

By Kelli Whitlock Burton More than half of Americans over the age of 70 have cataracts, caused by clumps of proteins collecting in the eye lens. The only way to remove them is surgery, an unavailable or unaffordable option for many of the 20 million people worldwide who are blinded by the condition. Now, a new study in mice suggests eye drops made with a naturally occurring steroid could reverse cataracts by teasing apart the protein clumps. “This is a game changer in the treatment of cataracts,” says Roy Quinlan, a molecular biologist at Durham University in the United Kingdom who was not part of the study. “It takes decades for the cataracts to get to that point, so if you can reverse that by a few drops in the eye over a couple of weeks, that’s amazing.” The proteins that make up the human lens are among the oldest in the body, forming at about 4 weeks after fertilization. The majority are crystallins, a family of proteins that allow the eye to focus and keep the lens clear. Two of the most abundant crystallins, CRYAA and CRYAB, are produced in response to stress or injury. They act as chaperones, identifying and binding to damaged and misfolded proteins in the lens, preventing them from aggregating. But over the years, as damaged proteins accumulate in the lens, these chaperones become overwhelmed. The mutated proteins then clump together, blocking light and producing the tell-tale cloudiness of cataracts. © 2015 American Association for the Advancement of Science

Keyword: Vision
Link ID: 21611 - Posted: 11.06.2015

THINK twice before you tell that fib. By watching courtroom videos, a computer has learned to predict if someone is telling the truth or a lie. A machine learning algorithm trained on the faces of defendants in recordings of real trials, including that of Andrea Sneiderman (above) who was convicted of lying, correctly identified truth-tellers about 75 per cent of the time. Humans managed just 59.5 per cent. The best interrogators can reach 65 per cent. “We’re actually pretty bad lie detectors,” says Rada Mihalcea at the University of Michigan in Ann Arbor. Mihalcea and her colleagues took 121 videos from sources such as the Innocence Project, a non-profit group in Texas dedicated to exonerating people with wrongful convictions. This is superior to simulated conversation because the speakers are more invested in what they are saying. Transcriptions of the videos that included the speaker’s gestures and expressions were fed into a machine learning algorithm, along with the trial’s outcome. To hone it further, the team plans to feed in even more data. Such a system could one day spot liars in real-time in court or at airport customs, says Mihalcea, who will present the work at the International Conference on Multimodal Interaction this month in Seattle, Washington. © Copyright Reed Business Information Ltd.

Keyword: Emotions
Link ID: 21610 - Posted: 11.06.2015

Nancy Shute In September, we reported on a charming little study that found people who feel blue after watching sad videos have a harder time perceiving colors on the blue-yellow axis. Now the researchers may be feeling blue themselves. On Thursday they retracted their study, saying that errors in how they structured the experiment skewed the results. Shortly after the study was published online, commenters started looking skeptically at the results. And because the researchers had posted their data online, those commenters were able to run the numbers themselves. They didn't like what they found. As one blogger wrote: "A major problem is that the authors are claiming that they've found an interaction between video condition and color axis, but they haven't actually tested this interaction, they've just done a pair of independent t-tests and found different results." As the indefatigable crew at the Retraction Watch blog points out, it's not the first time scientists have messed this up. "This exact experimental oversight occurs all too often, according to a 2011 paper in Nature Neuroscience, which found that the same number of papers performed the procedure incorrectly as did it correctly." And there were other problems, too, such as not testing participants' color perception before the study. © 2015 npr

Keyword: Emotions; Vision
Link ID: 21609 - Posted: 11.06.2015

David Cyranoski A Chinese neuroscientist has been sacked after reporting he had used magnetic fields to control neurons and muscle cells in nematode worms (pictured), using a protein that senses magnetism. Tsinghua University in Beijing has sacked a neuroscientist embroiled in a dispute over work on a long-sought protein that can sense magnetic fields. The university has not given a specific reason for its dismissal, however, and the scientist involved, Zhang Sheng-jia, says that he will contest their action. In September, Zhang reported in the journal Science Bulletin1 that he could manipulate neurons in worms by applying a magnetic field — a process that uses a magnetic-sensing protein. But a biophysicist at neighbouring Peking University, Xie Can, who claims to have discovered the protein’s magnetic-sensing capacity and to have a paper detailing his research under review, complained that Zhang should not have published his paper before Xie’s own work appeared. Xie said that by publishing, Zhang violated an agreement that the pair had reached — although the two scientists tell different versions about the terms of their agreement, and have different explanations of how Zhang came to be working with the protein. © 2015 Nature Publishing Group

Keyword: Animal Migration
Link ID: 21608 - Posted: 11.06.2015

Paul Ibbotson and Michael Tomasello The natural world is full of wondrous adaptations such as camouflage, migration and echolocation. In one sense, the quintessentially human ability to use language is no more remarkable than these other talents. However, unlike these other adaptations, language seems to have evolved just once, in one out of 8.7 million species on earth today. The hunt is on to explain the foundations of this ability and what makes us different from other animals. The intellectual most closely associated with trying to pin down that capacity is Noam Chomsky. He proposed a universal grammatical blueprint that was unique to humans. This blueprint operated like a computer program. Instead of running Windows or Excel, this program performed “operations” on language – any language. Regardless of which of the 6000+ human languages that this code could be exposed to, it would guide the learner to the correct adult grammar. It was a bold claim: despite the surface variations we hear between Swahili, Japanese and Latin, they are all run on the same piece of underlying software. As ever, remarkable claims require remarkable evidence, and in the 50 years since some of these ideas were laid out, history has not been kind. First, it turned out that it is really difficult to state what is “in” universal grammar in a way that does justice to the sheer diversity of human languages. Second, it looks as if kids don’t learn language in the way predicted by a universal grammar; rather, they start with small pockets of reliable patterns in the language they hear, such as Where’s the X?, I wanna X, More X, It’s a X, I’m X-ing it, Put X here, Mommy’s X-ing it, Let’s X it, Throw X, X gone, I X-ed it, Sit on the X, Open X, X here, There’s a X, X broken … and gradually build their grammar on these patterns, from the “bottom up”. © 2015 Guardian News and Media Limited

Keyword: Language
Link ID: 21607 - Posted: 11.06.2015

Laura Sanders Specialized cells that make up the brain’s GPS system have an expanding job description. In addition to mapping locations, these cells can keep track of distance and time, too, scientists report in the Nov. 4 Neuron. Those specialized cells, called grid cells, were thought to have a very specific job, says neuroscientist Loren Frank of the University of California, San Francisco. But, he says, the new study says, “not so fast, everybody.” These cells’ ability to detect time and distance is unexpected. “And I think it’s important,” Frank says. The growing to-do list of grid cells shows that the brain’s navigational system is surprisingly flexible. The discovery of grid cells, found in a part of the brain called the entorhinal cortex, was recognized with the Nobel Prize last year (SN Online: 10/6/14). These brain cells fire off regular signals as animals move around in space, partially forming an internal map of the environment. Neuroscientist Howard Eichenbaum of Boston University and colleagues wondered what those cells do when an animal stays put. By training rats to run on a treadmill, the researchers had a way to study grid cells as time and distance marched forward, but location remained the same. Unlike recently discovered “speed cells” (SN: 8/8/15, p. 8), these grid cells don’t change their firing rates to correspond to changes in the rats’ swiftness, the researchers found. Instead, these cells stay tuned to distance or time, or both. © Society for Science & the Public 2000 - 2015.

Keyword: Learning & Memory
Link ID: 21606 - Posted: 11.05.2015

Natasha Gilbert The eye-catching plumage of some male songbirds has long been explained as a result of sexual selection: brighter males compete more successfully for mates, so evolution favours their spread. Females, by contrast, remain drab. A new study turns this explanation on its head. Sexual-selection pressures drive females to evolve dull feathers more strongly than they drive males to become colourful, argues James Dale, an evolutionary ecologist at Massey University in Auckland, New Zealand. That surprising conclusion is based on a data set of plumage colour in nearly 6,000 songbirds, which Dale and his colleagues built. They used their data to ask how various potential evolutionary factors drive male and female plumage colour. If a particular songbird species was polygynous (that is, the males had more than one mate), displayed a large difference in size between males and females, and left care of the young mainly up to the females, then the researchers judged that sexual selection was likely to be an important factor in that species' evolution. The study, published in Nature1, found that sexual selection does play an important role in creating colour differences between male and female plumage. But the contrast is largely driven by females evolving to become drab. “Females are the chief architect of the difference,” says Dale. © 2015 Nature Publishing Group

Keyword: Sexual Behavior; Evolution
Link ID: 21605 - Posted: 11.05.2015

Laura Sanders Blood tells a story about the body it inhabits. As it pumps through vessels, delivering nutrients and oxygen, the ruby red liquid picks up information. Hormones carried by blood can hint at how hungry a person is, or how scared, or how sleepy. Other messages in the blood can warn of heart disease or announce a pregnancy. When it comes to the brain, blood also seems to be more than a traveling storyteller. In some cases, the blood may be writing the script. A well-fed brain is crucial to survival. Blood ebbs and flows within the brain, moving into active areas in response to the brain’s demands for fuel. Now scientists have found clues that blood may have an even more direct and powerful influence. Early experiments suggest that, instead of being at the beck and call of nerve cells, blood can actually control them. This role reversal hints at an underappreciated layer of complexity — a layer that may turn out to be vital to how the brain works. The give-and-take between brain and blood appears to change with age and with illness, researchers are finding. Just as babies aren’t born walking, their developing brain cells have to learn how to call for blood. And a range of age-related disorders, including Alzheimer’s disease, have been linked to dropped calls between blood and brain, a silence that may leave patches of brain unable to do their jobs. © Society for Science & the Public 2000 - 2015

Keyword: Brain imaging
Link ID: 21604 - Posted: 11.05.2015

Doubts are emerging about one of our leading models of consciousness. It seems that brain signals thought to reflect consciousness are also generated during unconscious activity. A decade of studies have lent credence to the global neuronal workspace theory of consciousness, which states that when something is perceived unconsciously, or subliminally, that information is processed locally in the brain. In contrast, conscious perception occurs when the information is broadcast to a “global workspace”, or assemblies of neurons distributed across various brain regions, leading to activity over the entire network. Proponents of this idea, Stanislas Dehaene at France’s national institute for health in Gif-sur-Yvette, and his colleagues, discovered that when volunteers view stimuli that either enter conscious awareness or don’t, their brains show identical EEG activity for the first 270 milliseconds. Then, if perception of the stimuli is subliminal, the brain activity peters out. However, when volunteers become conscious of the stimuli, there is a sudden burst of widespread brain activity 300 ms after the stimulus. This activity is characterised by an EEG signal called P3b, and has been called a neural correlate of consciousness. Brian Silverstein and Michael Snodgrass at the University of Michigan in Ann Arbor, and colleagues wondered if P3b could be detected during unconscious processing of stimuli. © Copyright Reed Business Information Ltd.

Keyword: Consciousness
Link ID: 21603 - Posted: 11.05.2015

By Nicholas Bakalar A person with depression is at higher risk for heart disease, and a person with heart disease is at higher risk for depression. The link between the two diseases is complex and not entirely understood. Many of the effects of depression — feeling unable to exercise or eat properly, for example — and the behaviors associated with depression, like smoking and abusing alcohol, are well established risk factors for heart disease. Some studies have suggested that insomnia, another symptom of depression, may also increase the risk for cardiovascular illness. Depression can also make heart disease worse. Heart patients with depression may find it more difficult to take medications and comply with the behavioral demands of living with heart disease. Depression may also have destructive physiological effects on heart rhythm, blood pressure, stress hormone levels and blood clotting, studies have shown. These may be among the reasons why depressed patients with stable cardiovascular disease, or those who have survived a heart attack or had coronary bypass surgery, are at two to three times higher risk of dying than similar patients without depression. Treating depressed heart patients with drugs like Prozac may help. These drugs, known as selective serotonin reuptake inhibitors, or S.S.R.I.’s, in addition to relieving depression, have blood-thinning effects that may be beneficial against heart disease. “It is clear that treatment with an S.S.R.I. reduces cardiac mortality in depressed patients post heart attack,” said Dr. Steven P. Roose, a professor of psychiatry at Columbia. “What is not clear is whether the reduction in mortality results from the antidepressant effect of the medication or the anti-platelet effect of the medication.” © 2015 The New York Times Company

Keyword: Depression; Neuroimmunology
Link ID: 21602 - Posted: 11.05.2015

By DAVE ITZKOFF and BENEDICT CAREY For the first time in more than a year, the widow of the actor Robin Williams is speaking publicly about the circumstances that preceded Mr. Williams’s death, and sharing details about a disease he had when he died. Stories from Our Advertisers In interviews with People magazine and with ABC News, the widow, Susan Schneider Williams, laid the blame for her husband’s suicide in 2014 not on depression but on diffuse Lewy body dementia. “It was not depression that killed Robin,” Mrs. Williams said in the People magazine interview. “Depression was one of let’s call it 50 symptoms and it was a small one.” She added: “This was a very unique case and I pray to God that it will shed some light on Lewy bodies for the millions of people and their loved ones who are suffering with it. Because we didn’t know. He didn’t know.” Parts of an interview with Mrs. Williams were shown Tuesday on ABC’s “Good Morning America,” with further segments scheduled for that evening on the network’s “World News Tonight” and “Nightline” programs, and Friday on its morning talk show “The View.” Robin Williams was one of the most explosively, exhaustingly, prodigiously verbal comedians who ever lived, says film critic A. O. Scott. And the only thing faster than Williams’s mouth was his mind. By Adam Freelander on Publish Date August 12, 2014. Photo by ABC, via Associated Press. Watch in Times Video » Mr. Williams, the stand-up comic and star of “Mork & Mindy,” “Good Morning, Vietnam,” “Good Will Hunting” (for which he won an Oscar) and “Dead Poets Society,” killed himself on Aug. 11, 2014, in the home he shared with Mrs. Williams in Tiburon, Calif. He was 63. © 2015 The New York Times Company

Keyword: Alzheimers; Depression
Link ID: 21601 - Posted: 11.04.2015